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Abstract

Advances in 3D imaging have recently made 3D surface
scanners, capable of capturing textured surfaces at video
rate, affordable and common in computer vision. This is
a relatively new source of data, the potential of which has
not yet been fully exploited as the problem of non-rigid reg-
istration of surfaces is difficult. While registration based
on shape alone has been an active research area for some
time, the problem of registering surfaces based on texture
information has not been addressed in a principled way.
We propose a novel, efficient and reliable, fully automatic
method for performing groupwise non-rigid registration of
textured surfaces, such as those obtained with 3D scanners.
We demonstrate the robustness of our approach on 3D scans
of human faces, including the notoriously difficult case of
inter-subject registration. We show how our method can be
used to build high-quality 3D models of appearance fully
automatically.

1. Introduction
The non-rigid registration of 2D images in a groupwise

fashion has recently drawn significant interest and has been
shown to be superior to traditional pairwise methods [4].
The groupwise paradigm has also been applied to the non-
rigid registration of surfaces [7]. Recently, video-rate 3D
surface scanners, capturing texture as well as shape, have
become common. The information content of the textures
is very often much higher than that of the shapes alone, es-
pecially in the case of facial imagery and other real world
objects. In such cases it seems sensible to use texture infor-
mation for registration. However, the problem of non-rigid
registration of deformable surfaces with texture, especially
in a groupwise paradigm, has not been addressed in a prin-
cipled way.

Bending invariants have been used in [17] to compute
groupwise correspondences between meshes. However,
in [17] the general case of non-rigid registration is not ad-
dressed: their model of deformations is only affine and

they use use Generalised Procrustes Analysis and nearest-
neighbour correspondence to compute the best affine align-
ment of the bending invariants. A method for non-rigid sur-
face registration, expressed as a graph matching problem,
relying on photometric information in addition to shape,
is proposed in [19]. However, [19] is a pairwise approach
and cannot be readily adopted to the groupwise registration
paradigm. In [18], a surface registration method is proposed
which is based on detecting features on meshes equipped
with scalar fields and using those features for matching (un-
like the method in this paper, which is an area-based method
and does not require salient features to be present). The
method of [18] can only be applied to pairs of meshes and
cannot readily be converted to the groupwise paradigm. A
texture-based non-rigid surface registration method of [16]
is, again, non-groupwise and requires a prior built Active
Appearance Model to track features (and so cannot be ap-
plied to arbitrary data).

In this paper, a novel, reliable automatic method for
groupwise non-rigid registration of textured surfaces is pro-
posed. More specifically, we focus on the registration of
textured genus-0 disk-like orientable open surfaces repre-
sented by triangulated meshes, which are very common in
computer graphics and vision. However, our basic approach
could be readily adapted to other types of surfaces (e.g.
closed surfaces).

The solution to the above problem is important as it al-
lows fully automatic construction of 3D appearance mod-
els, with applications in computer graphics and vision, or-
thodontics, biometrics and security. Large corpora of tex-
tured 3D scans (including 3D videos) can now be easily ob-
tained. This is why, a fully automated method for 3D tex-
tured surface registration is essential for subsequent analy-
sis and modelling of such data. Constructing 3D appear-
ance models, e.g. Morphable Models [1], requires corre-
spondences between analogous features on the surfaces to
be known: while in the case of 2D images such corre-
spondences can be defined by manual annotation, this is
completely impractical in the 3D case and so an automatic
method has to be devised. Since our proposed algorithm

2401



achieves this, efficient 3D appearance model is now a real-
ity. We demonstrate this in Section 3, including the difficult
case of building an inter-subject appearance model.

We reduce the problem of 3D surface registration to that
analogous to image registration. A naı̈ve approach would be
to parameterise the surfaces (mapping to a plane) and then
register the textures as flat images. However, this naı̈ve ap-
proach does not usually work well because it is agnostic of
the 3D geometry of the meshes. In other words, small dis-
placements in the flattened textures, induced by the defor-
mation model, do not necessarily correspond to small dis-
placement on the original 3D surfaces and vice versa. The
more different the surfaces are from a flat disk, the more
pronounced is this effect.

