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Abstract. In this paper, we address the problem of automating the
partial representation from real world data with an unknown a priori
structure. Such representation could be very useful for the further con-
struction of an automatic hierarchical data model. We propose a three
stage process using data normalisation and the data intrinsic dimension-
ality estimation as the first step. The second stage uses a modified sparse
Non-negative matrix factorization (sparse NMF) algorithm to perform
the initial segmentation. At the final stage region growing algorithm is
applied to construct a mask of the original data. Our algorithm has a
very broad range of a potential applications, we illustrate this versatility
by applying the algorithm to several dissimilar data sets.

1 Introduction

The objective of this paper is to present a novel automatic method for learning
a meaningful sub-part representation from real world data with an unknown a
priori structure.

Modelling the data sub-parts individually has great advantages. The under-
lying representation has proven to be accurate in representing the specificity of
the data and capturing small but important variation in the data that are oth-
erwise lost in standard approaches. For example in tracking human motion the
hierarchy is naturally the key joints of the human skeleton suitably decomposed
into the whole body, torso, arms legs upper arms etc. Adopting such a hierar-
chy and projecting down through the subspaces led to greater tracking accuracy
in the model. In the talking head application, the hierarchy uses both visual
and speech features. The hierarchy developed here may utilise sets of features
in a variety of combinations. The top level of the hierarchy seeks to capture the
main modes of variation of the complete data. However, other levels may be
used to model specific relationships between certain features, for example the
complete visual head data (modelled as hierarchical appearance model where
nodes represent shape and texture of facial features) or the speech data or spe-
cific interactions of speech with facial features (e.g. lower face, lips, eyebrows).
Again such a model has proven to be robust in tracking facial features and also
resynthesising video-realistic new faces.

The principal difficulty in creating such models is in determining which parts
should be used, and identifying examples of these parts in the training data.
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The task of finding patterns embedded in the data is a popular research field in
computer science [2], [13], [18].

Nonnegative matrix factorization (NMF) [16] is a promising tool in learning
the parts of objects and images. NMF imposes non-negativity constraints in its
bases and coefficients. These constraints lead to a parts based representation
because they allow only additive, not subtractive, combinations. Later in [14]
Hoyer presented Sparse non-negative matrix factorisation (sparse NMF) with
an adjustable sparseness parameter. This allows it to discover parts-based rep-
resentations that are qualitatively better than those given by the basic NMF.
Because of its parts-based representation property, NMF and its variations have
been used to image classification [3], [8], [9], [11], face expression recognition [4],
face detection [5], face and object recognition [19], [20], [21].

In all of those papers the number of data parts was quite large and was chosen
manually. In this paper, we propose intrinsic dimensionality estimation to find
correct number of the parts.

The novelty of this paper is that we use NMF for an automatic data mask
construction. We consider the construction of our model in Section 2 and demon-
strate the effectiveness of our algorithm applying it to the different data types:
talking head data, emotional head data and articulated human motion data in
Section 3. Finally, the conclusion is given in Section 4.

2 Partial Data Representation

2.1 Data Format and Preprocessing

Initial data for our algorithm can be represented by a parameterised model or
by images. The output generated is a mask identifing different data parts.

This algorithm works best with well aligned data, i.e. the data obtained from
a sequence of observations. But it is not really suitable for separation of im-
ages of highly articulated objects or objects viewed from significantly different
viewpoints into parts.

A normalisation step is needed to make the patterns of interest more evident.
Data normalisation is provided as a preprocessing step before NMF, in the same
manner as in Li et al. [18].

At the first step of our algorithm we set the number of the data parts. We
choose this number to be the same as the intrinsic dimension of the data man-
ifold. We use the k-NN method described in [7] to estimate the intrinsic di-
mensionality. In this method the dimension is estimated from the length of the
minimal spanning tree on the geodesic NN (nearest neighbour) distances com-
puted by the Isomap algorithm [23]. To automate the k-NN method we choose
the number of nearest neighbours using the algorithm described in [22].

2.2 Sparse NMF Modification and Initialisation

Classical NMF is a method to obtain a representation of data using non-negativity
constraints. These constraints lead to a part-based representation because they
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only allow additive, not subtractive, combinations of the original data [16]. Given
initial data expressedby ann×mmatrixX , where each column is ann-dimensional
non-negative vector of the original data (m vectors), it is possible to find two new
matrices (W and H) in order to approximate the original matrix:

Xij ≈ (WH)ij = Σr
l=1WilHlj (1)

The dimensions of the factorised matrices W and H are n × r and r × m re-
spectively. Each column of W contains a basis vector while each column of H
contains the weight needed to approximate the corresponding column in X using
the bases from W .

