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Robust Segmentation of Primitives
from Range Data in the Presence
of Geometric Degeneracy

David Marshall, Gabor Lukacs, and Ralph Martin

Abstract—This paper addresses a common problem in the segmentation of range
images. We would like to identify and fit surfaces of known type wherever these
are a good fit. This paper presents methods for the least-squares fitting of spheres,
cylinders, cones, and tori to 3D point data, and their application within a
segmentation framework. Least-squares fitting of surfaces other than planes, even
of simple geometric type, has been rarely studied. Our main application areas of
this research are reverse engineering of solid models from depth-maps and
automated 3D inspection where reliable extraction of these surfaces is essential.
Our fitting method has the particular advantage of being robust in the presence of
geometric degeneracy, i.e., as the principal curvatures of the surfaces being fitted
decrease (or become more equal), the results returned naturally become closer
and closer to those surfaces of “simpler type,” i.e., planes, cylinders, cones, or
spheres, which best describe the data. Many other methods diverge because, in
such cases, various parameters or their combination become infinite.

Index Terms—Nonlinear least squares, geometric distance, cylinder, cone,
sphere, torus, surface fitting, segmentation.
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1 INTRODUCTION

THIS paper considers the problems of least-squares fitting of
spheres, cylinders, cones, and tori to 3D point data and the
application of solutions to these problems in a segmentation
framework for extracting such primitives reliably from range data.
The motivation for this problem lies in reverse engineering of
geometric shape [26], [32], [33], although we emphasize that the
problem of extracting such geometrical features is common to
many other 3D vision tasks, such as object recognition and
localization, automated inspection, and robotics.

In our 3D vision system, a laser scanner or similar is used to
capture 3D point data sampled from the surface of an object. From
this, we would like to construct a CAD model—a boundary
representation solid model of the object’s shape. In particular, we
would like to identify and fit simple surfaces of known type to
portions of the boundary wherever these are in good agreement
with the point data. The problem can be decomposed into two
logical steps: segmentation, where the data points are grouped into
sets each belonging to a different surface, and fitting, where the
best surface of an appropriate type is fitted to each set. The new
results in this paper mainly concern the latter problem, but also
show their application to the former.

While plane fitting is well-understood, least-squares fitting of
other surfaces, even of simple geometric type, has been relatively
much less studied. We review previous approaches to the fitting of
spheres, cylinders, cones, and tori, and then present new results on
fitting these surfaces. Our method has the advantage of being
robust in the sense that as the principal curvatures of the surfaces
being fitted decrease (or become more equal), the results which are
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returned naturally become closer and closer to the surfaces of
“simpler type” i.e., planes, cylinders, or cones (or spheres) which
best describe the data. In the limit, as the curvature k drops below
machine precision, such simpler surfaces are automatically returned
exactly (Fig. 1). In comparison, many other methods diverge in
such cases as various parameters or their combination become
infinite.

2 SEGMENTATION

Segmentation is the problem of grouping the points in the original
data set into subsets each of which logically belongs to a single
primitive surface. Various approaches exist for segmenting simple
surfaces from 3D data [1], [3], [4], [6], [9], [12], [18]. Most
commonly, segmentation is treated as a local-to-global aggregation
problem with similarity constraints employed to control the
process. Often several stages are required, ranging from the
estimation of local surface properties, such as curvature, to more
complex feature clustering such as symmetry seeking. Typically,
small initial seed regions are chosen at random positions. These are
then grown and homogeneous regions are merged. However, such
approaches tend to isolate the segmentation stage from the
representation stage, with the result that the data partitioning
may not agree well with the given primitive types. In addition, the
sensitivity of these methods to noise in the data (especially
outliers) may also lead to misclassification and, hence, poor results
[16]. An efficient and reliable segmentation process thus depends
on employing geometric knowledge of the primitive types: first, to
guide the detection and grouping processes and, second, to assure
the coherence and consistency of models throughout the whole
segmentation process [1].

One approach used for segmentation in our reverse engineering
project is the recover and select paradigm of Jaklic et al. [13], [15],
[16], [17]. An iterative process recovers and selects specific
instances of the required geometric primitives (planes, spheres,
cylinders, cones, and tori). The basic approach partitions the data
according to primitives by choosing the models such that the
description is best in terms of global shape and error of fit. Initially,
seed regions are placed at arbitrary locations in the data and
models of each type of primitive are approximated (Fig. 2). Grossly
mismatching models may be rejected at this stage.

An iterative grow and select phase is then operated. All valid
models are grown for an equal number of steps (Fig. 2c); note that
the models are allowed to overlap. The resulting models are then
evaluated and some are selected for further growing. Optimal
models from the overlapping sets are selected on the basis of the
following criteria:

Area—the number of surface points contained in the model.

Error of Fit—the maximum or average distance between data
points and the model.

Parameters of Model—the number of parameters used to describe
the model.

Surface Type—the class of surface of the model.

When different models have similar goodness of fit, some types
of model may be preferred to others and Surface Type is used to
override natural ordering suggested by number of parameters in
the model. This is typically done in terms of increasing surface
type complexity (i.e., plane, sphere, cylinder, cone, torus), where
simpler surfaces are chosen first (using similar ideas to those of
Besl [3], Besl and Jain [4]). However, for some reverse engineering
and other tasks, it may be necessary to impose a special order, for
example, where cylindricity may be the most important criterion.
The selection process employs a weighted sum of the above criteria
as a cost-benefit measure to choose the optimal model or models.
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Fig. 1. Robust fitting method as principal curvatures decrease.

Models that have a poor error of fit (even if not overlapping
other models) are also rejected at the selection stage.

Now, we discuss novel fitting methods for spheres, cylinders,
cones, and tori, and then present results of using these fitting
methods in this segmentation framework.

