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Abstract

Microscopes offer a limited depth of focus which precludes the observation of a complete image of a three-dimensional (3D) object in a

single view. Investigations, by a variety of researchers, have led to the development of extended depth of focus algorithms for serial optical

slices of microscopic 3D objects in recent years. However, to date, no quantitative comparison of the different algorithms has been

performed, generally leaving the evaluation to the subjective qualitative appreciation of the observer. In this paper we use three different

tests for extended depth of focus algorithm evaluation and test 10 different algorithms, some of them have been adapted (by us) for a series of

optical slices. However, the main contribution of the paper is a new improved algorithm for computing the extended depth of focus. q 2001

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Algorithms for extended depth of focus images through

digital processing have appeared regularly in the past

20 years, either applied to re¯ected or transmitted light

systems (Ito et al., 1989; Pieper and Korpel, 1983; Sugimoto

and Ichioka, 1985; Tympel, 1996; Tympel, 1997; Willis et

al., 1993). Conceptually, there is no reason why any of the

above extended depth of focus algorithms cannot be applied

to images obtained from either re¯ected or transmitted light

systems. It is remarkable, however, that all the evaluations

of performance of the algorithms have been generally based

on the subjective impression of the human observer.

Digital extended depth of focus processing methods oper-

ate on a set of optical slices that fully span the object under

study. Only a small proportion of each image slice will be in

focus due to the limited depth of focus of the microscope.

The purpose of the extended depth of focus algorithms is to

recover from each slice those pixels that are in focus and

build a ®nal single composite image from the selected in-

focus pixels. There are many objects and situations where

this approach could provide an ef®cient way of portraying

such information. For instance, many taxonomic type slides

deposited in museums could be made available to specialist

worldwide in this new ªvirtualº form, whilst securing and

preserving the original ªmaterialº slide (Garcia-Valdecasas

et al., 1997) at the host repository. Furthermore, if one

records not only the in-focus pixel (intensity) values but

also the slice index from which the in-focus pixels were

selected then the three-dimensional (3D) structure informa-

tion of the underlying organism may be preserved, provided

that certain microscope characteristics (e.g. slice step size,

optical parameters) are also recorded. Thus extended depth

of focus algorithms allow the incorporation of 3D informa-

tion into a single two-dimensional (2D) composite image.

The main contributions of this paper are as follows:

1. Two new wavelet-based algorithms for extended depth of

focus are presented which, we show in this paper, offer

improved performance over existing algorithms.

2. The performance of 10 different algorithms, including

our new ones, is evaluated by using three tests to evaluate

the performance of extended depth of focus algorithms.

2. Materials and methods

We now describe in further detail the methods we use to

compute extended depth of focus, the methodology we

adopt in comparing various methods and the metrics used

to perform the comparison.

All images were acquired with a Xillix Microimager
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1400-10X camera on a Zeiss Axiolab microscope interfaced

to a Sun Sparc workstation. An optical axis focus controller,

MFC-1 model from Applied Scienti®c Instruments Inc.,

with a declared repeatability of ^0.2 mm was used to

acquire image slices at some small (e.g. 0.1 mm) step of

the controller. The microscope objective was a Zeiss CP-

Achromat 10 £ /0.25 giving a ®nal magni®cation of

approximately 100 £ with a depth of ®eld of 4.5 mm

above and below the plane of focus.

Three different tests are used to evaluate the performance

of extended depth of focus algorithms. Two of the tests

involve comparison to a reference object, a Zeiss stage

micrometer. Stage micrometers are a relatively common

subject for microscopic imaging testing (Jaggi et al.,

1993; Oliva et al., 1998). In our ®rst test we are able to

determine an exact reference plane with which to test our

methods. The stage micrometer is 1 mm long and is divided

in 100 parts. The second test employs the micrometer tilted

at an angle so that we can empirically examine the 3D

effectiveness of our algorithms. Finally, we test our algo-

rithms on a real 3D biological specimen.

