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Abstract

We propose a novel hierarchical model of human dynamics for view independent tracking of a human figure in monocular video

sequences. The model is trained using real data from a collection of people. The top of the hierarchy contains information about the whole

body. The lower levels of the hierarchy contain more detailed information about possible poses of some subpart of the body. In this article we

describe our model and present experiments that show we can recover 3D human figures from 2D images in a view independent manner, and

also track people the system has not been trained on. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper introduces a novel model of human dynamics

that allows view independent tracking of a 3D human figure

in monocular video sequences. The model represents the

body dynamics of a collection of people. It is trained on real

life examples using a Gaussian Mixture Model (GMM) to

encode geometry and kinematics, and a Hidden Markov

Model (HMM) to encode dynamics. The model can be

trained on either 2D or 3D data. It allows us to recover 3D

human figures from 2D image sequences, to track unknown

people, and improve tracking accuracy.

Tracking humans in video has applications in many areas

including surveillance, computer games, films, and biody-

namics. There is a large body of work related to tracking

human motion in 3D. We are interested in general methods

that allow one to track the whole body, rather than in

specialised trackers for face, hands, etc. [12]. Encouraging

results have been achieved in tracking whole body human

motion in 3D using multiple cameras [1,5,13]. We are,

however, interested in recovering 3D human motion from

only one view.

To recover a 3D human pose on the basis of 2D data we

need to know how the 3D human figure and 2D data are

correlated. Goncalves et al. [4] utilised the correlation

between the real human arm size and the size of the arm in

the image in order to recover its 3D positions. This approach

is, however, limited only to a person whose arm geometry

was used in the system. In our proposed system, this

limitation was overcome by embedding into the system the

dynamics and geometry of several people and thus making it

more general. Bowden et al. [2] encapsulated the correlation

between 2D image data and 3D human body pose in the

hybrid 2D–3D model trained on real life examples. The

model they used allows 3D inference from 2D data, but their

method does not generalise easily to new camera positions,

because the 2D part of their model is not invariant to

viewpoint.

Another useful feature when tracking objects in video

sequences is a model of the object dynamics. Goncalves

et al. [4] used a Kalman filter for arm tracking, which is a

very general mechanism and does not describe the way

people move. In recent years HMMs have been applied to

human behaviour prediction and recognition [16,18], and

are becoming recognised a valuable mechanism for

modelling human motion from real life data. We combine

the use of HMM with the condensation algorithm [11] to

track model states, as do Ong and Gong [14].

Hogg [6] created a view invariant model of a human

body. When tracking, it was projected onto the frames in the

video sequence to choose the best fitting pose of the model.

We act likewise. For Hogg, the space of valid poses was
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‘hard-wired’ into the model, rather than learnt from

examples and there was no model of the dynamics of a

human body. We build on Hogg’s work by learning the

valid poses from examples, and using HMMs for a

description of dynamics.

We describe the structure of our hierarchical model of

dynamics in Section 2, look in detail at the tracking process

in Section 3, present our 2D and 3D experiments in Sections

4 and 5 and conclude in Section 6.

2. Hierarchical model of human dynamics

A natural and common way to represent the human body

is with connected parts. For example, a lower limb is

connected to an upper limb, which in turn connects to the

torso. Such models are often used in computer graphics [19].

However, our model is based on ‘part-of’ relationships. For

example, a lower limb and an upper limb are parts of a

whole limb, which in turn is a part of a whole body. We use

a part-of decomposition because, as we explain below, our

model of a collection of people comprises a hierarchy of

eigenspaces in which a ‘high-level’ eigenspace contains the

major components of a ‘lower-level’ eigenspace. As we

explain below, these eigenspaces are used to specify valid

poses for a collection of people performing a particular

action (such as walking or jumping). We regard the

transition from one pose to the next as the dynamics of

the action, and encode this using HMMs. We train our

model, both poses and dynamics, from real data. Next we

describe the model of valid poses, and then move on to

describe the HMMs for dynamics.

2.1. A model of valid poses

It is convenient to begin the description of our model by

considering a model of an individual person in a particular

pose (as in Fig. 1), and use this to develop the content in the

root node of our hierarchy.