3 SURFACE FIT AND GENERAL NONLINEAR
LEAST-SQUARES

We initially outline various basic concepts needed for least-squares
fitting of simple geometric surfaces and then review previous
approaches to this problem.

Let us assume that each of the 3D input data points p; for
it =1,...,m lies close to the same member of a family of surfaces
which can be parametrized by s € G C IR?, where G is an open set.
Let d(s,p;) be a function which is defined as the distance of the
point p; € R® from that surface in the family identified by s.
Throughout, d will be called the “true” distance function of the
surface (fitting methods generally rely on approximations to this
distance as will be explained later).

A surface, which goes through all the points, can be viewed as
that member of the family which corresponds to the solution of the
simultaneous system of m equations:

d(S, pz) = 07

Since the number of points m is usually much greater than the
number of degrees of freedom s, this system of equations is
overdetermined and, in general, cannot be solved. However, it is
possible to solve it in the least-squares sense, i.e., to find that
surface which is the best fit to the points “on the average,”
minimizing

fori=1,...,m. (1)
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3 ds.p) ©)

Sometimes, we may have additional nonlinear constraints
expressed as

H(s)=0€c TR’ (3)

for t < s. For example, the surface form used might describe a
general quadric, but we may wish to impose that the surface found
is a cylinder, which can by done by imposing constraints on s.
Using the principle of Lagrangian multipliers to include these
constraints, a nonlinear generalized eigenvalue problem results,
which is not easy to solve. A simpler approach is to use (3) to
eliminate ¢ unknowns and to reduce the problem to an
unconstrained optimization problem in a lower-dimensional
space. This is the method we use.

Usually, the family of surfaces is defined as points satisfying an
implicit equation:

f(s,x) =0, for x € R, (4)

where s is the family parameter vector. Although if we fix s, f and
d have the same roots in space; they may behave quite differently
for points which do not lie on the surface. Thus, if instead of (2) one
minimizes ) f?, this may give quite different results. However,
this approach can be justified if both the function f and the
constraint H in (3) are of particularly simple form. If f is linear and
H is quadratic in terms of the parameters, then linear generalized
eigenvalue techniques work [10]. If f is nonlinear but H is still
quadratic, then one can try Taubin’s generalized eigenvector fit
[25]. Nevertheless, the choice of form for f influences the behavior
of the nonlinear fitting algorithm and, consequently, the quality of
the solution. For fitting ellipses, Rosin [24] shows that choosing f
carelessly can lead to severely biased estimates for s. Below, we
choose to use and give particular, “fairly good” f functions (i.e., for
which f behaves much like d near the surface) which are highly
nonlinear and which have no additional constraints on the
parameters s.

4 APPROXIMATING THE TRUE DISTANCE

As far as possible, singularities of d(s, p;) must be avoided in the
range where solutions may lie. These singularities may be places

(©)

(b)
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Fig. 2. (a) Initial depth data. (b) Seed placement (c) Intermediate regions. (d) Final segmentation.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 3, MARCH 2001 3

where a denominator in d(s, p;) vanishes or where the distance
function is not differentiable. Using Euclidean metrics, such
singularities arise frequently since the Euclidean distance from a
given fixed point is itself singular in this sense. Nevertheless, most
of these singularities are only computational, i.e., inessential
discontinuities in the mathematical sense and a limiting value of
the distance function can still be found for the critical parameter
value. Even so, computation of the distance function (or its
derivatives) can be unstable at such points since it may require the
subtraction of similar quantities, etc.

Avoiding the effects of singularities can be achieved by means
of various techniques. First, choose a suitable parametrization
where the critical values do not lie on the border of G. Second, we
change the definition of d(s,p;) slightly in order to get rid of
singularities. We shall say that this modified definition is faithful to
the true Euclidean distance function if: 1) the function is zero
where the true distance is zero and 2) at these points, the
derivatives with respect to the parameters are the same for the true
distance and the modified definition.

Faithful distance functions can be obtained if one approximates
square roots within d(s,p;) in the following way. Suppose the
distance function is of the form:

d(s,p;)) =g —h, (5)

where both g and h may depend on the parameter vector s and on
the point p; in 3D. In order to get rid of the square root, we might
try to minimize 3" (g — h?)” instead of (2) since d = 0 when g = hZ.
Unfortunately, the effect is now that we are searching for the
surface which fits best in terms of the “average” square of the
distance instead of just the distance. Thus, this transformation
amplifies the importance of data points farther from the surface
and flattens the goal function in the neighborhood of the solution.
Instead, let us use the following approximation:

- 2
a=* 2hh ' (6)
and we minimize
7 s.p.) — h2(s.p:))>
S d(s,p) :Z(g( ,rzf)lz(:p(i), pi) -

In summary, in our approach, we start with an exact expression
for the distance d. This is replaced by a simplification which is
easier to compute, but which still has the same zero set and
derivatives at the zero set. In contrast, similar work by Taubin [25]
starts from a parametrized family of implicit functions f = 0. He
notes that while f itself is not a good approximation to d, f/|V f| is
much better, i.e., he replaces the original implicit function with a
new one whose value is a better approximation to d. Although
Taubin does not state so explicitly, it is clear that it is better because
the derivatives with respect to spatial parameters of this function
are the same as those of the distance function. In practice, Taubin’s
approach can be used only if f is linear with respect to the
parameters and the system to be solved then includes a quadratic
constraint. Another difference is that our approach is better
behaved with respect to singularities.