We adopt a more principled approach in which the de-
formation model is defined on the original meshes and so
is explicitly aware of the 3D geometry. The main idea is to
maintain the correspondences between surfaces and to op-
erate with textures in a common flat reference space while
performing optimisation on the original 3D surfaces. This
can be regarded as gradually computing the embeddings of
the surfaces into a plane such that they also bring all sur-
faces into alignment simultaneously. To accomplish this,
we begin by computing maximally isometric embeddings
which implicitly define correspondences between surfaces
and iteratively improve them. Before we proceed, we first
review the techniques required by our approach.

Essential to many operations in our method is the ability
to compute the geodesic distance between any two points
on a mesh. The well established Fast Marching methods [9]
on triangulated domains allow for the geodesic distances
between points on a mesh (“single source, multiple targets”)
to be computed very efficiently.

Bending invariants [8], in which Euclidean distances be-
tween points correspond to the geodesic distances on the
original surfaces, can be used to remove the bending com-
ponent of the deformation, leaving only the stretching. For
example, it was shown empirically [2] that geodesic dis-
tances on the surface of a face are significantly less sensitive
to changes in expression than Euclidean distances are. This
means, therefore, that bending invariants can be used as an
excellent starting point with which to initialise our registra-
tion algorithm.

Given a matrix of pairwise dissimilarities between
items, a technique called classical Multidimensional Scal-
ing (MDS) maps these items to points in Rn such that the
pairwise Euclidean distance between the resulting points
approximate the given dissimilarities as closely as possible
in the least squares sense. MDS can be used [8] to compute
the bending invariants by inputting the matrix of pairwise
geodesic distance between points on a mesh, embedding
them into R3. The distance-preserving property of MDS
has also been exploited in a number of works on mesh pa-

rameterisation and flattening e.g. for texture mapping [20].
Given the geodesic distances between every pair of ver-

tices on a mesh it is possible to select k vertices such that the
pairwise distances between them are maximised. This can
be accomplished with a Farthest Point Sampling (FPS) al-
gorithm [12]. Selection can performed adaptively, e.g. seed-
ing more points in areas of higher curvature.

Groupwise non-rigid registration of (textured) surfaces
can be regarded as a large optimisation problem. A concern
with groupwise methods is that the dimensionality of the
space in which the search for the optimal solution is per-
formed, grows very rapidly with the number of samples in
the set. This can present a significant obstacle in finding
the optimal solution [6]. It has been shown previously [14]
that in groupwise registration of images efficient optimisa-
tion can be achieved by incrementally composing complex
deformation fields out of elementary (e.g. piece-wise affine)
warps. In this paper, we propose a method to perform a re-
lated procedure for groupwise registration (embedding) of
3D surfaces.

The main contribution of this work is a novel method,
building on the above ideas, which provides a fully au-
tomatic groupwise non-rigid registration of surfaces based
predominantly on texture information. Using a novel com-
bination of ideas from geodesic mesh processing and tradi-
tional registration methods, we show how to reliably, in a
principled manner, solve the problem of registering 3D sur-
faces in a fashion analogous to the previously solved [14]
problem of 2D image registration. The resulting algorithm
is computationally efficient, reliable and fully automatic.
Additionally, it is readily amenable to a GPU implemen-
tation.

2. Our Proposed Method
Our algorithm takes as input as set ofN textured meshes,

Mi = {Fi,Vi,Ui, Ti}, where Vi is a 3×nvi matrix whose
columns are vertex coordinates, similarly Ui is a 2 × nvi
matrix of texture coordinates, Fi is a 3 × nfi matrix of in-
dices into Vi defining the faces of the mesh, and Ti is the
texture. Note that, in general, meshes may have a differ-
ent number of vertices, nvi , and different topologies, as is
usually the case with the 3D data provided by scanners.

