
Merging and Splitting Eigenspace Models

Peter Hall, David Marshall, and Ralph Martin

AbstractÐWe present new deterministic methods that given two eigenspace

modelsÐeach representing a set of n-dimensional observationsÐwill: 1) merge

the models to yield a representation of the union of the sets and 2) split one model

from another to represent the difference between the sets. As this is done, we

accurately keep track of the mean. Here, we give a theoretical derivation of the

methods, empirical results relating to the efficiency and accuracy of the

techniques, and three general applications, including the construction of Gaussian

mixture models that are dynamically updateable.

Index TermsÐEigenspace models, principal component analysis, model

merging, model splitting, Gaussian mixture models.

æ

1 INTRODUCTION

THE contributions of this paper are: 1) a method for merging
eigenspace models and 2) a method for splitting eigenspace
models, in both of which we explicitly and accurately keep track of
the mean of the observations. Methods for merging (updating) or
splitting (downdating) eigenspace models exist [1], [2], [3], [4], [5],
but they fail to handle a change in the mean. The methods we
provide do update the mean, which is of crucial importance in
classification problemsÐin such problems the mean represents the
center of a cluster of observations in a given class.

An eigenspace model is a statistical description of a set of N
observations in n-dimensional space; such a model may be
regarded as a multidimensional Gaussian distribution. Geometri-

cally, an eigenspace model is a hyperellipsoid: Its center is the
mean of the observations; its axes point in directions along which
the spread of observations is maximized, subject to orthogonality.

The surface of the hyperellipsoid is a contour that lies at constant
standard deviation from the mean. Often, the hyperellipsoid is
almost flat along certain directions and, thus, can be modeled as

having lower dimension than the space in which it is embedded.
Eigenspace models have a wide variety of applications, for

example: classification for recognition systems [6], characterizing
normal modes of vibration for dynamic models, such as the heart
[7], motion sequence analysis [8], and the temporal tracking of

signals [4].
Our motivation for this work arose in the context of building

models of blood vessels for x-ray interpretation and building

eigenspace models for many images. We would also like to
incrementally build Gaussian mixture models, which use separate
Gaussian distributions to describe data falling into several clusters

or classes. Updating the means is a prerequisite in this case, as the
mean represents the center of the distribution for each class;
classification is based on the Mahalanobis distance, which

measures the distance from the mean in units of standard
deviation.

Eigenspace models are computed using either eigenvalue
decomposition (EVD) (also called principal component analysis)
or singular-value decomposition (SVD). We would like to

distinguish between batch and incremental computation. In batch

computation, all observations are used simultaneously to compute

the eigenspace model. In an incremental computation, an existing

eigenspace model is updated using new observations.
Previous research in incremental computation of eigenspace

models has only considered adding exactly one new observation at

a time to an eigenspace model [1], [2], [3], [4], [5]. None of these

methods require the original observations to be retained; a

description of the hyperellipsoid is sufficient information for

incremental computation. Each of these previous approaches

allows for a change in dimensionality of the hyperellipsoid so

that a single additional axis is added if necessary. Only our

previous work allows for a shift of the center of the hyperellipsoid

[9], which proves crucial if the eigenspace model is to be used for

classification.
Incremental methods do not need all observations at onceÐthus,

reducing storage requirements and making large problems com-

putationally feasible. Incremental methods must be used if not all

observations are available simultaneously. These advantages are

retained even if low-dimensional methods are used to compute the

eigenspace [5], [10], which can be computed with a problem size no

larger than min�n;N�. We will return to low-dimensional methods

later, in Section 2.2. Even if all observations are available, it is

usually faster to compute a new eigenspace model by incrementally

updating an existing one rather than by using batch computation

[3], as our results show (see Section 5).
The disadvantage of incremental methods is their accuracy

compared to batch methods. When only a few incremental updates

are made, the inaccuracy is small and is probably acceptable for the

great majority of applications [9]. When many thousands of

updates are made, as when eigenspace models are incremented

with a single observation at a time, the inaccuracies build up,

although methods exist to circumvent this problem [4]. In contrast,

our methods allow a whole new set of observations to be added in

a single step, thus reducing the total number of updates to an

existing model.
Section 2 defines eigenspace models in detail, standard

methods for computing them, and how they are used for

representing observations. Section 3 discusses merging of eigen-

space models, while Section 4 addresses splitting. Section 5

presents empirical results and Section 6 presents some applications

of the work. Section 7 gives our conclusions.

2 EIGENSPACE MODELS

In this section, we define more precisely what we mean by

eigenspace models, briefly discuss standard methods for their batch

computation, and how observations can be represented using

them. First, we establish our notation for the rest of the paper.
Vectors are columns, denoted by a single underline. Matrices

are denoted by a double underline. The size of a vector, or matrix,

is often important and, where we would like to emphasize this

size, it is denoted by subscripts. Particular column vectors within a

matrix are denoted by a superscript and a superscript on a vector

denotes a particular observation from a set of observations, so we

treat observations as column vectors of a matrix. As an example,

Ai
mn

is the ith column vector in an �m� n� matrix. We denote

matrices formed by concatenation using square brackets. Thus,

�A
mn
b� is an �m� �n� 1�� matrix, with vector b appended to �A

mn
as a last column.