5 FITTING SPHERES, CYLINDERS, CONES, AND TORI

The linear least-squares fitting of second order curves and surfaces
has been recently considered by several authors [10], [11], [22], [23].
However, specific linear methods still do not exist for right cylinders
and cones—the reason is that the equations expressing the
conditions for a quadric to be a right cylinder or a cone are not
quadratic. If general linear methods are used for algebraic second
order surfaces, the solutions found are usually not right cylinders or

cones, and may even be very different from the optimum surfaces of
such type. In this sense, algebraic techniques, which use the value of
the implicit quadratic form as the “distance” from the surface,
approximate the true geometric distance in an unfaithful way.

The situation is much simpler for spheres since straightforward
algebraic methods work in this case: under a suitable normal-
ization, the minimized algebraic distance will reflect the geometric
distance as well. For example, the method in [22] minimizes

Z(A(xf + y? + zf) + Dx; + BEy; + Fz; + G)2 (8)

i

under the condition
D+ E*+ F? —4AG =1 (9)

which is basically equivalent to our minimization in (7). (Note that
the simple constraint A =1 may give quite unfaithful results, as
shown in [22].) Nevertheless, we give our nonlinear method for
spheres in the next section as an illustration of our method, as it
has certain advantages.

Nonlinear methods, which take into account the true geometric
distance, match the requirements of our segmentation method
well. Those points belonging to the same surface are selected by
means of the segmentation technique which provides an initial
approximation for the parameters of each surface. Starting from
these, at the expense of some computing time, one can obtain a
more accurate fit. Our nonlinear methods also work well in other
applications where an initial approximate fit for the surface is
known.

Earlier nonlinear estimation approaches usually worked with
cylinders and spheres. As a rule, the equations contain positional
parameters of centers or axes and, so, they become ill-conditioned
in limiting situations (see e.g., [5]), which is unacceptable if
automatic segmentation is the objective. Our nonlinear methods
have been carefully designed to overcome this problem.

Recently, surface fitting methods employing a variety of
geometric constraints have been developed. Keren and Gotsman
[14] constrain implicit polynomials such that their parametriza-
tions are guaranteed to satisfy certain topological properties.
Werghi et al. [28], [29], [30], [31], [32] give a framework within
which a variety of geometric constraints (e.g., enforcing parallelism
or perpendicularity between surfaces) can be imposed. By
applying constraints as part of the fitting process, and solving a
constrained set of equations, improved extraction of primitives
belonging to an object is obtained. This approach is very suitable
for reverse engineering and inspection applications. However,
some of the parametrizations they use resort to standard
representations of geometric primitives (e.g., a standard quadric
surface representation of a cylinder or a cone). This leads to the
need to enforce highly nonlinear constraints. If our representation
of geometric primitives were employed in such a framework,
several constraints would be linearized and, thus, more easily and
reliably applied. For instance, many geometric constraints are
concerned with the alignment of surface axes. In our representa-
tion, these axes are explicitly available even for tori and are easily
constrained. Curvature is also explicitly represented in our
formulation and is available for use in other common geometric
constraints. The application of our approach to constraint-based
fitting is currently under further investigation.

5.1 A Simple Formula for Vector Products

The following formula is used frequently in the sections below.
Let a, b, ¢, and d be arbitrary vectors in 3D. Then,

(axb,cxd)={(a,c)(b,d) - (a,d)(b,c). (10)
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5.2 Sphere Fitting

For nonlinear least-squares fit, the parametrization of the sphere
will be the following: Suppose that the closest point of the sphere
(not its center) to the origin is ¢n, where |n| =1 and the radius of
the sphere is 1/k. Then, if p is an arbitrary point in space, the
distance of this point from the surface of the sphere is

d(s,p) = ’p— (g+%)n ~%

= \/(p— (9+%>n,p— <g+%)n)—%-

Since this function is of the form (5), we can apply (6) to give

(11)

- k .
ds,p) =5 (I~ 20pm) +6*) + 0~ (pom),  (12)
or, if one introduces the notation
pP=p—on, (13)
one obtains
- k.o .
d(s,p) :ilp‘ _<p’ n>' (14)

Here, p is the expression of p with respect to an origin at on. Now,
let us parametrize n using polar coordinates:

n = (cos ¢sin ), sin psin g, cos ), (15)

where 9 is the angle between n and the z axis and ¢ is the angle
between the projection of n onto the plane z =0 and the z axis.
Differentiating n with respect to ¢ and 9, one obtains two partial
derivative vectors which are orthogonal to each other and to n
(superscripts denote derivatives); these will be used later:

n? = (—sinpsind, cos psin ¥, 0), (16)

n’ = (cos @ cos ), sin p cos 9, — sin ). (17)

Thus, n and, hence, d can be parametrized without constraints by
s= (0,9, k).

The partial derivatives of the approximate distance function
(12) are the following;:

% ko tpom) 1 (18)
U o 1(p), (19)
g_g = (—ko — 1)(p,n"), (20)
g_i: % (|p|2 — 20(p,n) + 92>. (21)

Note that unlike (8), (12) is nonlinear, but behaves well as the
curvature of the sphere decreases, as when k — 0, all the terms are
bounded, and (12) reduces to the expression that would be used
for least-squares plane fitting. In contrast, observe that some of the
terms will tend to infinity both in the objective function given in (8)
and in the constraint given in (9).

5.3 Right Circular Cylinder Fitting

The parametrization used for the cylinder is similar to that for the
sphere. The closest point of the cylinder to the origin is on, where

Fig. 3. Parametrization of the cylinder.

|n| = 1. Assume that the direction of the axis of the cylinder is a

with |a| = 1 and the radius of the cylinder is 1/k.
Note that (n,a) = 0. Now, let us suppose that p is an arbitrary

point in space whose distance from the surface of the cylinder is to
be found. This is done by finding its distance from the symmetry
axis and from that subtracting the radius of the cylinder (see Fig. 3).

d(s,p) = '(pf (ng%)n) xal

=\/p ()= @ (o3 )mar 1.