For every mesh, we maintain a 2 × nvi matrix Ei of
the embedded vertex coordinates in the common reference
plane. We aim to find such embeddings Ei that bring the
analogous features in all meshes into alignment. Having
done this, we can easily recover the correspondences be-
tween points on the original 3D meshes, assuming the em-
bedding is bijective.

As in [7, 14], we regard the problem of groupwise regis-
tration as an optimisation problem consisting of three com-
ponents: a mechanism for representing and manipulating
deformations (changes in embedding), an objective func-
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Figure 1. Left: magnitude of influence of several randomly placed
individual “deformation disks” (using Eq. (1) with r = 110 mm).
Right: colour-coded mixture of their influence.

tion F measuring the alignment error, and a global min-
imisation algorithm which optimises F . We address these
components below.

2.1. Model of Deformations

Even though in the proposed algorithm we optimise the
embeddings of meshes (mappings to the common reference
frame), for parallelism with registration literature we shall
call the changes to embedding deformations.

By analogy with [10] the total deformation is expressed
as a sum of elementary warps defined by bounded “defor-
mation disks”, in our approach residing on the surface of a
mesh (Fig. 1). Let G(M,a,b) denote the geodesic distance
between points a and b on a mesh M. Using the elemen-
tary warp formulation from [3], we define the influence of
a disk, with radius r and centre at c ∈ M, on an arbitrary
vertex v ∈ M as a function of the geodesic distance along
the surface of the mesh M from the disk’s centre:

B(M,v, c, r) =

{
1− (d/r)2

(
1 + log((d/r)2)

)
, d < r

0, d ≥ r
(1)

where d = G(M,v, c) and log(0) = 0. Note the desirable
property of this representation: since the magnitude of the
influence of a disk depends only on the geodesic distance
from its centre, there is no need to define a coordinate sys-
tem on the mesh.

If p ∈ R2 is a vector of parameters controlling the
contribution of a disk (displacement at its centre), the
coordinates of the embedded vertices Ei are affected by
∆Ei = pB(M,v, c, r). Given nb disks, the complete con-
figuration space (the space of all possible deformations)
is described by a matrix of parameters P2×nb

, where the
columns are parameters (contributions) of the individual
disks. Once the disks {cj , rj} are selected, the magnitudes
of their influences on vertices of the mesh can be precom-
puted and stored in the influence matrix Qnb×nv , where the
j-th row stores the influence of the j-th disk on the vertices:

Q(j, k) = B (M,V(:, k), cj , rj) . (2)

Given Q, the effect of all disks together on all vertices of the
mesh is simply D = PQ. The influence of individual defor-
mation disks as well as of their superposition is illustrated
in Fig. 1.

u

v

Figure 2. Correspondences via a flat parametric space.

2.2. Objective Function

We next the address the objective function. The purpose
of the objective function is to measure how well the cor-
respondences between the analogous features on different
surfaces have been established. Instead of operating on the
correspondences between surfaces directly, we operate with
correspondences between the surfaces and a common refer-
ence space (a Euclidean plane, assuming the surfaces can
be bijectively embedded in it). Mapping the textures to this
reference space enables us to adopt any suitable intensity-
based objective function from the 2D image registration lit-
erature: the textures in the flat parametric space can be ma-
nipulated as ordinary images. This also facilitates GPU-
based implementation.

The standard practice in groupwise image registration
literature is to maintain an evolving model of pixel colours
(e.g. average of shape-normalised images) in some refer-
ence space to which all samples are aligned. In our case,
such a model of texture can also be easily computed by
mapping the textures from curved surfaces onto the com-
mon reference plane using the estimated correspondences
between surfaces and the reference plane and averaging
them.

Figure 2 illustrates the idea: vertices of the mesh are
mapped to the reference plane, in which the evolving model
of texture is maintained. The correspondences between any
points on any two meshes can be consistently deduced given
the correspondences between the points and the reference
plane. In practice, we can represent the mapping between
surfaces and the reference plane by specifying for each ver-
tex of a mesh the corresponding coordinates in the reference
plane, storing these as columns in a 2× nvi

matrix Ei, and
interpolating between the vertices.