We mark three-dimensional (3D) vertices, x [ R3 at

well-defined locations, such as the knee and elbow. Over the

whole body there are N such vertices, which we collect into

a vector p [ R3N : This vector encodes the geometry of the

body. As the individual performs an action the vector varies

in time and hence is a continuous function pðtÞ [ R3N : We

sample it at M points in time (typically in each frame of a

sequence) to obtain a discrete set of poses {pt}: This

encodes kinematics.

We wish to model the poses (and, later, dynamics) for a

collection of K individuals, and so must represent the

collection {pi;t}; where the subscript i refers to a particular

individual. This set samples the distribution of valid

skeleton poses and can be represented by a ð3N £ MKÞ

matrix, P. It is captured from real data using a variety of

vision systems (typically, in our experiments we capture

between 200 and 1000 vectors). This distribution is highly

non-linear, due to geometrical and physical constraints on

the valid positions of vertices, therefore, we model this

distribution with a GMM in reduced dimensionality space.

Similar approaches to model non-linear distributions

were used by Heap et al. [9], and Bowden et al. [2] and later

utilised by Ong and Gong [14] for learning the state space of

their model. Our approach consists of the following steps:

1. Remove dimensions representing small variations in

pose by standard PCA, so that the distribution of {pi,t} is

represented by the eigenspace model (eigenmodel)

ð �p;U;L;MKÞ

in which �p is the mean of the set, U is a ð3N £ sÞ matrix of

eigenvectors, L are the eigenvalues, and MK is the set

cardinality; note s # minð3N;MKÞ

2. Projecting the original data set into this eigenspace to

acquire dimensionality-reduced samples,

ri;t ¼ UTðpi;t 2 �pÞ

3. Cluster the projected data into a number of Gaussian

distributions using Expectation Maximisation, each

cluster represented by its mean and covariance matrix,

thus creating a GMM. Each cluster, qk can also be

represented by an eigenmodel

qk ¼ ð�rk;Vk;sk;NkÞ

PCA is often used to constrain variations, and represent-

ing reduced-dimensionality set with a number of clusters

improves the specificity [2,9] of this and better models any

non-linearities in the system.

Thus far we have considered only the root node of our

model. As mentioned, nodes below the root correspond to

major body parts, such as the arm, as in Fig. 1. The pose of

such a part can be represented as a vector, the elements of

which come from the whole body vector. Thus the domain

of the part pose is the landmark points that compose this

part. Consequently, a collection of poses for a part (the

collection ranging over time and individuals) can be treated

in exactly the same way as the set of poses for the whole

body that is modelled as a GMM.

Our model comprises a hierarchy of nodes, with a

hierarchy of eigenspaces in each node (Fig. 1). When we

refer to “the eigenspace of a node” we mean the root

eigenspace in the hierarchy of eigenspaces at that node. The

eigenspaces of nodes at lower levels are partially contained

within those eigenspaces of nodes at higher levels (since

they are estimated from the part of the data used to estimate

the eigenspaces at the higher levels), thus forming a

dependency. Eigenspaces in nodes at the same level are

independent (orthogonal). This representation is advan-

tageous: because of dimensionality reduction the eigen-

spaces in nodes at the higher-levels encode only the major
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variants of valid poses, the lower-level nodes encode minor

variations, and hence capture detail that would otherwise be

lost, in a compact way. We make use of this when tracking

humans, as explained in Section 3. Overall, our model

greatly improves specificity and yet retains the advantages

of PCA.

2.2. Modelling dynamics

In our model GMM captures the variety of poses the

figure can have, but we also would like to have a

mechanism, which given a human figure pose at time t

would be able to predict what pose the figure is likely

to acquire at time t þ 1: For this purpose we adopt

HMMs.

HMMs have been used for some time in the speech

processing [3,7] representing possible transitions from one

sound into another. Recently they have found use in

computer vision for interpreting and predicting human

behaviour [16,18]. Currently, for reasons of simplicity, we

use an HMM only in the root node of our hierarchical model.

We will comment further on this in Section 6.

A continuous observation HMM consists of the

following elements:

Fig. 1. Basic model of a human body.
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† t1; t2; t3; t4;…; which are discrete clock times.