Since this function is of the form in (5), we can apply (6) to
obtain

(22)

d(s,p) = (\pl2 —2¢(p,n) — (p,a)” + 92) +o0—(p.n)

(23)

‘f) X a|2 - <f)7n>7

N F N

where p = p — ¢n as in (13). Using appropriate parametrizations
for n and a, we would like to minimize

Z(P(Svpi)'

Let us make some observations about the right-hand side of (23).

(24)

First, it is linear in the curvature k if all other parameters are fixed,
which results in a separable nonlinear least-squares problem [7].
Such problems can be easier to solve than the fully nonlinear case.
Clearly, an initial estimate for & is not needed if we have estimates
for the other parameters, as an initial value for k can be found by
solving a linear least-squares problem in which all other
parameters are fixed. Note that (23) behaves well as k gets smaller
(0 is bounded within sensible limits by the geometric configuration
of the scanner); compare (22) which subtracts two large quantities
as k becomes small. In the limit as £ — 0, we get d=o— (p,n), and
as before, the problem reduces to linear least-squares fitting of a
plane.

Again, we would like to parametrize n and a to satisfy the
constraints

In|=la| =1, (n,a)=0; (25)

50, again, we use polar coordinates. The parametrization for n was
introduced in (15). Equations (16) and (17) are the partial
derivatives of n. Thus, if we put
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Fig. 4. Parametrization of the cone.

_ n¥

n? = (—siny, cosp,0) = (26)

sind’
then n¥, n?, and n form an orthonormal basis. Thus, we can
parametrize a as follows:

a=n"cosa+n?sina,

(27)

where o is the angle between a and n’. Thus, n and a are
parametrized through ¢, ¥, and o by means of (15), (17), (26),
and (27).

A nonlinear distance function for right circular cylinders, which
is faithful up to the first derivative, is given by (23). It is
parametrized in terms of o, ¢, ¥, a, and k using (15), (27), (17),
and (26). If all other parameters are fixed, this function is linear in
terms of the curvature  of the cylinder. The partial derivatives of d
(relative to o, ¢, 9, o, and k) may be determined accordingly (as in
Section 5.2). Details may be found in [19].

5.4 Right Circular Cone Fitting

The parametrization used for the cone is similar to that for the
cylinder. Let gn with |n| = 1 be that point on the cone surface for
which a line in the direction of the surface normal passes through
the origin. (Hence, n is normal to the cone.) Let the nonzero
principal curvature of the cone at the point on be k. Denote the unit
direction of the axis of the cone by a. n is parametrized by ¢ and ¥
as in (15). Since n and a are not now perpendicular, a can be
parametrized by two polar coordinate angles, ¢ and 7

a = (cososinT,sinosinT,cosT), (28)

where 7 is the angle between a and the z axis and o is the angle
between the projection of a onto the plane z = 0 and the z axis. The
six parameters (o, ¢, ", k,o,T) characterize the right circular cone
surface.

In order to understand how this works, let the half angle of the
cone be 1 (see Fig. 4) and the position of the apex of the cone be c;
we shall express ¢ and c using the above parameters later. Let the
angle between the axis of the cone and p — ¢ be w. Using these, the
distance of p, an arbitrary point, from the cone surface is given by
(note that p may not lie in the plane of n and a)

d(s,p) = |p — c|sin(w — ¥)
= |p — ¢|sinwcosy) — |p — c|coswsin .

(29)

Without loss of generality, we can suppose that both ¢ and w
are acute angles. Since the direction of the axis, a, is a unit vector,
we have:

d(s,p) = |(p—c) x alcosti — |(p — c.a) s (30)

Moreover, since the angle between n and a is the complementary
angle to v, we have:

cost = |n X a siny = [(n,a)|. (31)
Thus, from (30) one obtains:
d(s,p) =|(p —¢) x al[n x a] — [(p — ¢,a)(n, a)|
(32)

“fnx aly/Ip — e = (p — ¢,2)*  [(n,)(p —,a)].
Again, this function is of the form given in (5) and using (6) gives
2 2 2
~ — C| COS - —C,a
d(s,p) = Ip 2| v—(p )
(p —c,a)siny
_lp—cPnxal —(p-ca)’
B 2<p ) a><n> a>

(33)

Now, we express the position of the apex c in terms of the
normal vector n(p, ), the distance o, the curvature &, and the axis
of the cone a(c,7):

c= <g+%>n+va. (34)
Now, (c,n) =g, so v = —1/(k(n,a)) and, thus,
1 a
o= (e ey (3)
Substituting this into (33) gives (again, p = p — on)
i~ (jaxal*(p — /i - (b - n/ia)?)
(36)

— ((p —n/k,a)(n,a) + 1/k-)2)
/2((p — n/k,a)(n,a) + 1/k),

When using Pythagoras’ theorem, it is easy to see that the
coefficient of 1/k? in the numerator is zero. Multiplying both the
numerator and the denominator by k, we arrive at

.y — S0 < APIDF — (b)) — (.m)in x|

k(p,a)(n,a) + n x al’

(37)

Thus, this function d depends on six unconstrained parameters:
0, ¢, 9, 0, 7, and k. The partial derivatives of d with respect to these
parameters may be determined accordingly (as in Section 5.2).
Details may be found in [19].