In the ®rst test, the stage micrometer is used as an almost

ideal 2D object. There is no above or below material that

would contribute blurred areas to the line's plane. There-

fore, there is only one focal plane ªwhere the light rays form

a minimum spotº (InoueÂ and Spring, 1997). Images taken

above and below this reference focal plane will show an

amount of blur that increases with the distance to reference

plane.

Initially ®ve hundred 1024 £ 1024 gray-scale images of a

Zeiss stage micrometer that occupy the center of the image

were taken at 0.1 mm steps. The set of the 500 images was

chosen including the focal plane of objective initially by

visual evaluation. The main aim here was to establish the

reference plane to be approximately in the middle of the set

of image slices. Acquisition extended well beyond the upper

and lower limits of depth of ®eld as calculated using the

methods proposed by Pluta (1988) or Willis et al. (1993).

Images were further reduced by taking a 256 £ 256 or 512 £
512 window from the center of the image. There are two

reasons to do this. Firstly, to avoid interference due to

microscope lens aberrations which are more prominent in

the periphery of an image than in the center. Secondly, this

improves the practical computational aspects: it is not possi-

ble to process several ultra-resolution image slices with

standard computer memory limitations; and the selection

of a smaller image portion also speeds computation.

Throughout the paper, the following notation is used:

Ip�i; j� represents the pth image slice, where p � 1 to P Ð

P is the number of image slices; i � 1 to N Ð N is the

horizontal array size in pixels; j � 1 to M Ð M is the

vertical array size in pixels. For simpli®cation, it is assumed

that M � N; that is, images are squared in all our tests.

The basic approach for the test is as follows:

² Firstly, an autofocus function is used to select an image

that is nearest to the focal plane of the stage micrometer.

We call this the reference image. Two functions were
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used: the variance and Tenengrad function (Yeo et al.,

1993). These are applied to the whole set of 500 images

in order to select the image in the set that was closest to

the focal plane of the objective. These two functions have

been shown to perform adequately with bright ®eld

microscopy (Yeo et al., 1993) although they may produce

local maxima or side peaks with phase contrast micro-

scopy (Oliva et al., 1998; Price and Gough, 1994).The

variance function is:

V�I� �
X

i

X
j

�I�i; j�2 m�2

where m is the mean gray level given by:

m � 1

N2

X
i

X
j

I�i; j�

the slice with the highest variance was selected. The

Tenengrad function is:

T�I� �
X

i

X
j

�S�i; j��2

and S is a Sobel operator:

S�i; j� �
���������������������
G2

i �i; j�1 G2
j �i; j�

q
with the i kernel

21 0 1

22 0 2

21 0 1

2664
3775

and the j kernel

1 2 1

0 0 0

21 22 21

2664
3775

Two windows were used with the variance measure: the

whole �256 £ 256�; image, and a centered window of 40 £
40: The Tenengrad function was applied with a centered

window of 40 £ 40 pixels due to limitations of the hardware

to process larger windows. In both cases the reduced 40 £
40 window was set in the center of the image, and was

applied to the complete set of images. Both functions

selected the same image, which was the optical slice

number 327. Fig. 1 shows the plot of variance values for

the 500 images set where the maximum corresponds to the

327 image. Similar plots were described by Yeo et al.

(1993) for their image data set. This image was the one

used as reference image against which all the resultant

depth of focus images were compared.

² Secondly, in order to effectively test our algorithms a selec-

tion of images above and below the reference image (and

including it) are used to test the performance of extended

depth offocus algorithms for their ability to select the pixels

of the reference image.