Given a data matrix X , the optimal choice of matrices W and H is defined to
be those nonnegative matrices that minimise the reconstruction error between
X and WH . Various error functions have been proposed [17], the most widely
used one is the squared error (Euclidean distance) function

E(W, H) = ‖X − WH‖2 = Σij(Xij − (WH)ij)2 (2)

However, the additive parts learned by NMF are not necessarily localised, as
was pointed out by Li et al. in [18]. To obtain meaningful partial representation
we want to restrict energy of each NMF basis to the most significant components
only. Therefore we use sparse NMF [14] which proved to be more appropriate in
part-based object decomposition than original NMF.

In sparse NMF the objective (2) is minimised under the constraints that all
columns of W and rows of H have common sparseness σW and σH respectively.
The sparseness σ(x) is defined by the relation between the Euclidean norm ‖.‖2
and 1-norm ‖x‖1 := Σi | xi | as follows

σ(x) :=

√
n − ‖x‖1

‖x‖2√
n − 1

(3)

if x ∈ Rn \ 0. Since 1
n‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1 equation (3) is bounded 0 ≤ σ(x) ≤ 1.

In particular, σ(x) = 0 for minimal sparse vectors with equal non-zero compo-
nents, and σ(x) = 1 for maximally sparse vectors with all but one vanishing
components.

Sparse NMF Modification: Random Acol Initialisation. It is well known
that good initialisation can improve the speed and the accuracy of the solutions
of many NMF algorithms [24]. Langville et al. proposed in [15] random Acol
initialisation as an inexpensive and effective initialisation technique. Random
Acol forms an initialisation of each column of the basis matrix W by averaging
p random columns of X . We use the random Acol technique for our modified
sparse NMF instead of a random initialisation.

So far, we have three unspecified parameters in our method: initialisation
parameter p and sparseness parameters σW and σH . To automate the algorithm
we put p to [m

r ] value. We learn useful features from basis W and leave the
sparseness of H unconstrained. For all our experiments we set σW to 0.78 for
simplicity. For more accurate estimation of the sparseness one can use the method
described at [12].
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Sparse NMF Modification: Earth Mover’s Distance. Figure 1 shows the
example of sparse NMF basis from the Hoyer paper [14]. It is can be seen that
there are significant similarities among the learned bases. Guillamet and Vitria
proposed that the Earth mover’s distance (EMD) is better suited to this problem
because one can explicitly define a distance which will depend on the basis
correlation [10].

Fig. 1. Features learned from the ORL database using sparse NMF

EMD can be stated as follows: let I be a set of suppliers, J a set of consumers
and dij the cost to ship a unit of supply from i ∈ I to j ∈ J . We define dij as the
Euclidean distance. We want to find a set of fij that minimises the overall cost:

dist(x, y) = min Σi∈IΣj∈Jdijfij (4)

subject the following constraints:

fij ≥ 0, xi ≥ 0, yj ≥ 0, i ∈ I, j ∈ J

∑

i∈I

fij ≤ yj , j ∈ J

∑

j∈J

fij ≤ xi, i ∈ I

Σi∈IΣj∈Jdijfij = min(Σi∈Ixi, Σj∈Jyj)

where xi is the total supply of supplier i and yj is the total capacity of consumer
j.

We used EMD as the distance metric instead the Euclidean distance as in our
experiments we obtain better partitioning with this metric.
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2.3 Data Postprocessing: Mask Construction

After getting the modified sparse NMF basis we need to analyse the result.
At this step we produce a mask of the data by construction of the boundaries
between the basis vectors.

We consider the mask construction for the images as it demonstrates the result
most clearly. However, our algorithm can be used on a wide range of data. In
the next section we describe postprocessing example for 3D human motion data.

Examples of the modified sparse NMF basis are shown in Figures 3 and 6. Each
of the basis vectors represents a part of the original image. There is substantial
noise in each vector, and some vectors contain several separated parts.

First we consider each vector of the basis separately to reduce the noise. We
define a vector element as noise if a 7 × 7 pixel square centered at this element
has any other pixels with zero values. After deleting such components we label
each nonzero basis vector component according to its vector number and merge
the vectors.

Next we use region growing technique which is a basic yet effective method.
Region growing [1] is a technique which begins with a seed location and attempts
to merge neighboring pixels until no more pixels can be added to it. Because of
basis sparseness, we have considerable amount of pixels that were not assigned
a label and now needs one to be allocated. These errors have to be removed
in a second postprocessing step. The most dominant regions, i.e. the regions
with largest component values, are selected as seed regions for a region growing
process. Region growing is implemented as a morphological operation. A 3 × 3
square is moved over the merged basis. When a neighbor to the point of interest
(the center of the square) has a label assigned, the point of interest is checked
for compatibility to that region. In case it is found to be compatible (i.e. all
point neighbors belongs to the same basis label), it is assigned the label of
the corresponding region. If there are conflicting regions, i.e. there are different
regions adjacent to the point of interest, the largest region is preferred. This is
also the case if the center pixel is already labeled.

When this process is completed, every pixel is assigned one of the possible
basis labels, this completes our data partitioning algorithm.