In practice, operations on the textures in the reference
plane can be most easily performed on a discrete grid. We
now define two operations which map the textured sur-
faces to such a discrete buffer in the reference plane. Let
{B,M} = R(F,E,U, T ) denote the result of rasterising a
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textured mesh, with connectivity defined by faces F, and a
4-channel texture T into aw×h buffer B with 4-component
pixels, using columns of E as target vertex coordinates in
the reference plane, and columns of U as the texture coor-
dinates. A mask,Mh×w×4, which records the pixels of the
buffer covered by the rasterised mesh as 1’s, with 0’s else-
where is also returned.

Additionally, let {B,M} = R′(F,E,U,Z, T ) similarly
denote the result of rasterising a textured mesh, but this time
the first three channels of the buffer, B(:, :, 1:3), is the result
of rendering the textured mesh (equipped with a 3-channel
texture), and the fourth channel of the buffer, B(:, :, 4)
receives the interpolated values of depth Z, appropriately
scaled. Incorporating geometric cues (the depth compo-
nent) in addition to pixel colours helps to more quickly
perform rough alignment in the early stages of registration.
This also helps to resolve ambiguities that could arise when
parts of the object have similar appearance (e.g. left and
right eyes). While useful in the early stages of registra-
tion, the use of depth information is detrimental in the later
stages, where it is not used.

Suppose at some point (at iteration k of the algorithm)
the “current” estimate of the model of texture is R. For
a mesh Mi with the initial embedding Ei and a computed
improvement Dik to this embedding, the quality of align-
ment (embedding) can be evaluated by comparing the ras-
terised versions of the embedded mesh with the model R.
As advocated in [5], it is preferable to compare the model,
warped using the current estimate of the correspondences,
with the original undeformed samples: in other words, mea-
suring how well the model of texture “explains” the origi-
nal samples. Using the above notation, the local objective
function which evaluates a particular embedding hypothesis
H(P) = Ei + Dik = Ei + PQik is

C(R,H(P)) = S({Bsrc,Msrc},Bref), (3)

where {Bsrc,Msrc} = R′(Fi,Ei,Ui,Zi, Ti) is the
rasterisation of the original flattened mesh, which
is to be explained by the deformed model, and
{Bref , ·} = R(Fi,Ei,H(P),R) is the model R warped
back to conform to the original mesh in the reference space.
Function S({Bsrc,Msrc},Bref) compares the buffer Bref
with respect to Bsrc, such that only pixels masked byMsrc

are considered. In our implementation we assume the ex-
ponential distribution of pixel intensity errors and use the
mean absolute difference between masked pixels for S(·).
Note that since {Bsrc,Msrc} never change, they can be pre-
computed in advance.

Repeated optimisation of C(·) for one mesh at a time,
and evolving the model R appropriately, optimises the
groupwise alignment of the whole ensemble (see discussion
in [13, section 3.4.2]), which can be expressed as a global
objective function:

Figure 3. A mesh, its bending invariant, and embedding into R2.

Cglob =
1

N

N∑
i=1

C(R,Ei + Dik). (4)

Note that there is no shape term in our objective func-
tion: the smoothness prior of the computed deformations
is only implicit in the deformation model. We found that
when enough features are present in the textures, no addi-
tional shape constraints are needed (see also [5], where the
same observation was made, and possible options for the
shape smoothness term were also discussed).

2.3. Registration Regime

The first stage of the process is to compute the bend-
ing invariants [8] of the meshes using MDS on the pairwise
geodesic distances between all vertices in each mesh. The
first two components of the bending invariants (or, equiva-
lently, the result of embedding the vertices of the mesh with
MDS in R2) form the initial maximally-isometric embed-
dings Ei, and the third component, call it depth, is kept in a
matrix Zi (Fig. 3).