2.1 Theoretical Background

Consider N observations, each a column vector xi 2 <n. We

compute an eigenspace model as follows:
The mean of the observations is

1042 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 9, SEPTEMBER 2000

. P. Hall is with the School of Mathematical Science, Universtiy of Bath,
Bath BA2 7AY, UK. E-mail: maspmh@maths.bath.ac.uk.

. D. Marshall and R. Matrin are with Department of Computer Science,
University of Wales, Cardiff, PO Box 916, Cardiff CF2 3XF, Wales UK.
E-mail: {dave, ralph}@cs.cf.ac.uk.

Manuscript received 12 Aug. 1998; accepted 6 Oct. 1999.
Recommended for acceptance by Y.-F. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 107985.

0162-8828/00/$10.00 ß 2000 IEEE

�xd � 1

N

XN
i�1

xi �1�

and their covariance is

C
nn
� 1

N

XN
i�1

xi�xi�T
 !

ÿ �x�xT : �2�

Note that C
nn

is real and symmetric. The axes of the hyperellipsoid
and the spread of observations over each axis are the eigenvectors,
U
nn

, and eigenvalues, �
nn

of the eigenproblem

C
nn
� U

nn
�
nn
UT
nn

�3�

�
nn

is a diagonal matrix. The eigenvectors are orthonormal so

that UT
nn
U
nn
� I

nn
, the �n� n� identity matrix. The ith

eigenvector Ui and ith eigenvalue �ii

nn
are associated, the

eigenvalue is the length of the eigenvector, which is the ith

axis of the hyperellipsoid.
Typically, only p � min�n;N� of the eigenvectors have sig-

nificant eigenvalues and, hence, only p of the n eigenvectors need
be retained. This happens when the observations are correlated so
that the covariance matrix is, to a good approximation, rank-
degenerate: Small eigenvalues are presumed to be negligible. Thus,
an eigenspace model often spans a p-dimensional subspace of the
n-dimensional space in which it is embedded. Different criteria for
discarding eigenvectors and eigenvalues exist and these suit
different applications and different methods of computation.
Three common methods are: 1) Stipulate p as a fixed integer and
so keep the p largest eigenvectors [5], 2) keep those p eigenvectors
whose size is larger than an absolute threshold [3], and 3) keep the
p eigenvectors such that a specified fraction of energy in the
eigenspectrum (computed as the sum of eigenvalues) is retained.

Having chosen to discard certain eigenvectors and eigenvalues,
we can recast (3) using block form matrices and vectors. Without
loss of generality, we can permute the eigenvectors and eigenva-
lues such that U

np
are those eigenvectors that are kept and �

pp
their

eigenvalues and U
nd

and �
dd

are those discarded, with d � nÿ p.
We may rewrite (3) as:

C
nn
� �U

np
U
nd
�

�
pp

0
pd

0
dp

�
dd

" #
�U

np
U
nd
�T

� U
np

�
pp
UT
np

�4�

with error U
nd

�
dd
UT

nd
, which is small if �

dd
� 0

dd
.

Thus, we define an eigenspace model,
, as the mean, a (reduced)
set of eigenvectors, their eigenvalues, and the number of
observations:
 � ��x; U

np
;�

pp
; N�

2.2 Low-Dimensional Computation of Eigenspace
Models

Low-dimensional batch methods are often used to compute
eigenspace models and are especially important when the
dimensionality of the observations is very large compared to their
number. Thus, they may be used to compute eigenspace models
that would otherwise be infeasible. Incremental methods also use a
low dimensional approach.

In principle, computing an eigenspace model requires that we
construct an �n� n� matrix, where n is the dimension of each
observation. In practice, the model can be computed by using an
�N �N� matrix, where N is the number of observations. This is an
advantage in applications like image processing where, typically,
N � n.

This can be done by considering the relationship between
eigenvalue decomposition and singular value decomposition. This
leads to a simple derivation for a low-dimensional batch method

for computing the eigenspace model (for alternative derivation see
[5], [10]).

Let Y
nN

be the set of observations shifted to the mean so that

Y i � xi ÿ �x. Then, an SVD of Y
nN

is: Y
nN
� U

nn
�
nN

V T
NN

, where

U
nn

are the left singular vectors, which are identical to the

eigenvectors previously given �
nN

is a matrix with singular values

on its leading diagonal, with �
nn
� ��

nN
�T
nN
=N ; and V

NN
are right

singular vectors. Both U
nn

and V
NN

are orthonormal matrices. This

can now be used to compute eigenspace models in a low-

dimensional way, as follows: Y T
nN

Y
nN
� V

NN
�T
nN

�
nN

V T
NN
�

V
NN

S
NN

V T
NN

is an �N �N� eigenproblem. S
NN

=N is the same as

�
nn

, except for the presence of extra trailing zeros on the main

diagonal of �
nn

. If we discard the small singular values, and their

singular vectors, following the above, then remaining eigenvectors

vectors are U
np
� Y

nN
V
Np

�ÿ1
pp
:

This result formed the basis of the incremental technique

developed by Murakami and Kumar [5], but they did not allow for

a change in origin. SVD methods for adding a single point, with no

change in mean, were actually proposed quite early in the

development of incremental eigenproblem analysis [2] and, more

recently, Chandrasekaran et al. [3] have observed that a solution

based on the matrix product Y T
nN

Y
nN

, as above, is likely to lead to

inaccurate results because of conditioning problems and they

develop a method for incrementally updating SVD solutions with a

single observation, again without change of mean. Our experi-

ments confirm that SVD methods are generally more accurate than

EVD methods, but also show that a change of mean is of crucial

importance to classification applications [9].
Later work with SVD allowed block updating [8], but neither

dimension or mean changed. We have shown that SVD can be
generalized for block updating, with a change of mean and
dimension, provided all right singular vectors are maintained. We
have not seen this published by others, but do have a derivation
which is too long to include in this paper. Full downdating of SVD
is not possible in any direct way. The reason is that the order of the
right singular vectors depends upon the order of input points.
Downdating is to remove some of these points and, hence, their
input order is required.

