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Can Smart Devices Assist In
Geometric Model Building?

Richard Milliken1, Jim Cordwell2, Stephen Anderson2, Ralph R. Martin1 and David Marshall1

Abstract—The creation of precise three dimensional geometric
models produced from visual information from low cost smart
devices has many potential applications. There is a need to
establish the capability of such devices, to determine if they
are suitable. We explain how a typical smart device could be
used in the creation of precise 3D geometric models from visual
information, and establish a benchmark for evaluating such
devices via a simulator which allows for parametric exploration
of device capabilities.

Various vision based algorithms (e.g. SLAM) could benefit
from auxiliary sensor inputs, e.g. to solve the problem of
determining the scale of the object being sensed. We discuss
how the ancillary sensors in smart devices can assist in 3D
mensuration to underpin 3D scene generation and 3D model
building. We describe a number of tests performed on the inertial
sensors integrated into consumer smart devices to ascertain their
performance characteristics. These findings are then incorpo-
rated in our simulations. We also explore the extent to which
future improvements to technologies are likely to be beneficial.

Our simulator allows modelling of a 3D scene, various sensors
and the motion trajectory of the device whilst capturing data.
We assess individual sensor outputs, and the quality of the fused
sensor outputs in the context of 3D model building requirements.

Index Terms—3D Model Building, Smart Devices, Kalman
Filter, Structure from Motion, Inertial Sensor, Simultaneous
Localisation And Mapping, Odometry

I. INTRODUCTION

WE would like to build three dimensional (3D) geometric
models, potentially to milli-metric accuracy, using the

low cost technologies that are found in today’s smart devices.
Portable consumer devices such as phones and tablets offer
greater capability than ever before, particularly in terms of
the hardware sensors now integrated, and used to advantage
in a variety of applications. Alternatively bespoke portable
devices may be created that take advantage of low-cost, readily
available sensors. We have a particular interest in constructing
CAD models—3D boundary representation (B-Rep) models of
real world objects based on vertices, edges, and faces. Such
models have uses in fields such as design, advertising, virtual
reality, reverse engineering, and metrology.

Sensors commonly found on consumer-grade smart devices
usually include a camera (albeit one having an optical system
of limited quality), inertial sensors which can measure linear
and rotational accelerations, as well as a GPS unit and mag-
netometer which can provide absolute location and orientation
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in the world. Furthermore, additional sensors are likely to
soon become available: e.g. the Google “Tango” device has
a 3D active sensor [1]. However, in this paper we restrict our
investigation to currently available sensors.

In its simplest form, 3D model construction requires the
capture of a collection of points at different depths relative
to an arbitrary datum (e.g. the location of the observer).
Stereo vision, using the principles of triangulation, is a well
understood means of establishing the depth of a point from two
different viewpoints. Triangulation requires that the baseline
displacement between the two viewpoints is known; the error
in estimated depth is directly proportional to the error in the
measurement of the baseline displacement. A dedicated stereo
sensor could in principle know this displacement to a high
accuracy, whereas a single camera that is relocated arbitrarily
would not: we need to measure the camera displacement be-
tween viewpoints. The question naturally arises as to whether
the inertial sensors can help provide this information; we may
also wonder whether the other auxiliary sensors can also help.
As the accuracy of measuring the baseline displacement is a
limiting factor on the precision of any constructed model, we
wish to know how well that can be done with the inertial and
auxiliary sensors in a smart device. The camera odometry—
including the displacement of the camera—an be calculated
by fusing the outputs from the sensor suite using an extended
Kalman Filter (EKF) [2] (or some similar optimal estimator).
The problem of extracting object structure from sequences of
images is well known in the machine vision community, and
is usually referred to as the structure from motion problem [3].

For the purposes of this research, two different commer-
cial smart devices were selected and the basic performance
characteristics of their in-built sensors were investigated.
These characterisation experiments aimed to provide sufficient
information to inform the simulation of typical operating
characteristics. Once a basic characterisation of the sensors
was established, simple sensor models were simulated, along
with a dynamic model of the camera motion. This allowed an
assessment of the overall sensitivity of the estimated camera
odometry to changes in sensor performance. The simulation
also provided simulated image based information fully syn-
chronised with the camera motion, a capability not evident in
the literature surveyed; this information can be used as a basis
for investigating use of the sensors in structure from motion
algorithms.