Note that textures need not necessarily be RGB images,
but can in general be any features (vector or scalar) asso-
ciated with every point on the surface, e.g. geometry-based
surface descriptors. As advocated in [5], better performance
can be achieved if local brightness normalisation is applied
to images (textures) and the gradient information is also in-
corporated as image channels. We also adopt this idea: as-
sume henceforth that textures Ti are in this form.

The registration begins with a crude alignment of the em-
bedded meshes to a template (say, the first mesh). Since
MDS performs the embedding up to a similarity transform,
including reflection, this needs to be accounted for. In prac-
tice, for the crude alignment we use brute force search
to test for the eight possible reflection combinations (by
1 or −1 along each of the three dimensions of the bending
invariant) and to approximately estimate rotation (trying all
angles in increments of 10◦).

The crude alignment is followed by a groupwise affine
alignment stage. This is done in the same fashion as the
non-rigid alignment, described below in Alg. 1, except that
search is performed for the optimal affine transformation
parameters for each embedded mesh, and instead of re-
moving the embedding bias in line 18 the affine parame-
ters are normalised so that the average translation and rota-
tion across the ensemble is 0 and the average scaling is 1.
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Henceforth, assume that all Ei are affinely aligned.
Now we address the most important, non-rigid alignment

stage. We use the idea from [14] that proved to work well:
accumulate the solution additively, gradually composing the
resulting optimal embeddings over several iterations.

The non-rigid registration procedure is summarised
in Alg. 1. We maintain the improvements to the initial
embedding in a matrix Dik for each mesh. They are ini-
tialised to zero (line 1). The iterative body of the algo-
rithm (lines 3–20) is repeated until convergence. Each it-
eration begins by computing the current estimate of the tex-
ture model in the reference plane by rasterising and sum-
ming all embedded meshes using the current estimate of the
optimal embedding Ei + Dik−1

, lines (5–8). The embed-
ding of each mesh in turn is then improved (lines 9–17). In
order to avoid a local minimum around the zero improve-
ment hypothesis, the “current” sample is excluded from the
model (lines 11–12), as suggested in [5]. At each iteration
a random deformation model is selected, comprising nb de-
formation disks on the current 3D mesh. Using the FPS
strategy we randomly select nb mesh vertices with indices
bnb×1 as the centres of the disks (line 13). The radii of the
deformation disks are chosen such that the adjacent disks
overlap by one radius. FPS sampling ensures that the entire
area of the mesh is covered evenly. The reason for choos-
ing a random deformation model each is to allow the al-
gorithm the progressively explore the space of all possible
deformation models and to exclude to possibility of getting
stuck with a poor choice of deformation model, as proposed
in [14].

The influence matrix Q describing the effect of the disks
on each vertex is then computed (line 14). In practice, to
avoid geodesic computations in line 14, we can trade mem-
ory for speed. If memory permits, for a given radius r the
influences of the deformation disks can be precomputed at
each vertex as its potential centre and stored in a sparse ma-
trix. Since the influence of each disk is bounded its influ-
ence on most vertices is zero and the above matrix is sparse.
(An alternative but less memory efficient way is to precom-
pute the pairwise distances between vertices in each original
3D mesh to avoid geodesic computations in the main loop).

Optimising over all possible parameters P2×nb
, induc-

ing a hypothetical embedding H(P) = Ei + Dik + PQ,
we compute the optimal improvement ∆Dik to the embed-
ding (line 15). In practice, we found the following optimi-
sation scheme to work well. During the first few iterations,
when the disks are large, optimise each disk, one at a time
(a 2-dimensional optimisation problem). First we perform
brute-force search (as in [5]), trying several displacements
within a given evaluation budget and selecting the best one.
Then the solution is refined with the Nelder-Mead method.
At later stages, when the deformation disks become small
and the correspondences are already roughly established,

the hypothesis is refined by optimising all disks at once
using the stochastic optimiser, Simultaneous Perturbation
Stochastic Approximation (SPSA), as proposed in [14]. Its
advantage of SPSA is that its performance, in terms of the
number of objective function evaluations, is relatively in-
sensitive to the dimensionally of the search space. For de-
tails on SPSA see [11, 15]. Finally, the computed improve-
ment is learned (line 16).