2.3 Representing Observations

High-dimensional observations may be approximated by a low-
dimensional vector using an eigenspace model. An n-dimensional
observation xn is represented using an eigenspace model
 �
��x; U

np
;�

pp
;N� as a p-dimensional vector g

p
:

g
p
� UT

np
�xn ÿ x�: �5�

This shifts the observation to the mean, and then represents it by
components along each eigenvector. This is called the Karhunen-
LoeÁve transform [11].

The n-dimensional residue vector is defined by:

hn � xn ÿ Unp
g
p

�6�

and hn is orthogonal to every vector in U
np

. Thus, jhnj is the residue
error in the representation of xn with respect
.

3 MERGING EIGENSPACE MODELS

We now turn our attention to one of the two main contributions of
this paper, merging eigenspace models.

We derive a solution to the following problem. Let X
nN

and

Y
nM

be two sets of observations. Let their eigenspace models be

 � ��x; U
np
;��

pp
;N� and 	 � ��y; V

nq
;�

qq
;M�, respectively. The

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 9, SEPTEMBER 2000 1043

problem is to compute the eigenspace model � � ��z;W
nr
;�

rr
; P �,

for Z
n�N�M� � �XnN

Y
nM
� using only
 and 	.

Clearly, the total number of new observations is P � N �M .
The combined mean is:

�z � 1

P
N�x�M�y
� �

: �7�

The combined covariance matrix is:

E
nn
� 1

P

XN
i�1

xi�xi�T �
XM
i�1

yi�yi�T
 !

ÿ zzT

� 1

�N �M� �NCnn
�N�x�xT �MD

nn
�M�y�yT � ÿ zzT

� N
P
C
nn
�M
P
D
nn
�NM

P 2
��xÿ �y���xÿ �y�T ;

�8�

where the first two terms combine scaled versions of C
nn

and D
nn

,

the covariance matrices for X
nN

and Y
nM

, respectively, and the

final term allows for a change of mean (it is such a final a term that

is omitted by solutions not allowing for a change of mean).
We wish to compute the s eigenvectors and eigenvalues that

satisfy:

E
nn
�W

ns
�
ss
WT

ns
; �9�

where some eigenvalues are subsequently discarded to give r

nonnegligible eigenvectors and eigenvalues. The problem to be
solved is of size s and this is necessarily bounded by

max�p; q� � s � p� q � 1: �10�
We explain perhaps the surprising additional 1 in the upper limit
later (Section 3.1.1), but, briefly, it is needed to allow for the vector
difference between the means, �xÿ �y.

3.1 Method of Solution

This problem may be solved in three steps:

1. Construct an orthonormal basis set, �
ns

, that spans both
eigenspace models and �xÿ �y. This basis differs from the
required eigenvectors, W

ns
, by a rotation, R

ss
, so that:

W
ns
� �

ns
R
ss
: �11�

2. Use �
ns

to derive a new eigenproblem. The solution of this

problem provides the eigenvalues, �
ss

, needed for the

merged eigenmodel. The eigenvectors, R
ss

, comprise the

linear transform that rotates the basis set �
ns

.
3. Compute the eigenvectors, W

ns
, as above and discard any

eigenvectors and eigenvalues using the chosen criteria (as
discussed above) to yield W

nr
and �

rr
.

We now give details of each step.

3.1.1 Construct an Orthonormal Basis Set

To construct an orthonormal basis for the combined eigenmodels,
we must choose a set of orthonormal vectors that span three
subspaces: 1) The subspace spanned by eigenvectors U

np
, 2) the

subspace spanned by eigenvectors V
nq

, and 3) the subspace
spanned by ��xÿ �y�. The last of these is a single vector. It is
necessary because the vector joining the center of the two
eigenspace models need not belong to either eigenspace. This
accounts for the additional 1 in the upper limit of the bounds of s
in (10). To see this, consider a pair of two-dimensional eigenspaces
which are embedded in a three-dimensional space. The eigenvec-
tors for each eigenspace could define parallel planes that are

separated by a vector perpendicular to each of them. Clearly, a
merged model should be a 3D ellipse and the vector between the
origins of the models must contain a component perpendicular to
both eigenspaces.

A sufficient spanning set is:

�
ns
� �U

np
; �

nt
�; �12�

where �
nt

is an orthonormal basis set for that component of the
eigenspace of 	 which is orthogonal to the eigenspace of
 and, in
addition, accounts for that component of ��xÿ �y� orthogonal to both
eigenspaces; t � sÿ p.