5.5 Torus Fitting

Our approach for tori is again similar. A torus can be parametrized
using seven unconstrained parameters. A torus can be obtained by
sweeping a circular disc around an axis in the plane of the circle.
The radius of the disc is the minor radius of the torus and the
distance of the center of the disc from the axis is the major radius of
the torus. Tori whose major radius is smaller then the minor one
can also be considered. In this case, the resulting surface is self-
intersecting and it is necessary to distinguish the different parts.
The smaller arcs sweep a “lemon-torus” (i.e., the inner part of the
torus surface), while the larger arcs sweep an “apple-torus” (i.e.,
the outer part of the torus surface); we will also refer to a non-self-
intersecting torus as “apple-shaped.” In special cases, the torus
may degenerate to a sphere, as the major radius vanishes, or into a
cone, as the minor radius tends to infinity. Our equations, given
below, appropriately reduce to those for sphere or cone fitting in
such cases. (If the major radius tends to infinity, the torus becomes
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Fig. 5. Parametrization of the torus.

a cylinder. This case will be singular, but mathematically close to
the cylinder fit.)

The parametrization used for the torus is the following: The
point on the torus where a line through the surface normal passes
through the origin is gn, where |n| = 1. The principal curvature of
the torus corresponding to the minor radius at the point gn is &
(i.e., the radius of the disk is 1/k). The other principal curvature is s
and the corresponding center of curvature lies on the axis of the
torus. Let the unit direction vector of the torus axis be a. (Fig. 5.)
We parametrize n by ¢ and ¢ as in (15) and the unit vector a as in
(28). The unconstrained parameters (o,¢,V,k,s,0,7) entirely
characterize the torus surface.

A nonlinear distance function for tori, which is faithful up to the
first derivative, is now given by:

d(S, p) = (Z(I(Qv ©, 197 ka P) - 6?(97 2 197 ka $,0,T, p)7 (38)

where dj is the approximate distance function for the sphere (12):

- k .
do =35 (\p\z —2¢0(p,n) + 92) +o0—(p,n)

(39)

=21pP — (p.m)

2 p p7 )

while
k s 5
be = gfl € - sign ?*k (P —n/s) x alln x a|
(40)
(b~ n/s) x a,n x a>],

where € = +1 for an apple torus surface and ¢ = —1 for a lemon

torus surface.

The partial derivatives of d with respect to these parameters
may be determined accordingly (as in Section 5.2). Details may be
found in [19].

It is worth emphasising that this formulation of the torus (38)
behaves well in limiting situations. If k£ = s, then, from (40), we
simply get the distance expression for a sphere given in (14). If
k— 0 and s is bounded from below then either for e = —1 or for
e = +1, we get the distance expression for a cone given in (32). If
s — 0, then (38) degenerates to the distance function of a cylinder
given in (23) with axis direction n x a. (See [19], [20].)

6 INITIAL ESTIMATES

To find the solution of any of the above nonlinear least-squares
problems, an iterative technique is used; we use the Levenberg-
Marquardt method [7]. Any such algorithm requires some good

initial estimate of the solution which is then refined. A bad initial
estimate will lead to problems of local minima or long convergence
times. Here, we give one reliable method of finding such initial
estimates.

For all surfaces, we need to apply Step 1 below. For surfaces
other than spheres, we also apply Steps 2 and 3. Step 2 is explained
in greater detail below:

1.  We pick a surface point at which we have a normal vector
estimate and place the origin at this point, the “base point.”
Thus, we have an estimate for n and, hence, ¢, ¥, the initial
estimate for g is 0. (Note that the solution surface need not
pass through the base point since ¢ can change.)
For sphere fitting, these values alone are sufficient and
an estimate for £ can now be found by solving a linear
least-squares problem as mentioned earlier.
2. For other surfaces, we need to find an estimate of the
rotational axis. The method in [19], [20] only uses estimates
of the surface normal vector and computes the axis from a
number of four-tuples of normals. An alternative approach
which finds the best (least-squares) rotational axis has
recently been suggested by Pottmann and Randrup [21].

3. For cylinder fitting, we adjust the normal to be perpendi-
cular to the axis. « is then found as the angle between a
and n’ and we compute the distance of the base point from
the axis, which is 1/k signed with the direction of n.

In the case of cone fitting, after estimating the rotational
axis a, we compute the distance of the base point from the
axis along the estimated normal line in order to obtain 1/k.

In the torus case, for better conditioning, one has to pick a base
point at which the normal subtends as large an angle as possible
with the estimated axis. We get 1/s as the distance along the
normal between the base point and the estimated axis. For
simplicity, we can put k=0 (i.e., start with a cone) and try both
cases € = +1 and ¢ = —1. More robustly, one can opt to estimate
principal curvatures of the surface at the base point. As s is one of
the principal curvatures, we can compute the other, k, even if we
only estimate the Gaussian curvature. We can then determine e by
noting on which sheet of the torus the base point lies. Thus, ¢ = +1
if |k| > |s] or ks < 0 and e = —1 otherwise (the decision should be
clear if we have a well-placed base point chosen as described
above). Here, we assume that the point set being fitted does not
contain points belonging to both the apple and lemon sheets of the
same torus simultaneously. This is very unlikely to happen in
practice, but if it is considered to be a possibility, before fitting we
should separate the points into two sets, one for each sheet, using
curvature estimates and the given criterion.

These methods of computing initial estimates have been
carefully chosen to provide adequate starting values for the
nonlinear optimization, given the accuracy of the commercial
scanner we use.

6.1 Estimating the Axis of Rotation

Suppose we have a number of points and corresponding surface
normal vectors on a surface of revolution. We would like to compute
the axis of rotation of the surface. This task can be expressed in the
following geometric form: Given m straight lines in 3D, compute the
straight line intersecting all of them (if such a line exists).