As the algorithm approaches the solution and the im-
provement slows down, the number of deformation disks is
increased and their radii are accordingly decreased (line 19),
to allow the algorithm to finesse the improvements with a
progressively detailed deformation model.

After no further improvement is possible, the algo-
rithm returns the optimal embeddings for each mesh:
(Ei + Dik−1

). After the registration is complete, correspon-
dences between any point on one mesh and any point on any
other mesh are known via the common reference frame. So,
for applications that require only the correspondences to be
found nothing else needs to be done. To build an appearance
model from the registered meshes are resampled at corre-
sponding locations yielding a set of topologically consistent
meshes and corresponding surfaces.

2.4. Removing Embedding Bias

It is possible that during the non-rigid registration stage
the correspondences between the surfaces and the common
reference plane may become systematically biased, which is
equivalent to common reference space becoming distorted.
To preclude this from happening, this embedding bias is re-
moved (line 18) by adjusting the improvements Di, so as
to annihilate the bias. First, a point cloud A is formed by
concatenating all (Ei + Dik),∀i from all meshes. Each em-
bedded mesh Mi in turn is sampled to determine the dis-
placements at points A due to Mi (for points in A that lie
on the mesh). The contribution from all meshes is then av-
eraged and subtracted from the displacements Dik . To save
on computation time, bias removal need not necessarily be
performed after each iteration, but every few iterations in-
stead.

3. Experiments
In order to validate our approach we conducted registra-

tion experiments with artificial and real 3D data, including
inter-subject registration. Note that there is no prior art ad-
dressing this specific problem, and so a direct comparison
with existing methods is impossible.

For all experiments we plotted the values of a various
alignment quality measure at each iteration as the algorithm
progresses, to monitor improvement. There are the values
of the Cglob from Eq. (4) (MAD), mean average mutual in-
formation and normalised mutual information between the
texture model and each shape normalised sample (MI and
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Algorithm 1 Perform non-rigid registration of an ensemble
of textured meshes.
Require: Textured meshes Mi = {Fi,Vi,Ui, Ti}, their

initial embeddings Ei (affinely aligned), depth compo-
nents of the bending invariants Zi, i ∈ {1 . . . N}

1: Initialise: k ← 1; Di0 ← 0, ∀i
2: while not happy do
3: Randomly permute the order of meshes.
4: Bsum ← 0h×w×4;Msum ← 0h×w×4
5: for i = 1 to N do
6: {B,M} ← R′(Fi,Ei + Dik−1

,Ui,Zi, Ti)
7: Bsum ← Bsum + B;Msum ←Msum +M
8: end for
9: for i = 1 to N do

10: {Bthis,Mthis} ← R′(Fi,Ei + Dik−1
,Ui,Zi, Ti)

11: MR ←Msum −Mthis

12: Rik ← (Bsum − Bthis)•/max(1,MR)
13: bnb×1 ← FPS(G(Mi, ·, ·), nb)
14: Q← influence(Mi,b)
15: Using C(·) from Eq. (3) and with

H(P) = Ei + Dik + PQ, optimise w.r.t. P to
compute the optimal improvement
∆Dik ← (arg minP C(Rik ,H(P))) Q

16: Dik ← Dik−1
+ ∆Dik

17: end for
18: Remove embedding bias, see Section 2.4.
19: If improvement becomes slow, increase nb.
20: k ← k + 1
21: end while
22: return (Ei + Dik−1

) — the optimal embedding of Vi

into R2, that brings all meshes, Mi, into alignment.

NMI), and average pixel stack entropy across the shape nor-
malised ensemble. To visually inspect the quality of regis-
tration, we also show the evolution of the model of texture
and average shape: as the algorithm establishes the corre-
spondences more and more accurately these converge to a
true crisp representation of the underlying structures.