To construct �
nt

we start by computing the residues of each of
the eigenvectors in V

nq
with respect to the eigenspace of
:

G
pq
� UT

np
V
nq

�13�

H
nq
� V

nq
ÿ U

np
G
pq
: �14�

The H
nq

are all orthogonal to U
np

in the sense that �Hi�TUj � 0 for
all i, j. In general, however, some of the H

nq
are zero vectors

because such vectors represent the intersection of the two
eigenspaces. These zero vectors are removed to leave H

nq0
. We

also compute the residue h of �yÿ �x with respect to the eigenspace
of
, using (6).

�
nt

can now be computed by finding an orthonormal basis for

�H
nq0
; h�, which is sufficient to ensure that �

ns
is orthonormal.

Gramm-Schmidt orthonormalization [12] may be used to do this:

�
nt
� Orthonormalize��H

nq0
; h��: �15�

3.1.2 Forming a New Eigenproblem

We now form a new eigenproblem by substituting (12) into (11)
and the result together with (8) into (9) to obtain:

N

P
C
nn
�M
P
D
nn
�NM

P
��xÿ �y���xÿ �y�T �

�U
np
�
nt
� R

ss
�
ss
RT
ss
�U

np
�
nt
�T :

Multiplying both sides on the left by �U
np
; �

nt
�T , on the right by

�U
np
; �

nt
�, and using the fact that �U

np
; �

nt
�T is a left inverse of

�U
np
; �

nt
�, we obtain:

�U
np
�
nt
�T N

P
C
nn
�M
P
D
nn
�NM

P 2
��xÿ �y���xÿ �y�T

� �
�U

np
; �

nt
�

� R
ss

�
ss
RT
ss
;

�16�

which is a new eigenproblem whose solution eigenvectors
constitute the R

ss
we seek and whose eigenvalues provide

eigenvalues for the combined eigenspace model. We do not know
the covariance matrices C

nn
or D

nn
, but these can be eliminated, as

we now show.
The first term in (16) can be approximated, using (4) and the

fact that UT

np
�
nt
� 0

pt
to give

�U
np
�
nt
�T C

nn
�U

np
; �

nt
� � �

pp
0
pt

0
tp

0
tt

" #
: �17�

The second term in (16) can also be reduced. We have D
nn
�

V
nq

�
qq
V T
nq

(4) and G
pq
� UT

np
V
nq

(13), which we use to obtain:

�U
np
�
nt
�T D�U

np
�
nt
� �

G
pq

�
qq
GT

pq
G
pq

�
qq

ÿT
tq

ÿ
tq

�
qq
GT

pq
ÿ
tq

�
qq

ÿT
tq

24 35; �18�

in which ÿ
tq
� �T

nt
V
nq

, with �
nt

, as in (15).

1044 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 9, SEPTEMBER 2000

The final term in (16) we write as:

g
p
gT
p

g
p

T
t

t
gT
p

t

T
t

" #
: �19�

with g
p
� UT

np
��xÿ �y�, and

t
� �T

nt
��xÿ �y�.

So, the new eigenproblem to be solved may be approximated by

N

P

�
pp

0
pt

0
tp

0
tt

" #
�

M

P

G
pq

�
qq
GT

pq
G
pq

�
qq

ÿT
tq

ÿ
tq

�
qq
GT

pq
ÿ
tq

�
qq

ÿT
tq

24 35�
NM

P 2

g
p
gT
p

g
p

T
t

t
gT
p

t

T
t

" #
� R

ss
�
ss
RT
ss
:

�20�

Each matrix is of size s� s, where

s � p� t � p� q � 1 � min�n;M �N�:
Thus, we have eliminated the need for the original covariance

matrices. Note this also reduces the size of the central matrix on the

left hand side. This is of crucial computational importance because

it makes the eigenproblem tractable in cases where the dimension

of each datum is large, as is the case for image data.

3.1.3 Computing the Eigenvectors

The matrix �
ss

is the eigenvalue matrix we set out to compute. The

eigenvectors R
ss

comprise a rotation for �
ns

. Hence, we use (11) to

compute the eigenvectors for �
ss

. However, not all eigenvectors

and eigenvalues need be kept and some (sÿ r of them) may be

discarded using a criterion, as previously discussed in Section 2.

This discarding of eigenvectors and eigenvalues will usually be

carried out each time a pair of eigenspace models is merged.
Notice that there are two sources of error. The first is rounding

error introduced because of finite machine precision. The second

source of error is introduced by truncation of the eigenmodel, i.e.,

the discarding of eigenvectors and eigenvalues. This is the

dominant source and its precise behavior deserves further

investigation, both theoretically and empirically.

3.1.4 Comments on the Solution

This solution commutes and is associative (provided error terms

are disregarded). It has an additive identity �0; 0; 0; 0�. It allows one

or more observations to be added at any one time: Indeed, the

above form reduces to that derived previously [9] when either of

the models has just one point. The resulting model tends to some

stable solution as the number of points in either model grows

large. We note that there is no lower bound on the number of

eigenvectors that must be retained, in contrast to SVD methods

where all right singular vectors must be kept to block update while

shifting the mean. Hence, EVD is often more efficient in terms of

memory consumption. The time complexity to compute the EVD

on an �n� n� matrix is usually O�n3�. Hence, the time complexity

of our method is expected to be O�s3� and this is born out by

experiment (see Section 5).

4 SPLITTING EIGENSPACE MODELS

Here, we show how to split two eigenspace models. Given

an eigenspace model � � �z;Wnr;�rr; P �, we remove 	 �
�y; V nq;�qq;M� from it to give a third model
 � �x; Unp;�pp; N�.
We use �

rr
, because �

ss
is not available in general.