Let us denote by p; a fixed point on the ith straight line and by
n; the direction of that straight line ¢ = 0,1,...,m — 1. Now, let us
draw a straight line through two generic points of the Oth and 1st
straight lines, respectively. Assume that these points have the
parameters ¢y and ¢;. A necessary condition that a straight line
passing through the point p;, in the direction n; (i = 2,3,...,m — 1)
intersects the previous line is that the vectors p, -+ tyng — p;,
p1 +tiny — pg — tony, and n; are coplanar. This means that the
following vector triple product must vanish:
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Fig. 6. Simulation 1 (left column), Simulation 2 (right column), figures per row: RMS error of plane fit, angular error in plane normal, error in plane distance at the edge of

the plane.
[(Po +tono — Py), (P1 +tin1 — Py — tono), 0] = 0. (41)
On expansion, this simplifies to:
nonn;| - toty + ;= ngn;| - to+
[noniny] - tot1 + [(p; — P1)non] - o (42)

[(Po — P)muny] - t1 + [(Po — P;)(P1 — Po)ni] = 0.

Now, taking p; = p,, p; and n; = n,, n3, respectively, in turn, we
get an equation system for ¢, and t; of the form

aprtots + aoto + art; +a =0, (43)

boitots + boto + bity +b = 0. (44)

From here, we can eliminate ¢y¢; and express t¢; or ¢, as a linear
function of the other. After substituting this expression for ¢; or ¢,
in one of the above equations, we obtain a second degree equation
which we can solve.

This leads to two solutions for the rotational axis. Various
methods using further p; can be used to choose between them or to
find an overall best axis for the whole set of p;,. In this application,

perhaps it is simpler just to try to fit the rotational surface using
both axes and select the result with the smaller least-squares
residual.

7 RESULTS

The fitting routines described in this paper were tested using the
segmentation approach outlined earlier. We have tested our
approach on artificial simulated data, real data obtained from a
laser scanner, and also real range data made available on the
Internet by Edinburgh University: ftp://ftp.dai.ed.ac.uk/pub/
vision/range-images/.

7.1 Segmentation on Simulated Data

7.1.1 Studying the Effects of Noise on the Fitting Routines
In order to test the effects of noise on our fitting techniques, we

tested each surface fitting method in turn on known surface types
with added Gaussian noise of varying standard deviation. This
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TABLE 1 TABLE 2
Error in Least-Squares Fit (Simulation 1) Error in Least-Squares Fit (Simulation 2)
Error Measure SD=10 | SD=30 | SD =50 Error Measure SD=10 [ SD=30 | SD =50
Sphere: Fit 0.013 0.035 0.083 Sphere: Fit 0.06 0.173 0.31
Sphere: Curvature 5x107% | 2x107° | 2x 107 Sphere: Curvature 0.068 0.41 0.83
Sphere: Position 0.005 0.021 0.084 Sphere: Position 0.04 0.37 0.98
Cylinder: Fit 0.014 0.041 0.088 Cylinder: Fit 0.07 0.155 0.30
Cylinder: Curvature 2x107% | 2x107°% | 2x107* Cylinder: Curvature 0.089 0.46 0.88
Cylinder: Angular Error 0.005 0.025 0.086 Cylinder: Angular Error 0.054 0.136 0.63
Cone: Fit 0.012 0.049 0.089 Cone: Fit 0.02 0.05 0.33
Cone: Curvature 8x107% | 2x107* | 8 x 107* Cone: Curvature 0.01 0.43 0.91
Cone: Angular Error 0.006 0.022 0.063 Cone: Angular Error 0.02 0.12 0.89
Torus: Fit 0.003 0.018 0.182 Torus: Fit 0.189 0.83 2.01
Torus: Curvature s 0.021 0.024 0.028 Torus: Curvature s 0.05 0.2 0.86
Torus: Curvature k 0.010 0.012 0.018 Torus: Curvature k 0.04 0.14 0.36
Torus: Axis 0.002 0.08 0.23 Torus: Axis 0.2 1.05 3.7

was done in order to assess how well our methods might perform
when used with scanners of varying accuracy.

Two simulations were used which reflect the characteristics of
sources of the real data used later:

Simulation 1—this simulation reflects the accuracy of a commer-
cial Replica 500/25H scanner (available from 3D Scanners). The
scanner operates at a range of about 100 mm with a quoted
accuracy of 10um.

Simulation 2—this simulates the accuracy of Edinburgh Universi-
ty’s research scanner. This scanner has a quoted accuracy of
150pm and operates at a range of about 700 mm.

In each simulation Gaussian noise was added, assuming a
single standard deviation error of the quoted accuracy for
0-50 standard deviations in steps of 10 s.d. Depth maps were
simulated at the quoted ranges.

In these experiments, surface patches were fitted to regions of
depth data of known surface type. The regions were chosen to
encompass many points of a fixed surface type. No segmentation
was performed.

Typical simulated objects were about 500 mm in size. The radii
of the test objects varied from about 10 mm to 200 mm. All results
quote distance errors in mm, angular errors measured in degrees,
and curvature errors in mm~.

In Simulation 1, with high accuracy data, our fitting methods
are seen to perform extremely well. The errors of fit are in keeping
with results obtained for fitting a plane to data of similar
characteristics (Fig. 6 and Table 1).

In all cases, the estimates of curvature and position (center of
sphere, axis of cylinder, cone, and torus) are good even at levels of
noise well above the characteristics of the scanner.

Fig. 7. Heriot-Watt part depth-map, final segmentation.

In Simulation 2, which provides a greater test in terms of
robustness to noise, our fitting methods again perform well (Fig. 6
and Table 2). The errors in overall fit, estimation of curvature, and
localization are again of the same order and comparable to those
for plane fitting.

It should be noted that good results were obtained even in cases
where the surface fitted was only part of the complete surface (see
Fig. 7). If multiple surfaces are present, then a starting region
which includes points from more than one surface will clearly give
poor fitting results. However, our segmentation approach is
designed to overcome this problem, as shown in the next section.