Comparison with the ground truth. For this experi-
ment, one mesh was selected as a template and randomly
deformed by selecting 32 control points on it, displacing
each control point randomly by ±24 mm (uniformly dis-
tributed) and interpolating the deformation with thin-plate
splines. The obtained 64 synthetic meshes (examples shown
in Fig. 4), with the ground truth correspondences known,
were then registered. Figure 5 shows the evolution of the av-
erage shape and texture as the registration progressed. In or-
der to evaluate the accuracy of the registration we computed
two measures. The average pairwise distance between cor-
responding vertices in the aligned meshes was 0.838 mm
(median 0.633 mm, σ = 0.773 mm). The algorithm was
stopped after 160 iterations (the results would be improved

Figure 4. Example meshes from the artificial data set.

Figure 5. Evolution of the mean surface and texture for the artifi-
cial data set.

even further if the algorithm was run for longer), see the
progress Fig. 12 (bottom left).

We also measured the final spatial errors between ev-
ery shape-normalised mesh and the template warped to the
mean of the shape-normalised meshes. The average pair-
wise distance between corresponding vertices in the aligned
meshes was 0.570 mm (median 0.408 mm, σ = 0.570 mm).

These results show that our method performed well and
converged to within the expected accuracy (subject to the fi-
nite number of iterations, flat areas in the texture, and small
imperfections due to texture warping).

Within-subject registration. To demonstrate that our
algorithm can register a sequence of meshes, we captured
a 3D video of two people (PERSON1 and PERSON2) per-
forming various facial actions. We took every fifth frame for
each video giving us two sequences of 182 and 221 meshes
respectively (examples are shown in Fig. 6 and Fig. 9).
The sequences were registered. The progress of registra-
tion is shown in Fig. 12 (top row), the evolution of the
texture model and the average shape are shown in Fig. 7
and Fig. 10: observe the crisp texture in the final stage of
alignment. Having registered the sequences, we built a 3D
appearance model for each person. The first three modes
of variation are shown in Fig. 8 and 11. The results are ex-
cellent, demonstrating the usefulness of our algorithm for
automatic 3D appearance model building.

Figure 6. Example meshes from the PERSON1 data set.

Inter-subject registration. To demonstrate that our al-
gorithm can easily handle inter-subject registration, we took
a corpus of facial scans of 32 different individuals, 11 of
which are women. Some examples from this data set are
shown in Fig. 13. Note the degree of variation, both in shape
and texture (e.g. facial hair). We successfully registered this
data set. The progress plot is shown in Fig. 12 (bottom
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Figure 12. Progress plots for the experiments: PERSON1 (top left), PERSON2 (top right),
ground truth artificial data set (bottom left), inter-subject data set (bottom right).

Figure 13. Example meshes from
the inter-subject data set.

Figure 7. Evolution of the mean surface and texture for the
PERSON1 data set.

Figure 8. The first three modes of variation (±3σ) of the 3D AAM
built from the registered PERSON1 data set.

Figure 9. Example meshes from the PERSON2 data set.

Figure 10. Evolution of the mean surface and texture for the
PERSON2 data set.

Figure 11. The first three modes of variation (±3σ) of the
3D AAM built from the registered PERSON2 data set.

right), and the evolution of the texture model and average
shape in Fig. 15 and Fig. 16. We also built the appearance
model from registered samples. The first three modes of
variation are shown in Fig. 14. Inter-personal registration
is a notoriously challenging problem, with which our algo-
rithm admirably copes.
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Figure 14. The first three modes of variation (±3σ) of the
3D AAM built from the registered inter-subject data set.

Figure 15. Evolution of the texture model in the flat parametric
space for the inter-subject data set.

4. Conclusion
We have presented a novel, efficient and reliable, fully

automatic method for performing groupwise non-rigid reg-
istration of textured surfaces. We have demonstrated its use-
fulness in accurately establishing correspondences between
textured meshes and, especially, in building high quality 3D
appearance models. Our method copes with data exhibiting
significant variation in shape and texture, such as in the case
of notoriously difficult inter-subject registration, with which
our algorithm copes admirably.
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