We ask the reader to carefully note that splitting means

removing a subset of observations; the method is the inverse of

merging in this sense. However, it is impossible to regenerate

information which was discarded when the overall model was

created (whether by batch methods or otherwise). Thus, if we split

one eigenspace model from a larger one, the eigenvectors of the

remnant must still form some subspace of the larger.
The derivation for splitting follows in a very straightforward

way by analogy to that of merging. Therefore, we state the results

for splitting. Clearly, N � P ÿM. The new mean is:

�x � P

N
�zÿM

N
�y: �21�

As in the case of merging, new eigenvalues and eigenvectors are

computed via a new eigenproblem. In this case, it is:

P

N
�rr ÿ

M

N
G
rp

�pp G
T

rp
ÿM
P
g
r
gT
r
� R

rr
�rr R

T
rr
; �22�

where G
rp
� WT

nr V nq and g
r
�WT

nr��yÿ �x�.
The eigenvalues we seek are the q nonzero elements on the

diagonal of �rr. Thus, we can permute R
rr

and �rr, and write

without loss of generality:

R
rr

�rr R
T
rr
� �R

rp
R
rt
�

�
pp

0
pt

0
tp

0
tt

" #
�R

rp
R
rt
�T

� R
rp

�
pp
RT
rp
;

�23�

where p � rÿ q.
Hence, we need only identify the eigenvectors in R

rr
with

nonzero eigenvalues and compute the Unp as:

U
np
� W

nr
R
rp

�24�

In terms of complexity, splitting must always involve the

solution of an eigenproblem of size r. An algorithm for splitting

may readily be written out using a similar approach to that for

merging.

5 RESULTS

Here, we examine the efficiency and accuracy of our methods,

compared to batch methods. We used a database of 400 face

images (each of 112� 92 � 10; 304 pixels) available online1 in the

tests reported hereÐsimilar results were obtained in tests with

randomly generated data. The gray levels in the images were

scaled into the range �0; 1� by division only, but no other

preprocessing was done. We implemented all functions using

commercially available software on a computer with standard

configuration (Sun Sparc Ultra 10, 300 Hz, 64 Mb RAM). The

physical limit of our computer allowed us to store up to 300 images

in RAM.
For all tests, the experimental procedure used was to compute

eigenspace models using a batch method [10] and compare these to

models produced by merging or splitting other models also

produced by the batch method. In each case, the largest of the three

data sets contained 300 images. These were partitioned into two

data sets, each containing a multiple of 50 images. We included the

degenerate cases when one model contained zero images. Note

that we tested both smaller models merged with larger ones and

vice-versa.
The number of eigenvectors retained in any model, including a

merged model, was set to be 100 as a maximum, for ease of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 9, SEPTEMBER 2000 1045

1. The Olivetti database of faces: http://www.cam-orl.co.uk/
facedatabase.html.

comparing results. (Initial tests using other strategies indicate that
the resulting eigenspace model is little effected.)

5.1 Timing

When measuring CPU time we ran the same code several times
and chose the smallest value to minimize the effect of other
concurrently running process. Initially, we measured the time
taken, using the batch methods, for data sets of different sizes.
Results show a cubic dependency on the number of data points, as
expected.

5.1.1 Merging

Experiments show that the time taken to merge two previously
constructed models depends on the cube of the size of eigenpro-
blem in (20). Because the eigenproblem we solve can be
approximately as large as the total number of eigenvectors in both
eigenmodels, it tends to be more expensive to merge two large
eigenspaces (about 70 seconds for eigenspaces each of dimension
100) than merging eigenspaces of different sizes (about 5 seconds
to merge a single observation with a model of dimension 100) . The
order of eigenspaces makes no significant difference to the time
complexity.

The total time taken to compute an eigenspace model from
300 images using the batch method and our merging method is
compared in Fig. 1. The total time is a combination of construction
and merging, as follows: The incremental time is the time needed to
compute and then merge one eigenspace model to an existing one.
As might be expected, incremental time falls as the additional
number of new images falls. The joint time is the time to compute
both eigenmodels and then merge them. The joint time is
approximately constant and similar to the total time to compute a
batch solution. However, recall that we experimented within the
physical limits of our computer: When we built an eigenmodel using
400 images, the effects of memory paging were clearly visible: The
ªbatchº time taken rose to over 800 seconds, whereas the joint time
to produce an equivalent model tool less than 400 seconds.

5.1.2 Splitting

Time complexity for splitting eigenspaces should depend princi-
pally on the size of the large eigenspace from which the smaller
space is being removed and the size of the smaller eigenspace
should have little effect. This is because the size of the new

eigenproblem to be solved depends on the size of the larger space
and therefore dominates the complexity. These expectations are
born out experimentally. We computed a large eigenmodel using
300 images, as before. We then removed smaller models of sizes
between 50 and 250 images inclusive, in steps of 50 images. At
most, 100 eigenvectors were kept in any model. The average time
taken was approximately constant and ranged between 9 and
12 seconds, with a mean time of about 11.4 seconds. These figures
are much smaller than those observed for merging because the
large eigenspace contains only 100 eigenvectors. Thus, the matrices
involved in the computation were of size �100� 100�, whereas in
merging the size was at least �150� 150� and other computations
were involved (such as computing an orthonormal basis).