² Thirdly, the reference image and the composited extended

depth of focus image are compared using the mean square

error of the difference between the reference image and the

depth of focus image:

r �

����������������������������������XN
i�1

XN
j�1

�Iref�i; j�2 Iext�i; j��2

N2

vuuuut
where Iref is the reference image and Iext is the extended

depth of focus image. Iref and Iext represent the (pixel)

array of intensity of brightness values in each image, the

index Iref�i; j�; for example indicates a reference to the pixel

at location i,j in the image. N is the dimension of the image,

in our cases N � 256 or 512. This is a common measure and

Li et al. (1995) used it for the evaluation of their wavelet

algorithms. As our new algorithm suggests improvements

over those of Li et al. it is useful to directly compare our

results with those of Li et al.

The second test used a second set of 20 images made using

the same stage micrometer tilted approximately 258 over the

microscope stage plane. Twenty images were taken sequen-

tially at 1 mm steps. All the extended depth offocus algorithms

were run over the set, and results were obtained by noting the

selected pixel's slice location and also compared visually.

A third and ®nal evaluation test consisted of a visual

comparison among the resultant images after processing a

set of images of the palp of a water mite (Piona sp.). This set

is comprised of 20 images at 3 mm steps.

2.1. Depth of focus algorithms

Algorithms for extended depth of focus can be classi®ed

as those which work on a point process basis, those which

work on an area process basis and those which work in

frequency space of a transformed image (Fourier or wavelet

transforms) (Gonzalez and Woods, 1992). These form the

three major classes of image processing approaches to the

solution of such problems. The algorithms selected for

implementation represent a large proportion of contempor-

ary methods available from the appropriate scienti®c litera-

ture. We implemented, modi®ed for our purposes and tested

eight existing methods. Based on our early experiences we

have developed two further methods, which bring together

the best features of the studied methods. Ultimately we

conclude that one of these methods performs the best.

However, to ease explanation and further discussion we still

include our other method as it forms part of our ®nal solution.

The basic approach of all the algorithms is as follows:

1. Initially a series of p images slices, Ip, are obtained by

serially stepping the microscope through a ®xed small

step using the optical axis focus controller.

2. The aim is to assemble a composite image by returning a

selected pixel at every pixel location or small image
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region depending on the algorithm (the size of the

composite image is the same in all the image slices)

corresponding the best in-focus material across all slices

at that pixel location. For the sake of clarity in the follow-

ing discussion we refer simply to selecting appropriate

pixels, the selection of small image areas should be inter-

changed for the respective algorithms.

3. For all image slices Ik : k � 1¼p; every pixel is scanned

and for every pixel �Ip�i; j� i � 1¼N and j � 1¼M for an

image of dimension N £ M: In our case M � N � 256 or

512) location a measure is made for every slice at the

corresponding location on how in-focus the slice region

appears at the pixel location.

4. The selected pixel is chosen by the evaluation of function

that returns some measure of likelihood of the pixel being

in focus. The main difference in the algorithms below is

in how they formulate this measure. Some use a point

process, others work on an area and others work in the

frequency domain.

Thus essentially every pixel is scanned and for every pixel

location a measure is made for every slice at the correspond-

ing location. The candidate pixel with the best measure

is then selected, according to criteria laid out for each

algorithm below. For further details on justi®cation of the

algorithms tested, refer to the original references.

The following algorithms were tested.

1. A function evaluating the distance from the mean of

maximum and minimum values in a series of slices. This is

referred to as index Q in Pieper and Korpel (1983) which

uses the umaximum 2 averageu 2 uminimum 2 averageu as

the decision function:

Q�i; j� � uImax�i; j�2 Ip�i; j�u 2 uImin�i; j�2 Ip�i; j�u
where

Imax�i; j� � maximum�I1�i; j�; I2�i; j�;¼Ip�i; j��;
Imin�i; j� � minimum�I1�i; j�; I2�i; j�;¼Ip�i; j��

and Ip�i; j� is the intensity average taken over the set of

image slices.If Q�i; j� $ 0 then the value chosen for the

composite image will be Imax otherwise if Q�i; j� , 0 then

Imin. The composite image is built with the Imax or Imin

selected pixels from the set of slices for each image pixel.