† q1; q2;…; qN ; which are a number of discrete states. In

our case each state is represented by an eigenmodel

within a GMM. At each clock time t a new state is

possibly entered.

† A ¼ {aij}; aij ¼ p(qj at time t þ 1lqi at time t ), which are

the probabilities of transitions between states.

† B ¼ {bjðoÞ}; where bjðoÞ ¼ p(otlqj at time t ) is an

observation density distribution at state j, which is just

the probability that a sample ot belongs to state j.

† P ¼ {pi}—initial probabilities of being in state i at time

t ¼ 1:

We initialise the matrix of possible transitions with all

elements equal, and use the Gaussian components of the

GMM at the root node of our hierarchy as the observation

densities in order to estimate the transition probabilities

using the Baum-Welch [15] iterative method. Equivalently,

estimating Gaussian components can be done in a single

procedure together with estimating the HMM [7].

So far we have described our hierarchical model which

represents the geometry and dynamics of a collection of

people. In Section 3 we explain how we use this model for

tracking.

3. Tracking human figure in a video sequence

We aim to track a figure in image sequences, from frame

to frame. In principal the images can be 3D (perhaps

acquired from a body scanner) or from two dimensional

image sequences as obtained from a video camera; our

tracking method is largely independent of image modality.

This is because we track figure poses in the model just

described, and use data only to choose between a set of

poses that have been generated using the condensation

algorithm [11].

Our tracking process can be thought of as a multi-level

refinement procedure. It starts by estimating the pose of the

whole human body using the HMM and the eigenspace at

the root node of our hierarchical model. Then it refines the

poses of the body parts using the eigenspaces of the

corresponding model nodes (Fig. 2).

It is convenient to start describing the tracking procedure

with describing the estimation of the pose of the whole

figure. This step involves using the condensation algorithm

in combination with HMM to generate a set of poses in the

top-level node eigenspace. We initialise the condensation

algorithm by generating n/k sample poses in each Gaussian

of the top-level GMM, where n is the total number of the

Fig. 2. Tracking process with refinement step.
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samples and k is the number of Gaussians. We then weight

each sample si against the image data. In case of manually

pre-segmented data (Section 4) we weight each sample with

the sum of the Euclidian distances between the estimated

image landmark positions and pre-segmented image land-

mark positions. In case of automatically segmented image

data (see details in Section 5) we weight each sample with

the sum of the absolute values of the differences of the

corresponding estimated and automatically segmented

binary images. Finally, we estimate the fitness of each

sample si as fi ¼ expð2wi=CÞ; where wi is the weight of the

sample and C is a constant, and normalise these values so

that
Pn

i¼1 fi ¼ 1: We use the fitness values to generate

the distribution of samples in the next step. We estimate the

figure pose in the current frame as the weighted mean of the

current sample set, where the weights are the fitness values.

In the following iterations of the condensation algorithm

we select n 2 k samples from the old samples on the basis of

their fitness values as in the condensation algorithm [11]. To

assist to the recovery from failures we additionally generate

a sample from each Gaussian, k samples altogether. We find

the probability of each sample belonging to each of the

Gaussians and then assess the likelihood of the next pose

belonging to each of the Gaussians on the basis of the above

probability values and HMM transition probability values.

We use this likelihood to generate a corresponding

proportion of the total number of samples in each Gaussian.

Then we estimate the new samples fitness with the image

data in the same way as above. This method allows us to

track the pose of the figure as the pose changes from one

cluster to another with a limited number of samples. In our

experiments we use approximately 250 samples on each

iteration of the condensation algorithm.

Refinement of a particular body part pose is performed in

the following way. The estimated pose of this part is passed

from the previous refinement stage. This pose is projected

into the eigenspace of the corresponding model node and the

probability of it belonging to each cluster of this eigenspace

are estimated. A set of samples from each cluster in the

eigenspace is then generated, the number of samples

belonging to each cluster proportionate to the obtained

probabilities. The samples of the part poses are then

reconstructed to their original space and each sample is

assigned a weight according to how well it fits the data in the

current input frame. The refined part pose is estimated as a

weighted mean of the reconstructed set.