5.2 Similarity and Performance

We made a variety of similarity measures, intended to measure the
similarity between a pair of eigenmodels, one incrementally
computed, the other batch computed. We also measured some
performance metrics, again for a pair of eigenmodels.

5.2.1 Merging

We first compared the means of the models produced by each
method using Euclidean distance. This distance is greatest when
the models to be merged have the same number of input images
(150 in this case) as fall smoothly to zero when either of the models
to be merged is empty. The value at maximum is typically very
small and we measured it to be 3:5� 10ÿ14 units of gray level. This
compares favorably with the working precision of our software,
which is 2:2� 10ÿ16.

We next compared the directions of the eigenvectors produced
by each method, the error measured by the mean angular
deviation of corresponding eigenvectors. Ignoring the degenerate
cases, when one of the models is empty, the angular deviation has
a single minimum when the eigenspace models were built with
about the same number of images and grows larger as the sizes of
the two models separate. This may be because, when a small
model is added to a large model, its information tends to be
swamped. However, the angular deviation to be very small on
average, about 0.3 degrees at maximum.

The sizes of eigenvalues from both methods were compared
next, more precisely the mean realtive absolute error was
measured (jaÿ bj=a for eigenvalues a and b). In general, we
observed that the smaller eigenvalues had larger errors, as might
be expected as they contain relatively little information and so are
more susceptible to noise. The measure rises to a single peak when
the number of input images in both models is the same (contrast
with the angular error for eigenvectors) Even so, the maximal
value is small, 7� 10ÿ3.

We chose several performace metrics, such as residue error,
Mahalanobis distance, and likelihood. Space permits we report
only one. The mean difference in residue error is typically small,
about 10ÿ6 units of gray level per pixel, clearly below any
noticeable effect. The measure is smallest when the eigenspaces
merges are of equal size and grows as the size of the merged
spaces differes (which compares with the form for angular
deviation). Other performance metrics show similar behavior.

5.2.2 Splitting

Similar measures for splitting were computed using exactly those
conditions described for testing the timing of splitting and for
exactly those characteristics described for merging. In each case, a
model to be subtracted was computed by a batch method and
removed from the overall model by our splitting procedure. Also,
a batch model was made for purposes of comparison with the
residual data set. In all that follows, the phrase ªsize of the
removed eigenspaceº means the number of images used to

1046 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 9, SEPTEMBER 2000

Fig. 1. Time to make a complete eigenspace model for a database of 300 images.

The incremental time is the addition of the time to construct only the eigenspace to

be added. The joint time is the time to compute both eigenspace models and

merge them.

construct the eigenspace removed from the eigenspace built from
300 images.

The Euclidean distance between the means of the models
produced by each method grows monotonically as the size of the
removed eigenspace falls and never exceeds about 1:5� 10ÿ13

gray-level units. Splitting is slightly less accurate in this respect
than merging.

The mean angular deviation between corresponding eigenvec-
tor directions rises in similar fashion, from about 0.6 degrees when
the size of the removed eigenspace is 250 to about 1.1 when the
removed eigenmodel is of size 100. This represented a maximum
in the deviation error because an error of about 1 degree was
obtained when the removed model is of size 50. Again, these
angular deviations are somewhat larger than those for merging.

The mean difference in eigenvalues shows the same general
trend. Its maximum is about 0.5 units of gray level when the size of
the removed eigenspace is 50. This is a much larger error than in
the case of merging, but is still relatively small compared to a
maximum eigenvalue of about 100. As in the case of merging, the
deviation in eigenvalue grows larger as the size (importance) of the
eigenvalue falls.

Difference in reconstruction error rises as the size of the
removed eigenspace falls. Its size is of the order 10ÿ4 units of gray
level per pixel, which again is negligible. The overall trend is clear,
accuracy and performance grew worse against any measure we
used as the size of the eigenmodel being removed falls.

6 APPLICATIONS

We now turn to applications of our methods. We have experi-
mented with building point distribution models [13] of three-
dimensional blood vessels and texture classification, while others
have used similar methods for updating image motion parameters
[8], selecting salient views [3], and building large image databases
[3]. In this paper, we feel it is appropriate to discuss applications
that are more general in nature; the intention is to furnish the
reader with a practically useful appreciation of the characteristics
of our methods and avoid the being diverted by any specific
application.

An obvious application of our methods is to build an eigen-
space for many images when there are too many to store in
memory at once. This might arise in the case of very large
databases and has been previously suggested [3]. Intuition
suggests that images in the database will be better represented
by the model if all of them are used in its construction; EVD (and
SVD) fits a hyperplane to the data in the least-squares sense.
Experiment bears this outÐan eigenmodel built from a subset of
data (as might be the only choice with batch methods) is often a
poor model: better to use incrmental methods to build an
eignmenodel of the full set.

We now turn to more substansive applications.

6.1 A Security Application

We consider a security application based on verification by
classificationÐwhich requires a good estimate of the mean. The
scenario is that of a company wishing to efficiently store
photographs of its thousands of employees. We chose to store
the data using an eigenmodelÐthe images can be projected into
the eigenmodel and stored with tens rather than thousands of
numbers. Conventional batch methods cannot be used to make the
eigenmodel because not all images can fit into memory at once.
Additionally, the database requires changing each year as employ-
ees come and go.