7.1.2 Artificial Test Objects

In this section, we study the behavior of the segmentation and
fitting methods fogether on some artificial test objects. We used
simulated depth data obtained from our object models produced
using the ACIS solid modeling package. In the case of simulated
3D point data which was accurate to five significant digits, in all
cases the models recovered fitted the data to an accuracy of at least
four significant digits and segmentations consistent with the
underlying geometric primitives were obtained. An example of
the final segmentation obtained for the test object composed of a
cylinder, cone and two spheres is shown in Fig. 2.

7.2 Segmentation of Real Depth Data

We tested our approach on real 3D data from two sources: a
commercial Replica scanner and data produced by Edinburgh
University’s Machine Vision Research Unit. The latter came from a
high quality research device. The objects chosen included a variety
of surfaces combined in ways typical of real, albeit simple,
components for which we might want to perform reverse
engineering.
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Fig. 8. RECCAD test object depth-map, final segmentation.

7.2.1 Objects Scanned by a Replica Scanner

Our fitting methods also work well in practice with real scanner
data, which is somewhat less accurate than the simulated data. The
segmentation process for a depth-map of the well-known “Heriot-
Watt” test part [8], [27] captured using a Replica device is
illustrated in Fig. 7. The segmentation results here are not as clean
as for the simulated parts, but are adequate for input to the further
model building processes of our reverse engineering system [26],
[32], [33]. Only the uppermost surface has not been segmented
cleanly—it has been segmented as two planes instead of one due to
noise in the data. Most other surfaces have been segmented well
and can clearly be seen in Fig. 7 to correspond to surfaces in the
original depth. The main cylindrical surface has not been
segmented to the observed boundaries of the underlying surface
in the depth map as specular reflections often result in poor depth
data in such regions. The quoted accuracy of the Replica device is
of the order of 10um although, in practice, the performance
achieved was rather worse than this—errors of the order of 100um
occurred, together with many outlying data points caused by
spurious reflections of laser scanning light off internal surfaces and
object edges, accounting for the segmentation results obtained.

The error of surface fit for segmented surfaces was on the order
of 0.03 mm RMS for most good surfaces of large area. Such errors
in accuracy agree with our simulated studies (Section 7.1.1) where
the standard deviation in error is 10-20 times the quoted accuracy.
Estimates of curvature and axis, etc., are in keeping with out
simulated results also. Many smaller surfaces and regions around
edges were not segmented due to the large number of outliers. For
this part (Fig. 7), several planar surfaces and a cylindrical surface
were segmented successfully.

The “RECCAD” test object (Fig. 8) presents further challenges
to a segmentation method. The curved surfaces present are
actually freeform translational surfaces. Our segmentation ap-
proach finds three cylindrical surfaces which to a first approxima-
tion meet along smooth edges. As can be seen in Fig. 8, good
segmentations are obtained of these main cylindrical surfaces and
also of several planar surfaces. It should be noted that the

Fig. 9. Soap dish depth-map, final segmentation.

segmentation does well to approximate the translational surface
with three cylinders. This is the best result that could be obtained
without explicitly segmenting translational surfaces (a problem
tackled elsewhere in the RECCAD project [2]).

The soap dish object (Fig. 9) only has several single smooth
freeform surfaces of a complex type. Here, our approach segments a
torus segment for the rim and a sphere for the main part of the dish.

A final test was done on a ventilator object (Fig. 10) from which
the major surface of a sphere and several planar surfaces were
segmented. (In the last two objects (Figs. 9 and 10), there is an
observed “blockiness” in the final segmentations. Because seg-
mentation is time consuming, we did not perform it to the same
level of detail as the depth map resolution. For model building for
reverse engineering, we do not need accurate boundaries for the
surfaces anyway, as they are later computed by intersection of the
fitted surfaces.)

7.2.2 Edinburgh Test Objects

Finally, we present results from data from a research scanner
based at Edinburgh University. Their scanner has a quoted
accuracy of about 150um standard deviation, 600xm maximum
error. In all cases, we obtain errors of surface fit of about
0.2 mm RMS for the primary segmented surfaces. This indicates
that the data obtained from our commercial scanner is more
accurate. The slightly less accurate Edinburgh data, nevertheless,
provides a good test for our methods. Results on two of the more
complex objects from those available in the Edinburgh set objects
are shown here.

The optical stand is a fairly complex part comprising several
cylinders and planar surfaces. The main surfaces are successfully
segmented by our method (Fig. 11).

A light bulb is the second test object. It consists of a sphere
smoothly blending into a cylinder. In this final segmentation
(Fig. 12), a cylinder, a sphere, and a toroidal blend between them
are obtained.
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Fig. 10. Ventilator depth-map, final segmentation.

7.3 Robustness to Degenerate Data

Our final tests on our methods aim to illustrate the inherent
robustness of our methods when attempting to fit a cylinder or
other surface to nearly planar regions (i.e., regions of very low
curvature). In this section, we present results on artificial data and
data obtained from our Replica scanner. In all the tests described
here, we presented cylindrical patches of data with the radii
ranging from 1,000 mm to 5,000 mm (curvature 0.001 and 0.0002,
respectively) to our system. Noise was added to the artificial data
as described previously, in this case, simulating the Replica
scanner characteristics. Our results on real data were obtained by
scanning the top surface of the housing of an Epson Stylus Color
740 printer; this surface was estimated by eye to be an
approximately cylindrical region of about 1,000 mm radius.