4. Experiments with manually pre-segmented images

In this article we restrict ourselves to considering

walking motion of a small sample of people. In this section

we track pre-segmented landmark points. In Section 5 we

track automatically segmented features. We performed a

number of experiments in both 2D and 3D. The experiments

in 3D show that we are able to recover 3D configurations of

the skeleton on the basis of previously unseen 2D image

data, invariant of the camera view. The 2D experiments

show that the system is able to track both people it has been

trained on and people it has not been trained on. We also

showed that using our hierarchy noticeably improves the

precision of tracking in 2D. To monitor the precision of

tracking we computed the error for each skeleton vertex as

the Euclidian distance between the tracked vertex position

and the ground truth vertex position. We experimented with

different coordinate systems for representing 3D and 2D

skeleton vertex positions, including Cartesian, Polar, and

Twist representations, but so far we have found Cartesian

coordinates to give the best results in the experiments. We

also experimented with including vertex velocities in our

data set, but this did not provide significant improvement in

tracking.

4.1. 3D experiments

The data consists of 320 frames of a walking 3D human

skeleton which was captured using an optical marker-based

system consisting of eight cameras. The human skeleton is

represented by 32 vertices and connecting bones (Fig. 3).

The configuration of the skeleton in each frame is

represented by a state vector consisting of 3D Cartesian

coordinates of each vertex. The data we used for training is

the 3D data from 200 frames, the rest of the frames were

used for testing. The two sets of 2D testing data were

obtained by parallel projection of the rest of the 3D data

frames into side and front camera views.

Our hierarchy comprises two levels. The root contains

the HMM for a whole human skeleton. The second level

consists of five nodes; one for the right leg, one for the left

leg, one for the right arm, one for the left arm, and one for

the torso and the head. Each node contains the GMM for the

body part.

We trained our model on 200 frames, keeping 90% of the

eigenenergy in the root, leaving just two eigenvectors. The

first of these vectors describes forward–backward motion of

rigid arms and legs. The second of the vectors describes the

degree of bending of the knees and elbows (Fig. 4). We kept

95% of the eigenenergy in the remaining nodes, and used 50

Gaussians in each of the GMMs. In our experiments the

transition probabilities in HMM seem to have settled to

reasonable values just after 4–5 iterations.

We tracked the 3D skeleton in both of the projected

sequences (side and front views) using only one sequence at

a time (Fig. 3). When tracking in the side view the average

error in the image plane over all vertices and frames was 3.8

pixels with the standard deviation of around 1 pixel, with the

vertical size of the whole figure being 160 pixels (Fig. 5).

The precision is better for the upper part of the body

including arms but worse for the legs. When the recovered

3D model was projected into the front view, the average

error in the (new) image plane was only 1.15 pixel. We

attribute this to the fact that there is more variation in the
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Fig. 4. Two main modes of 3D variation in the global eigenspace, side and front views.

Fig. 5. Average error of tracking a skeleton in 3D using a side view: the

error of tracking using only the top level of the hierarchy is shown in dotted

black line, the error of tracking using all levels of the hierarchy is shown in

solid black.

Fig. 6. Average error of tracking a skeleton in 3D using a front view: the

error of tracking using only the top level of the hierarchy is shown in dotted

black line, the error of tracking using all levels of the hierarchy is shown in

solid black.

Fig. 3. Tracking skeleton in 3D: front and recovered side views. The tracked figure is drawn with solid black lines and the ground truth figure is dashed grey.
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side view comparing to the front view (Fig. 4) and that the

3D hierarchical model has been trained on insufficient data,

but this observation is worthy of further investigation.

When we used the second level of the hierarchy for fine-

tuning we found that the results were not significantly

different, and on occasion worse. The average error was 3.2

pixels with the standard deviation of around 0.7 pixel (Fig.

5). We conjecture that results would improve were we to use

HMMs at each node in the skeletal model. This is a subject

of future research.

When tracking using the front view, the average error

was 4.4 pixels with the standard deviation of 1.3 pixels. The

results were slightly worse (mean error of 5.5 with the

standard deviation of 1.5 pixel) when we used the second

level of the hierarchy (Fig. 6). We attribute this mainly due

to a large degree of ambiguity of the front view. This

ambiguity may be resolved in part by perspective projec-

tion, but also by appealing to additional information in the

image such lighting information. The use of HMMs on all

the levels of the hierarchy could also help.