Our methods allow the eigenspace to be constructed and
maintained. An initial eigenmodel is constructed by building
several eigenspaces, each as large as possible, and merging them.

Thereafter, the eigenmodel can be maintained by simply merging
or splitting eigenmodels as required.

We illustrate this with the database of faces used previously.
We constructed an eigenmodel from a selection of 21 people, there
being 10 photographs for each person. To recognize an individual,
a new photograph was given a ªweight of evidenceº between 0
(not in the database) and 1 (in the database). To compute this
weight, we used the maximum Mahalanobis distance (using
Moghaddam and Pentland's method [6]) of all photographs used
to construct the eigenmodel. Each new photograph was then
judged as in if its Mahalanobis distance was less than this
maximum. Since each person has 10 photographs associated with
them, we can then compute a weight for each person as the fraction
of their photographs classified as in.

This crude measure is sufficient to demonstrate that we can
update image databases for classification using some measureÐand
this is our aim here.

We initialized the eigenmodel with the first 21 people (200
images). We then made a change by adding the 22nd person and
removing the firstÐarbitrary but convenient choices. Fig. 2 show
the ªweight of evidenceº measured after this change. The upper
plot shows the measure for the images against a batch model. The
lower plot shows the same measure for the same images. We notice
that both models produce some false positives in the sense that
some people who should not be classified as in have a weight
larger than zero. We notice too that the incrementally computed
eigenspace gives rise to more false positives than the eigenmodel

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 9, SEPTEMBER 2000 1047

Fig. 2. Weight of evidence measures after a change: batch (top), incremental

(below).

computed via batch methodsÐin line with earlier observations on
subtraction. However, the weight-of-evidence factor is less than
one in every case, no matter how the eigenmodel was computed,
and this fact (or some other more sophisticated test and
preprocessing) could be used to eliminate false positivesÐbut
the point here is not to develop a fully operational and robust
security application, but to demonstrate the potential of our
methods in classification.

We conclude that additive incremental eigenanalysis is safe for
classification metrics, but that subtractive incremental eigenanalysis
needs a greater degree of caution.

6.2 Dynamic Gaussian Mixture Models

We are interested in using our methods to construct dynamic

Gaussian mixture models (GMMs). GMMs are increasingly

common in the vision literature and a method for their dynamic

construction would be useful. The methods presented in this paper

make this possible. We note that block updating and maintainance

of the mean are prerequisites for dynamic GMMs. Here, we focus

on merging existing GMMs and outline how to construct a

dynamic GMM from a library of photographs.

We partition data into sets, and for each set construct a GMM as

follows: First, use all the data in a set to build an eigenmodel (using

incremental methods if necessary). Second, project each datum in

the set into the eigenmodel. Third, construct a GMM from the

projected data, using the EM algorithm for this [14]. Finally,

represent each Gaussian in the mixture using an eigenmodel.

Hence, each GMM is a hierarchy of eigenspace models. In this

regard, they are similar to a hierarchy of models proposed to

improve the specificity of eigenmodels [15]. No two Gaussians

need have the same dimension.

To merge GMMs, we first merged their base eigenspaces.

Second, we transformed all dependent eigenmodels from each

previous model into the new basis eigenspace. Finally, we merged

those new dependent eigenspaces that were sufficiently close. We

found that a simple volume measure to be adequate for most cases.

The volume of a hyperellipse with semiaxes A (each element the

square root of an eigenvalue), of dimension M , and at character-

istic radius s (square root of the Mahalanobis distance) is
sM jAj�M=2

ÿ�M2�1� .

We permanently merged a pair of eigenmodels in the GMM if the

sum of their individual volumes was greater than their volume

when merged. We found this works well enough, dimensionality

problems notwithstanding.
As an example, we used photographs of two distinct toys, each

photographed at 5 degree angles on a turntable. Hence, we had
144 photographs. Examples of these photographs can be seen in
Fig. 3. The photographs were input in four groups of
36 photographs. For each group, we made an eigenmodel, projected

the photographs into the eigenmodel, and used these projections to

construct a GMM of 18 clusters. The Gaussians making up the

mixture were represented by an eigenmodel. Hence, we had four

GMMs, which we wanted to merge into a large GMM.
To merge the GMMs, we first added added together the four

eigenspaces to make a complete eigenspace. Next, we transformed

each of the GMM clusters into this space, thus bringing the

ensemble of clusters into a common space. Each Gaussian cluster in

the mixture model in the new space was represented by an

eigenmodel. We then merged the cluster, pairwise, using our

volume criterion. Hence, we were able to reduce the number of

Gaussians in the mixture to 22.
These clusters tend to model different parts of the cylindrical

trajectories of the original data projected into the large eigenspace.

Examples of cluster centers are shown in Fig. 4, where the two toys

can be clearly seen in different positions. Such clusters may be

used to identify the toy and its pose, for example [16], [17]. In

addition, we found a few clusters occupying the space ªin

betweenº the two toysÐan example of which is seen in Fig. 4.

This artifact of clustering appears to derive from the high

dimensionality of the space that the clusters are in, rather than

being a side-effect of our method. These clusters might in future be

removed because no picture matches well against them.

7 CONCLUSION

We have shown that merging and splitting eigenspace models is

possible, allowing sets of new observations to be processed as a

whole. The theoretical results are novel and our experimental

results show that the methods are wholly practical, computation

times are feasible, and often advantageous compared to batch

1048 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 9, SEPTEMBER 2000

Fig. 3. Example images of each toy.