We first analyze our experiments on artificial data. The results
are summarized in Table 3 which shows RMS fitting errors in mm.
The same amount (300 x 300 pixels) of simulated depth data were
used in all tests, with 1 mm grid sampling in the = and y
dimensions. Initial seed regions were 25 x 25 pixels (except for the
5,000 mm radius case), the regions were grown to a patch size of
around 50 pixels and cylinders or planes fitted to obtain the grow
data presented below. In practice, the only real limit on the fitting
is in obtaining good initial estimates for our curved surface
patches. An initial region of 25 x 25 pixels for 1 mm grid spacing
gives good estimates for radii of sizes up to about 3,000 mm. In
order to obtain good initial seed estimates for 5,000 mm radius, a
seed size of 45 x 45 pixels had to be used. Clearly, the actual initial
seed region size chosen should depend on the sampling frequency
and spacing of the data and the underlying curvature of the data.
Obtaining reliable estimates of curvature for such low curvatures is
difficult regardless of the estimation technique utilized.

Our experiments here show that we can obtain practically
useful fitting and segmentation starting with reasonable seed sizes.
As can be seen in Table 3, our fitting methods for a cylinder are
very robust even for large radii (low curvatures). Our initial
estimates for small seed regions are good and the errors in fit for
initial seed placings are similar to the final fits for the large surface
area. Clearly, the fitting of planes to small seed regions yields a low

Fig. 11. Optical Stand depth-map, final segmentation.

-
T

Fig. 12. Light Bulb depth-map, final segmentation.

error given such high curvatures and, once the seed is grown to
full patch size, the errors are a result of fitting a plane to a
nonplanar surface. The errors are what one would expect given the
grown patch sizes.

The estimated curvatures were always correct to four signifi-
cant figures even with large standard deviation in the noise.

One other experiment carried out only requires a brief
discussion but further illustrates the robustness of our methods
to very low or zero curvatures. If we repeat the above experiment
on planar data, we always obtain estimates of curvature that are
within a numerical tolerance of zero—cylinder fitting returns a
plane in this manner. The planes also have accurate fits and will
always be selected by our information theoretic criteria that less
parameters are required to represent a plane.

In order to demonstrate that our methods work well on real data
with low curvature, we also experimented with scanned data from
the gently curved housing of an Epson printer. We attempted to fita
plane and cylinder to the data. For a small (25 x 25) initial seed
region, we obtained an initial fit error of 0.0014 mm for a plane and a
cylinder. After growing the region to fit the whole of the area, we
obtained errors of 0.538 mm for a plane and 0.145 mm for a cylinder
fit. The estimate of curvature for the final cylinder was 0.0011 which
implies a radius of about 909 mm. While not having ground truths to
compare with these results, our estimates by hand suggest that this
curvature is of the right order. However, observations by the human
eye also indicate that while the surface has a very low curvature, it is
clear that it is not truly cylindrical which accounts for the error in fit
for the cylindrical patch. Nonetheless, this experiment demonstrates
that our methods are robust with respect to low curvature data and
work well on real data.

TABLE 3

Error in Least Squares Fit for Low Curvature
Radius SD =0 SD =1 SD = 10
Region Fit seed grow seed grow seed grow
1000 mm:
Plane 0.020 | 0.985 | 0.021 | 0.991 | 0.041 | 1.010
Cylinder 0.000 | 0.000 | 0.002 | 0.003 | 0.021 | 0.026
2000 mm :
Plane 0.01 | 0.626 | 0.014 | 0.627 | 0.003 | 0.685
Cylinder 0.000 | 0.000 | 0.002 | 0.002 | 0.020 | 0.025
2500 mm :
Plane 0.01 | 0.580 | 0.014 | 0.582 | 0.032 | 0.585
Cylinder 0.00 | 0.000 | 0.002 | 0.002 | 0.029 | 0.30
3000 mm:
Plane 0.01 | 0.505 | 0.012 | 0.507 | 0.024 | 0.510
Cylinder 0.00 0.00 | 0.002 | 0.002 | 0.022 | 0.029
5000 mm
Plane 0.003 | 0.280 | 0.010 | 0.288 | 0.021 | 0.298
Cylinder 0.00 0.00 | 0.002 | 0.002 | 0.024 | 0.028
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7.4 Summary of Results

We have presented a series of practical examples demonstrating
our new surface fitting methods and their use for segmentation.
The artificial results have shown that our fitting methods work
very well, providing primitives which are good fits to a variety of
surface types. The tests on artificial data also show that our
methods are robust in the presence of noise and that the quality of
surface fits produced from real data is consistent with our
simulated data test.

The results on real test objects, obtained from two different
scanners, show that our methods work successfully in practical
environments and are accurate for their intended tasks.

We have also clearly demonstrated that our methods are robust
and handle degeneracy in both estimating and fitting surfaces with
very low curvature.

8 CONCLUSIONS

While our motivation is the reverse engineering of boundary
representation solid models from 3D depth-maps of scanned
objects, we believe that the fitting methods described in this
paper are of interest to the computer vision and CAD
communities in general.

In summary, we have described novel methods for the least-
squares fitting of spheres, cylinders, cones, and tori to point data.
Generalizing these methods to more complex surfaces would be
hard, if not impossible. However, many simple engineering objects
are bounded by just these surfaces (and blends).

We have outlined how these methods can be used in a
segmentation strategy that is capable of extracting these surfaces
from 3D data. Initial results show that the accuracy achieved by
these methods is good. Our fitting methods have the major
advantage of being robust in the sense that as the principal
curvatures of the surfaces being fitted decrease (or as they become
more equal), the results which are returned naturally become closer
and closer to surfaces of “simpler type,” i.e., planes, cylinders, or
cones (or spheres, in the case of equal curvatures) which best
describe the data. Furthermore, our methods inherently avoid all
singularities (except in the case of the torus, for which the problem
can readily be overcome by choosing the origin appropriately).
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