4.2. 2D experiments

The training and testing data was obtained by hand-

marking 29 video sequences of five people walking parallel

to the camera field of view, each about 40 frames long, thus

giving around 1000 frames altogether. The skeleton figure

consists of nine connected vertices representing the right

side of the human body, right leg, right arm, right half of the

torso and head positions (Fig. 7).

The model was trained on 21 video sequences chosen

from 29 that were available. It was tested on the remaining

six video sequences of people it had been trained on, and

also two video sequences of two people it had not been

trained on.

The skeleton model consists of two levels, the first level

being for the right-hand side of the whole body and the

second level consisting of three nodes, one for the right leg,

one for the right arm and one for the right part of the torso

and head.

The average error for a person the model had been

trained on is 6.8 pixels with the standard deviation of

1.3 pixel when using second level of the hierarchy and

9.4 pixels with the standard deviation of 1.2 pixel when

using only the top level of the hierarchy, with the

vertical size of the whole figure being about 400 pixels

(Fig. 8). This demonstrates an improvement. The

average error for a person the model has not been

trained on is 12.6 pixels with the standard deviation of

1.4 pixels when using the full hierarchy. For a whole

body model alone the average error is 17.5 pixels and

the standard deviation is 2.2 pixel. Again, there are

benefits to be had from the hierarchical model.

5. Experiments with automatically segmented images

In these experiments we complement our model with

volumetric parts to model the human body. We label the

arcs between body vertices with truncated cones and the

head vertex with a sphere. Thus we have a volumetric

artifice to our model, which we use in tracking.

For these experiments we use images obtained from a

single calibrated video camera. We assume that we have

trained a hierarchical model on the 3D training set

describing walking human motion.

We need to find the 3D position of the human figure in

the image, i.e. the 3D position of the coordinate origin

associated with that figure in relation to the world

coordinate system. We also need to find the 3D pose of

the human figure in the image. To do so we follow these

steps:

1. Calibrate a single video camera.

2. Sample background with no person present.

3. Identify the person walking by removing the background,

leaving a binary image with a foreground figure.

Fig. 7. Two frames from a video sequence in which we track a 2D skeleton: the ground truth figure is shown in white solid line, the first estimate is shown in

dotted line, and the refined figure is dashed white.
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4. Estimate the three-dimensional location of the person’s

‘centre of gravity’, this is the origin of our figure.

5. Estimate the whole body pose using condensation

algorithm [11] in conjunction with an HMM using the

eigenspace at the root node of our hierarchy.

6. Refine the poses of the body subparts using the

corresponding nodes in our hierarchical model.

7. Move to the next frame of the image sequence, repeat

from step 3.

We now explain these steps in greater detail. The camera

is calibrated using Tsai’s standard method [17], and

background removed to leave a foreground figure using a

method due to Horprasert et al. [10].

We calculate the 3D origin of our person in the following

way: the x coordinate is estimated using the x coordinate of

the centre of gravity of the figure in the image. Due to

perspective the corresponding y estimate is inaccurate—for

example, the person’s feet contribute to the projected

‘height’ of the person in the (2D) image. We, therefore, use

a scaled ratio of the height of a bounding box that encloses

the figure. In our experiments we have found that a ratio of

5/12 gives reasonable result. However, this is a parameter

that could be learnt for an individual and calibrated for a

known camera position. The third component, depth, is then

estimated using standard geometric projection: knowing the

height, in pixels, of the bounding box above, the know

physical height, in millimetres, of the individual and the

calibrated camera focal length, the depth is readily

calculated.

For the initial estimate of the body pose in each video

frame we make use of the hierarchical structure of the

kinematic-dynamic model (Fig. 1). First we produce an

initial estimate by using the condensation algorithm in

conjunction with an HMM (as described in Section 3) to

generate a set of body poses in the root node eigenspace of

our hierarchical model (Fig. 2). These poses are then

reprojected to their original 3D space, and weighted

according how well they fit the current image. The whole

body pose is estimated as the weighted mean of the

reconstructed set.

We test each generated human body pose against the

image data in the following way. Each pose is used to fix in

space a volumetric figure modelling the human body, and

this is perspectively projected into the viewing plane. For

each body part we project a truncated cone or a sphere

whose position is defined by the pose. For testing we

measure the correlation between the projected figure and the

image figure. The correlation measure we use is the sum of

the absolute values of the differences of the two images.