Fig. 4. Dynamic Gaussian Mixture Models, showing five examples of the 22 cluster

centers. These are arranged to show clusters for each toy and the space between

them.

methods. Batch and incremental eigenspaces are very similar, so
performance characteristics, such as residue error, differ little. Our
methods are useful in many applications and we have illustrated a
few of a general nature.

We have concluded that the merging of eigenspaces is stable
and reliable, but advise caution when splitting. Thus, splitting is
the principle weakness of our methods and it is interesting to ask
whether the process can be made more reliable.

We should point to several omissions from this work. We have
not performed analytic error analysis, relying instead on experi-
ment. Most of the errors arise from discarding eigenvectors and,
eigenvalues. To the best of our knowledge, the work is unique and
so, we have not compared our method to others. However, in a
previous paper, we considered the inclusion of a single new datum
and were able to make comparisons [9]. The conclusions there
were that SVD tends to be more accurate and that updating the
mean is crucial for classification applications. We note that in this
paper, we have demonstrated that adding one datum each time is
much less accurate than adding complete spaces. We have omitted
fuller discussion of block update and downdate using SVD. We
have presented general applications rather than any one, but have
highlighted important areas such as dynamic GMMs.

We would expect our methods to find much wider applicability
than those we have mentioned; updating image motion parameters
[8], selecting salient views [3], and building large image databases
[3] are two applications that exist already. We now use our
methods routinely to construct eigenmodels that would be
impossible by any other means and this has allowed us to
experiment with image compression methods. Also, we have
experimented with image segmentation, building models of three-
dimensional blood vessels and texture classification. We believe
that dynamic Gaussian mixture models provide an interesting
future path.

REFERENCES

[1] J.R. Bunch, C.P. Nielsen, and D.C. Sorenson, ªRank-One Modification of the
Symmetric Eigenproblem,º Numerische Mathematik, vol. 31, pp. 31-48, 1978.

[2] J.R. Bunch and C.P. Nielsen, ªUpdating the Singular Value Decomposi-
tion,º Numerische Mathematik, vol. 31, pp. 111-129, 1978.

[3] S. Chandrasekaran, B.S. Manjunath, Y.F. Wang, J. Winkler, and H. Zhang,
ªAn Eigenspace Update Algorithm for Image Analysis,º Graphical Models
and Image Processing, vol. 59, no. 5, pp. 321-332, Sept. 1997.

[4] R.D. DeGroat and R. Roberts, ªEfficient, Numerically Stablized Rank-One
Eigenstructure Updating,º IEEE Trans. Acoustics, Speech, and Signal
Processing, vol. 38, no. 2, pp. 301-316, Feb. 1990.

[5] H. Murakami and B.V.K.V. Kumar, ªEfficient Calculation of Primary
Images from a Set of Images,º IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 4, no. 5, pp. 511-515, Sept. 1982.

[6] B. Moghaddam and A. Pentland, ªProbabilistic Visual Learning for Object
Representation,º IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 19, no. 7, pp. 696-710, July 1997.

[7] C. Nastar and N. Ayache, ªFrequency-Based Nonrigid Motion Analysis:
Application to Four Dimensional Medical Images,º IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 18, no. 11, pp. 1,067-1,079, Nov. 1996.

[8] S. Chaudhuri, S. Sharma, and S. Chatterjee, ªRecursive Estimation of
Motion Parameters,º Computer Vision and Image Understanding, vol. 64, no. 3,
pp. 434-442, Nov. 1996.

[9] P. Hall, D. Marshall, and R. Martin, ªIncrementally Computing Eigenspace
Models,º Proc. British Machine Vision Conf., pp. 286-295, 1998.

[10] L. Sirovich and M. Kirby, ªLow-Dimensional Procedure for the Character-
ization of Human Faces,º J. Optical Soc. Am., A, vol. 4, no. 3, pp. 519-524,
Mar. 1987.

[11] Y.T. Chien and K.S. Fu, ªOn the Generalised Karhunen-LoeÁve Expansion,º
IEEE Trans. Information Theory, vol. 13, pp. 518-520, 1967.

[12] G.H. Golub and C.F. Van Loan, Matrix Computations. Johns Hopkins, 1983.
[13] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham, ªTraining Models of

Shape from Sets of Examples,º Proc. British Machine Vision Conf., pp. 9-18,
1992.

[14] A. Dempster, N. Laird, and D. Rubin, ªMaximum Likelihood from
Incomplete Data via the em Algorithm,º J. Royal Statistical Soc. B, vol. 39,
pp. 1-38, 1977.

[15] T. Heap and D. Hogg, ªImproving Specificity in PDMS Using a
Heirarchical Approach,º Proc. British Machine Conf., pp. 80-89, 1997.

[16] H. Murase and S.K. Nayar, ªVisual Learning and Recognition of 3D Objects
from Appearance,º Int'l J. Computer Vision, vol. 14, no. 1, pp. 5-24, 1995.

[17] H. Borotschnig, L. Paltta, M. Prantl, and A. Pinz, ªActive Object
Recognition in Parametric Eigenspace,º Proc. British Machine Vision Conf.,
pp. 629-638, 1998.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 9, SEPTEMBER 2000 1049