The rest of this paper contains sections discussing:
1) structure from motion, 2) sensor characterisation ex-

periments, 3) the odometry extended Kalman Filter, 4) an
assessment, and 5) conclusions.
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II. STRUCTURE FROM MOTION

Structure from motion involves determining 3D structures
from 2D image sequences. Various categories of algorithm
address this problem, one kind being simultaneous localisation
and mapping (SLAM) maethods. They aim to concurrently
estimate both the observed scene structure and the odometry of
the observing sensor. We not describe these algorithms in any
depth, but they are generally based upon the use of extended
Kalman Filters [4], [5], [6]. Other formulations employ an
unscented Kalman Filter [7] or a particle filter [8]. These
algorithms have the characteristic that multiple sensors of
differing characteristics may be used to different effect. In
SLAM terminology, the 3D structure is often referred to as a
map, populated by a set of landmarks.

The MonoSLAM [9], [10] formulation is both well doc-
umented and understood. Given a sequence of monocular
images, it simultaneously reconstructs (within limitations)
object structure along with the odometry of the camera. Its
capabilities are compatible with our objective of construct-
ing a 3D geometric CAD model. It also has the advantage
that MATLAB code is freely available [10]. A limitation
of MonoSLAM and similar algorithms is that they estimate
depth and odometry up to a scale factor. The overall scaling
has to be resolved by use of additional information, either
determined from the observed scene or from an understanding
of the camera motion as it captures the images. An inertial
measuring unit (IMU) can in principle help to determine the
camera rotation and displacement, by integrating the outputs
from the gyroscopes and accelerometers respectively. Sensors
such as GPS and magnetometers may also be used to pro-
vide supplementary information for fusion in the odometry
EKF. The key requirement for the odometry is to measure
relative distances; absolute position and orientation, as may
be provided by GPS or a magnetometer, are not essential. The
error in estimated point depths is proportional to the error
in the camera displacement. Thus, changes over time in the
camera displacement error will lead to temporal changes in
point depths, potentially leading to distortion in the estimated
object geometry. The use of an IMU in a SLAM formulation
has been studied by a number of researchers [11], [12], but
these studies did not examine the low-cost, consumer grade
inertial sensors assessed in this study.

III. SENSOR CHARACTERISATION EXPERIMENTS

A. Introduction

The objective of sensor characterisation was to conduct
some simple tests to establish the levels of random noise and
bias present in the inertial sensors. These experiments were not
intended as a detailed appraisal of the sensors, and so the tests
have not followed the procedure outlined in [13]. The outputs
of our experiments were intended to determine appropriate
noise and bias statistics needed for the odometry EKF, for a
particular sensor contained in a particular smart device. As we
expect the device to be handheld in our application, and hence
not on a rigid stable mount, some simple inertial stability tests
were conducted to ascertain the likely consequences.

Device
Accel. (m · s−2) Gyro. (◦s−1)
Bias Noise Bias Noise

Sony 0.103 0.164 0.642 0.290

Nexus 0.092 0.091 0.086 0.118

TABLE I: Inertial Units Experimental Results

The two readily available off the shelf devices selected for
this work were

1) Google Nexus 7 (2013 model),
2) Sony Xperia S tablet (2012 model).

Manufacturers’ data was readily available for the sensors in
the Sony uni . However, those used in the Nexus could not be
readily identified and thus the nominal design specifications
of its sensors could not be established. Hence, the need for
this test was particularly important to establish the basic
performance characteristics of the Nexus sensors. The tests
also provided confirmatory evidence for the Sony sensors.

B. Method

Static tests were conducted. The device was placed on
a level surface and the accelerometer, gyroscope, GPS and
magnetometer outputs were written to a file on the device.
Under these conditions the only external input into the sensor
is the acceleration due to gravity. Initially a custom Android
application was used to collect the inertial data, but later tests
used a freely available Android application. The tests were
generally conducted for an hour, and repeated with the device
in one of its three principal orthogonal orientations. Once the
tests had been conducted, the saved files were copied to a PC
for analysis. Given the general objective of this research, this
was regarded as sufficient; for example, no attempt was made
to assess the drift in sensor bias, or estimate any scale factor
errors.

C. Observed Sensor Characteristics

We now describe the findings of our sensor assessment.
1) Inertial Units: We first outline the experimental findings

concerning the inertial units on the two devices. In this simple
analysis the bias was assumed to be the overall mean of the
sensor outputs, and the noise was the standard deviation of
those outputs.