Both images are binary as illustrated in the image of the

reconstructed body (Fig. 10, second and third columns).

Below we show experimentally that our method is able to

reconstruct from a monocular video sequence without the

use of markers and in the presence of partial occlusion. We

also obtained an estimate of three-dimensional accuracy

using synthetic image sequences.

We obtained training 3D motion data by filming a

person’s motion with three cameras placed in front of that

person with different viewing angles. Nineteen markers

were placed on a person at joints and extremities. The 2D

positions of the markers were hand-marked in each of the

video-frames and their 3D positions reconstructed knowing

each camera’s calibration parameters. We built our

hierarchical model to include the motion of the whole

body and five submodels describing the motion of each leg,

arm, and a head and a torso in more detail.

Fig. 10 shows selected images from a video sequence,

with the corresponding reconstructed 3D figures

Fig. 8. Average error of tracking a skeleton in 2D: (a) the error of tracking a person it has been trained on before; (b) the error of tracking a person it has not been

trained on before. The error of tracking using only the top level of the hierarchy is shown in black dotted line. The error of tracking using all levels of the

hierarchy is shown in black solid line.

Fig. 9. Error of tracking (in mm) on a synthetic video sequence. The p ’s

show the error without the use of the hierarchy, the o’s show the error when

using the hierarchy.
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projected into the same view shown side by side. In the

right column is the figure, in the same pose, shown

from an alternative view point. It should be noted there

is a partial occlusion, which has been handled when

reconstructing 3D pose of the human body, this is

shown in the last two images and is present in many

more images in the sequence. Self-occlusions are also

present in all of the frames (a leg is occluded in the

first shown frame, and an arm in the rest of the

frames).

To assess the accuracy of our tracking, we generated

a synthetic 2D video sequence using the hand-marked

3D motion training data. The figure was composed of

truncated cones (connecting the joints located by the 3D

markers) and a sphere (head), which were projected

onto a view plane. Our video sequence comprised of 30

frames. We then tracked the generated human figure in

the resulting video sequence and compared the extracted

3D positions of the vertices on the body to the ones that

were used to generate the synthetic video sequence. We

performed the comparisons (a) using only the top level

of the hierarchy, which is a standard HPCA of the

motion of the whole body, (b) all levels of our

hierarchical model. We calculated the error as the

average Euclidian distance over all the vertices in each

frame. Fig. 9 shows the error of tracking (in mm) on

the synthetic video sequence with and without the use

of the hierarchy. We can see that for most of the video

frames the hierarchy improves the precision. In general,

the graph of tracking error with the use of the hierarchy

is smoother than without the hierarchy. In two frames,

the 3D error with the use of the hierarchy is actually

worse than without the use of the hierarchy. This

happened because when fitting the 3D model into the

2D image data we were measuring the correlation

between the 2D data sets, and occasionally the depth fit

can become worse while the rest of the fit becomes

better.

Fig. 10. Original images (1st column) and corresponding reconstructed 3D figures projected into original (2nd column) and side (3rd column) views.
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6. Conclusions and future research

We described a novel hierarchical model for view

independent tracking of the human figure in monocular

video sequences. The main contribution of our hierarchical

model is the representation of minor variations of a 3D data

set in a useful and compact manner, which allows greater

specificity while tracking. We trained and tested the model

on 3D data and showed that the system is capable of

deriving 3D data from just one, not specified, 2D view.

We also trained the system on 2D data collected from the

video sequences of three different people. The precision

improved when we used the second level of hierarchy. The

system was also able to track the 2D skeleton of a person it

had not been trained on, thus showing that it is general

enough to track different people, including previously not

seen.

Our model is not homogeneous—HMM appears only at

the root node. This may explain the deterioration of the

performance in particular 3D situations when using the

whole hierarchy. However, the 3D data was in insufficient

quantity for us to be sure of our conclusions in this regard.

Clearly, further work is needed. Nonetheless we were able

to demonstrate view-independence using 3D data.

In our future work we are also going to make our models

extendible by building on our previous work in Ref. [8].
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