3 Experimental Results

In this section we evaluate how the proposed algorithm processes several real
world data sets with different characteristics. The first data considered in Sec-
tion 3.1 is the talking head. On this example we show how our algorithm works
with large images where data variation concentrated mainly on a small region
(mouth). Next we consider facial emotional head data. Here we have data varia-
tion across the whole image. Section 3.3 describes the model visualisation ability
with 3D coordinates of a walking person.
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3.1 Talking Head Data

The algorithm described in the previous section was tested on the data from
[6]. Initially, it was the video of a speaker reading a text, recorded at 25fps.
The subject was recorded front-on with as little out of plane head movement as
possible.

We extracted the texture from each frame of the video as described in [6].
Figure 2 shows examples of the texture. We perform the data normalisation [18]
to improve algorithm convergence and to make the patterns of interest more
evident. Intrinsic dimensionality of the data chosen by the automated k-NN
method is eight. Setting the number of basis vectors to 8, we perform the second
step of our algorithm. The result of this step is shown at Figure 3. One can see
parts of the face there: eyes, cheeks, chin.

Fig. 2. Talking head data: examples

We use the postprocessing algorithm described in Section 2.3 to automatic
basis analysis. Figure 4 shows the mask generated by our algorithm, data mask,
which looks appropriate. It can be seen that the automatically constructed par-
titioning extracts the most important features of the face. We have eyes region,
three mouth regions (upper lip, lower lip, inside part of the mouth), cheeks, chin,
cheek bones and eyebrow regions. Such partitioning could be very useful for the
further data analysis offering us a trade-off between keeping fine detail in the
data and the large data dimensionality.

Fig. 3. Talking head data: modified NMF basis
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Fig. 4. Talking head data: mask

3.2 Emotion Head Data

For our next experiment we used data sets from two different people. Each
person performed a different facial expressions: happiness, sadness and disgust,
see Figure 5 for the examples.

Fig. 5. Emotional head data one (top) and two (bottom)

Unlike the talking head data, the emotional head data has lots of variation
across the whole face. In order to see how our algorithm can deal with emotions,
we apply it to each data set. As expected, both sets have the same estimated
intrinsic dimensionality, equal to 6. Thus we got 6 modified sparse NMF basis
vectors which are shown at Figure 6. The basis vectors for the emotion head
data look similar to the vectors from the previous example. Because the mouth
variation is not significant for this example, a vector representing this variation
is missed here, while we have 3 mouth variation vectors for the talking head.
Instead we got more vectors to represent other face parts which displayed greater
variation in these data sets.

To analyse the modified sparse NMF basis we perform data postprocessing,
as described in Section 2.3. The results are shown in Figure 7. Again, the results
are natural and similar to the talking head mask, but with more attention paid
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Fig. 6. Emotional data one (top) and two (bottom): modified NMF bases

Fig. 7. Emotional data one (left) and two (right): masks

to the general face details. For example, we got a vector which represents a nose.
Our algorithm extracts features which are significant for those particular data.

3.3 Motion Data

We tested our algorithm with two motion data sets. The first set represents the
motion of a walking person, consisting of two steps, right turn and one step.
The second set represents a two step motion without turn. The initial feature
parameters represent the coordinates of human (arms, legs, torso) in the 3D
space. Each pose is characterised by 17 points.

Following the preprocessing step of our algorithm, we choose the intrinsic
dimensionality [7], which is 2 for each set. After running modified NMF we get
a sparse basis sets for analysis.

We cannot apply the postprocessing step from Section 2.3 because of the data
type. Therefore we perform postprocessing in a different way.

We define that a 3D pose junction point belongs to the basis in which this
point has maximum summed basis coefficients. Figure 8 illustrates the bases for
both sets. On the left hand side of Figure 8 one can see data partitioning for the
walking with turn. The first basis vector here is represented by the torso and
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forearms, and the second one is represented by legs and shoulders. On the right
hand side of Figure 8 we show data partitioning for the straight walking. Here
we have a different partitioning, which consists of two pieces too. The first basis
vector represents a motion of the right arm and the left leg, while the second
basis vector represents the left arm, the torso and the right leg. Such partitioning
isolates variation in subregions from the rest of the body and provides a high
degree of control over different body parts. For example, it is straight forward to
find out which part is responsible for moving the legs (the first case), or describes
relationships between legs and arms movements (the second case).
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Fig. 8. 3D motion data partitioning - different bases are represented by different line
drawing styles

4 Conclusions

We have described a new algorithm for automatic data decomposition using a
modified sparse NMF basis analysis, in which the number of basis vectors is se-
lected to be the same as the estimated intrinsic dimensionality of the data. Seg-
mentation is then performed by applying region growing to the set of basis vectors.

We demonstrate the algorithm’s ability to produce good partitioning of real
data sets. In these examples we show that our algorithm extracts the most im-
portant features for the particular data set. Such partitioning provides a powerful
tool for automating construction of parts based data models.

In future work we hope to extend our algorithm for more complex cases, such
as highly articulated objects. We also plan to improve the postprocessing step
by performing more advanced segmentation.
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