Figures 1 and 2 are plots typical of the responses acquired
from the Sony inertial sensors. The noise in both the ac-
celerometer and gyroscope is clearly observable. There may
be issues with the gyroscope—a number of transients were
noted, and there was also an observable change in the level of
noise. Table I provides a statistical analysis of the inertial data
collected from the accelerometers and gyroscopes of the two
devices. The results indicate that the Nexus IMU generally
outperforms the Sony’s; the latter under test performed better
than indicated by the manufacturer’s data sheet, particularly
in terms of observed biases.
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Fig. 1: Accelerometer Output
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Fig. 2: Gyroscope Output

2) GPS and Magnetometer: In a similar manner, static tests
were conducted on the GPS and magnetometer sensors on both
devices. We define the GPS position error as the difference
between the current measured position and the first position
measurement; changes in position error are considered to be
the GPS position noise. Table II indicates that the Nexus GPS
unit provides a much more stable estimate of current position:
for the device samples examined, the Nexus’ position errors
were nearly an order of magnitude better than those of the
Sony device. Furthermore the stability of the Nexus unit was
better than 0.2 metres for short periods of time (about 250
seconds), but steps of up to 0.5 metres in position were noted.

We also tested the magnetic sensor contained in the Nexus,
recording the three orthogonal magnetic field components.
The results, in µT, were then normalised to give a unit
vector, as shown in Table III. This shows the unit vector
field components alongside the corresponding components
computed from the World Magnetic Model, 2010 (WMM
2010) [14] for the location and time of the test. It is evident
that there is approximate agreement between the measured
field component values and those derived from the reference
WMM 2010 model. However, for the purposes of subsequent
filtering, it is the variation in field, and hence orientation,
which is of importance, not the absolute estimate of orienta-
tion. An additional test was conducted where a metallic object
was brought into the close vicinity of the magnetic sensor.
This caused a substantial change in the magnetic unit vector,
corresponding to a change in apparent orientation in excess of
100°. It is clear that the field was significantly distorted, thus
limiting the use of such a sensor for this type of application,
in for example an industrial environment.

D. Manual Stability Tests

As we expect the device to be handheld in our intended
application, some basic tests were performed to try to establish

GPS Channel
Device

Nexus Sony
Horizontal (m) 0.54 3.56

Altitude (m) 0.27 4.32

RSS (m) 0.61 5.60

TABLE II: GPS Position Error Standard Deviations

Magnetic Field (Unit Vector)
Axis Mean Std Dev’n WMM 2010
X (East) −0.002 0.006 −0.0139

Y (North) 0.342 0.005 0.3993

Z (Vertical) −0.940 0.002 0.9167

TABLE III: Magnetic Sensor Field (Nexus)

RMS Noise
Sensor Static Hand held
Accel. (m · s−2) 0.025 0.187

Gyro. (◦s−1) 0.021 0.855

TABLE IV: Inertial Sensor Noise Test

the impact of such a mode of operation. A number of tests
were performed where the operator attempted to hold the
device steadily pointing in a fixed direction, and the responses
from the accelerometers and gyroscopes were recorded. Ta-
ble IV shows the impact of such a mode, where there is a
substantial increase in the noise present in the sensor output
compared to when the device is truly static.

E. Summary

1) The sensors in the Nexus clearly performed better than
those in the Sony device. This may be expected as the
Nexus is a newer device, and may well take advantage
of advances in MEMS technology.

2) The GPS unit in the Nexus appeared to be substantially
more stable than that noted for the Sony unit. However,
the absolute positioning accuracy of these GPS units was
not assessed.

3) There are some concerns over the stability of the tem-
poral characteristics of the sensors contained in the Sony
device.

4) As the sensor performance of the Sony device was
generally inferior to that for the Nexus, further evaluation
of the Sony device was not pursued.

5) The magnetic sensor is unlikely to be of practical use in
this type of application.

6) Only one sample of each device was examined, and these
samples may not be representative.

IV. SENSOR SIMULATION

Our MATLAB simulation has three distinct compnents:
• A vehicle model which is intended to simulate the motion

of the ‘vehicle’, i.e. tablet, that contains the sensors. The
vehicle dynamic model is based upon the desired user
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determined rates of translational and rotational change,
along with an Euler integrator to provide the updated true
vehicle position (S) and attitude (Ω). Using dot notation
to denote differentiation with respect to time,

S(t+δt) = S(t) + ˙S(t)δt (1)

Ṡ(t+δt) = Ṡ(t) + S̈(t)δt (2)
Ω(t+δt) = Ω(t) + ω(t)δt (3)

where ω is the angular rate and δt is the time step.

• The sensor model calculates from the true vehicle motion
the outputs of the sensors. At time t, the sensor output
for the three principal axes, Y(t), is given by

Ysensor(t) = Ytrue(t) + Yrand(t) + Ybias(0) (4)

where

Ysensor ∈ {S̈, ω, S} (5)
Yrand = N(0, σnoise) and Ybias = N(0, σbias) (6)

and S̈, ω, S represent the accelerometers, gyroscopes
and GPS respectively, while N(0, σnoise/bias) indicates
zero mean Gaussian distributed noise.

• The simulation also has the capability to produce syn-
thetic image features (points) that are representative of
real world features and are suitable for processing in
many vision applications, such as MonoSLAM. The mo-
tion of the synthetic features is fully synchronised with
the vehicle model and how it relates to the model of the
real world. Further details of this facility lie outside the
scope of this paper.

V. ODOMETRY: KALMAN FILTER

This filter is a classic 16 state EKF [2] whose function is to
integrate the outputs from the accelerometers and gyroscopes
to provide estimates of the current vehicle position (S) and
orientation (Ω). The filter used a simple filter, and it is not
really the purpose of this paper to dwell on any details of the
mechanics of such a filter [2], but key aspects of the filter are
highlighted. The filter states are defined as

X (t) = [Q ,S , Ṡ ,Ωb ,Ab ] (7)

Ẋ (t) = [Q̇ , Ṡ , S̈ , 0 , 0 ] (8)

where
Q is the sensor attitude quaternion
Q̇ = 1

2ω · Q
ω is the measured sensor angular rates
S is the vehicle position
Ṡ is the vehicle velocity
S̈ is the measured vehicle acceleration
Ωb are the IMU gyroscope biases
Ab are the IMU accelerometer biases

Given the available sensors, the most useful additional data
sources are the GPS and magnetometer units. In addition,
a zero velocity update (ZUPT) was also incorporated, based
upon the ideas presented in [15]. However, the likelihood

ratio tests (LRT) described in [16] were not found to reliably
determine zero velocity given the level of noise coupled with
the relatively low rates inherent in practical handheld devices.
An alternative scheme that relied upon the visual system
being able to detect zero velocity was generally considered
more suitable. This feature is easy to implement using the
well understood techniques of optical flow [17]. Thus the
augmented Kalman Filter measurement vector (Z) is

Z =
[

Λ x ẋ
]

(9)

where
Λ is the North, East & Down (NED) attitude unit vector,
as given by the magnetometer.
x are the NED coordinates, as given by GPS.
ẋ is the NED velocity (≡ 0 during a ZUPT cycle).

As previously noted the magnetometer was not considered
reliable, so the orientation measurement vector (λ) can be
removed from the measurement vector (Z). This means that
there is now no longer any independent measurement of
orientation, but the simplified measurement vector does mean
that the Kalman Filter measurement matrix (H) is now linear.

VI. ASSESSMENT

A. Experimental Method

Initially a number of experimental single shot runs were
conducted to establish a working set of parameters for the
Kalman Filter. The main assessment of the quality of the
odometry produced by the Kalman Filter was via Monte-Carlo
simulation, with sensor noise and biases randomized from
run to run (usually, 1000 runs were performed), with sensor
noise and bias statistics in accordance with the sensor being
investigated. A pre-programmed trajectory was employed: a
horizontal lateral motion along the x axis, firstly in one direc-
tion and then the other, was then followed by a longitudinal
motion along the y axis. There was no vertical motion along
the z axis. Details of the changes in position, along with the
associated velocities and accelerations, are shown in Figure 3.
The trajectory has three periods of zero velocity (one between
0 and 2 seconds, another from 8 to 10 seconds and an
instantaneous one at 16 seconds). No rotational motion was
present. Figure 4 shows a typical simulated sensor response
for the Nexus device, where the noise and bias statistics are in
accordance with those found during the sensor characterisation
tests.

B. Results

1) Unfiltered Results: If the Kalman Filter does not go
through an update cycle, then the filter acts as an inertial
integrator. Tests indicate that if the unit is operated at the
specification observed for the Nexus device (the baseline case),
then after 20 seconds of operation, the results are very poor,
with the error in position estimate being close to 20 metres.
If the noise and biases of the Nexus inertial unit are reduced
by two orders of magnitude, then unsurprisingly the position
errors also reduce by about two orders of magnitude. An
inertial unit of this quality is of a grade that might be found
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Fig. 3: Simulated Trajectory
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Fig. 4: Simulated Sensor Outputs (Nexus)
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Fig. 5: Position Estimate Error (ZUPT Filter)

in aerospace applications, but is not currently achievable in
present day high volume, low cost devices. The attitude errors
were noted as being up to 1°at 2σ on the three axes after 20
seconds.

It is abundantly clear that the unaided inertial unit is
not adequate, and, unsurprisingly, some form of filtering is
essential.

2) Filtered Results: The previously indicated baseline case
was run where the filter was updated by exclusively using
the ZUPT update over the three separate intervals. Figure 5
shows the impact of the three ZUPT updates, where the
overall positional error is now significantly improved. The
Monte-Carlo results shown in Figure 6 confirm the significant
improvement in performance offered by the ZUPT updates, but
the position uncertainties change with time, which could be
problematic. A case was run where the baseline sensor noise
and biases was reduced by two orders of magnitude. In this
case, the overall trend of the filtered position errors produced
by ZUPT update remained as for the filtered baseline case,
but the overall magnitude of errors reduced by approximately
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Fig. 6: Ensemble Position Errors (ZUPT Filter)
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Fig. 7: Ensemble Position Errors (ZUPT Filter + GPS)
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Fig. 8: Ensemble Position Errors (ZUPT Filter + Shake)

a factor of 10.
Many systems advocate GPS as source of a relatively high

positional accuracy update [13]; Figure 7 shows the results of
using GPS update alongside the ZUPT updates. The results
indicate that the overall uncertainties in position are now
influenced by the uncertainty in GPS position. The use of GPS
did not improve any estimates of attitude.

In fact, a zero velocity condition would be quite difficult to
achieve in practice with a handheld device. Figure 8 shows the
case where during the period of zero velocity, the simulated
accelerometer and gyroscope noise was increased to simulate
hand-shake in the device during the period of ZUPT update. It
is evident that the increase in noise has adversely affected the
quality of the position estimates, which are now approximately



6

five to six times worse than the baseline case in Figure 6.
However, this result was sensitive to the initial conditions
when the filter was initially estimating the sensor biases.

The results also indicate that the filtering generally did
not have a uniform impact on the attitude estimation errors.
The attitude errors were only reduced for the axes aroubd
which vehicle moved (in this case x (roll) and y (pitch) axes),
from about 1° (effectively the unfiltered attitude error) down
to about 0.1° immediately after a ZUPT update. Like errors
in displacement, an error in the estimated orientation has an
impact on the estimation of the depth of a point when making
3D models of an observed scene.

VII. CONCLUSIONS

This study indicates that even low cost inertial sensors can
be made to give what can be considered a good performance
for applications such as a robot navigating around a car park.
However, there are difficulties in directly using such sensors
to provide scale for a structure-from-motion algorithm where
much greater accuracy is required.

The use of the ZUPT update Kalman Filter was found to
make a significant improvement in the quality of the odometry
estimate, but requires the user of a hand held device to
periodically remain still. However, the hand-shake likely to be
present during a filter update would compromise the quality
of the position estimates. The errors also increase during
the period between filter updates which is likely to cause
problems when trying to produce a geometric model. If the
device was mounted on a rigid mechanism, such as a robot
arm, then the zero velocity assumption could be better met,
with a corresponding positive impact on position estimation
performance.

The use of GPS did not significantly improve the quality of
position or attitude estimates.

We may conclude that low-cost inertial sensors do not offer
a simple means of addressing the SLAM scale factor problem
to the requisite degree of accuracy needed to build a geometric
model of an engineering object whose characteristic size is in
the range 0.1–1 m. This work suggest that closer coupling
with the visual system will be required. A vision system is
able to measure well surveyed objects or other fiducial marks
present in a scene. Such scene based knowledge will greatly
assist in establishing the camera odometry to an accuracy that
could potentially create geometric models to a high fidelity.
The inertial sensors in such a system could be used in other
ways than to provide absolute positions and orientations, and
for example, could benefit a vision system in basic tasks such
as guiding a visual object tracker.
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