2. A nondirectional difference operator, index D in Pieper

and Korpel (1983). For every corresponding pixel location

across all k slices, k � 1¼p; a measure Dk is computed:

Dk�i; j� � uIk�i 2 1; j 1 1�2 Ik�i 1 1; j 2 1�u

1 uIk�i 1 1; j 1 1�2 Ik�i 2 1; j 2 1�u

1 uIk�i; j 1 1�2 Ik�i; j 2 1�u

1 uIk�i 2 1; j�2 Ik�i 1 1; j�u

The image closest to focus at pixel (i,j) will satisfy:

Dmax�i; j� � maximum�D1�i; j�;D2�i; j�;¼Dk�i; j�;¼Dp�i; j��

The composite image is built in a manner similar to algo-

rithm 1, where the pixel corresponding to the selected Dmax

value is selected.

This algorithm is similar to an algorithm presented by

Wall et al. (1981). In both cases the procedure implies

taking the differences between the gray levels of pairs on

nearby pixels in each optical slice. Wall et al. divide the

image in square subsections and calculate a measure of gray

level change using the difference of two pairs of pixels at a

time. Pieper and Korpel do not subdivide the optical slice in

sections but calculate the gray level difference based on four

pair of pixels at a time. Differences are compared for corre-

sponding coordinates in all the slices in the stack and the set

that present the higher difference is selected for the compo-

site image. Pieper and Korpel's algorithm does not require

the arbitrary division of images in subregions and was there-

fore selected for this testing.

3. The Sobel operator (e.g. Castleman, 1996; Gonzalez

and Woods, 1992), S�i; j�; as explained earlier in relation to

the Tenengrad function is employed to select the best in-

focus slice. Essentially the Sobel operator is an edge detec-

tor with some noise smoothing incorporated. The Sobel

operator returns a measure of the strength of an edge

being present at a given pixel. Clearly in-focus regions

will have strong edges present. The composite image is

composed by selecting the pixel with the corresponding

strongest (maximum) edge value through the set of slices

for the pixel coordinates. The process is repeated for every

pixel in the composite image.

4. The Tympel (1996, 1997) selection algorithm. This is

an area algorithm based on a 5 £ 5 kernel which selects

pixels for the composite image in terms of a maximum

function of local area focus.

Vext�i; j; p� �

X1 2

l�2 2

X1 2

m�2 2

�Vh�i; j; p�2 V�i 1 l; j 1 m; p��2

V2
h �i; j; p�

Vh�i; j; p� � 1

25

X1 2

l�2 2

X1 2

m�2 2

V�i 1 l; j 1 m; p�

The maximum of Vext�i; j; p�®xes the position of the focused

area (Tympel, 1997) and contributes to the composite image

by selecting the image pixel value corresponding to the

position of the maximum Vext�i; j; p� for every pixel in the

image.

5. The focusing algorithm of Wu et al. (1996) is a two-

step procedure. Images are partitioned into square blocks of

8 £ 8 pixel size. Each image is high pass ®ltered by �d�i; j�2
hgtr
�i; j��; where d , the 2D discrete delta function d (i, j) is 1 if

�i; j� � �0; 0� and 0 otherwise, and hgtr
�i; j� is a truncated
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Gaussian function de®ned as:

hgtr
�i; j� � C exp 2

i2 1 j2

s 2
g

 !
for uiu # l1 and u ju # l2

0 otherwise

8>><>>:
where C is a normalization constant, s 2

g is the variance of

the Gaussian distribution and l1 and l2 are the integers to

restrict the nonzero region of hg�i; j�: Wu et al. suggested

s 2
g � 20:0 and l1 � l2 � 7: We have found that a value of

s 2
g � 10:0 and l1 � l2 � 7 gives better results for our test

images. The energy index in the (i, j)th block is given by:

ep;�x;y� �
X�x 1 1�M 2 1

i�xM

X�y 1 1�M 2 1

j�yM

 
C�i; j; l1; l2; S�

�
X�l1 2 1�=2

m1�2�l1 2 1�=2

X�l2 2 1�=2

m2�2�l2 2 1�=2
hgtr
�m1;m2�

£ Ip�i 2 m1; j 2 m2�
!2

where:

C�i; j; l1; l2; S� �
X�l1 2 1�=2

m1�2�l1 2 1�=2

X�l2 2 1�=2

m2�2�l2 2 1�=2
hgtr
�m1;m2�

0@ 1A21

where S is de®ned in the image domain as:

S � {�i; j�u0 # ikM; 0 # jkM}

and m1 � m2 � 8

In-focus areas in an image clearly give rise to sharp edges

in an image. When transformed into frequency space sharp

edges give rise to high frequency components. Therefore the

effect of high pass ®ltering is to attempt to remove (low

frequency) out of focus data. The block with the maximum

energy in each subset of corresponding blocks in the stack of

images is selected for the composite image. The Wu algo-

rithm derives its methods from Fourier theory even though

the actual implementation operates in the spatial domain.

Alternative frequency analysis methods have utilized

wavelets. The next ®ve algorithms, 6±10, are variations

based upon the wavelet transform methods initially

proposed by Burt and Lolczynski (1993) and Li et al.

(1995), the ®nal 2 being new improved versions. The wave-

let algorithms of Burt and Lolczynski and Li et al. were

originally described for a single pair of images, and we

have, therefore, needed to modify the basic algorithms to

deal with a set of several images (typically 30±60 slices).

First, the input image slices are decomposed with a discrete

wavelet transform and extended depth of focus follows by

the application of an area-based maximum selection rule

and a consistency veri®cation step. Different versions of

the two last steps essentially distinguish the ®ve different

algorithms. Li et al. (1995) should be consulted for a

detailed justi®cation of the fusion wavelet-based algorithm.

Readers wishing to ®nd more background information to the

wavelet transforms applied to image processing can ®nd

good introductions in Castleman (1996), Parker (1997),

Prasad and Iyengar (1997) and Rioul and Veterli (1991).

Computer code is also widely published and routines used

in our implementations may be found in Press et al. (1986)

and Parker (1997). The term wavelet means small wave.

Therefore any function that is a wavelet must be a wave

Ð it has some periodicity and it must be small Ð the

amplitude of the function decreases as function of distance

from its center. These properties mean that a wavelet is local

Ð it only has a signi®cant value in a small region of space

Ð and it has frequency characteristics similar to the Fourier

transform. A distinguishing feature of the wavelet transform

over the Fourier transform is that it also has a scale property.

The above properties are both exploited in the extended

depth of focus processing. Like the Fourier-based approach

of Wu (algorithm 5) we exploit the frequency properties of

the wavelet transform to perform high pass ®ltering. Recall

that in-focus material will give rise to high-frequency data

in the transform. The scale property means that we can

perform our measures of focus (algorithms 6±10) in a loca-

lized area of the image (a window). We now explain the

basic wavelet transform and the extended depth of focus

algorithms with a little more detail, for complete implemen-

tation details of the wavelet transform readers should

consult Press et al. (1986) or Parker (1997). In order to

perform a wavelet transform of an input signal, a family

of wavelets is created from dilations and translations of a

prototype or mother wavelet c that for a one-dimensional

function in the discrete version can be de®ned by:

cm;n�i� � 22m=2c�2 2mi 2 n�
at resolutions separated by a factor of 2 and m and n being

integers. The wavelet decomposition is then:

f �i� �
X
m;n

cm;ncm;n�i�

and c chosen such that cm;n�i� constitute an orthonormal

basis.

Similarly, a scaling function is introduced as:

fm;n�i� � 22m=2f�22mi 2 n�
Again, the fm;n�i� are orthonormal for ®xed m.

In the case of a 2D function (an image) the scaling func-

tion is:

f�i; j� � f�i�f�j�
The decomposition at each resolution is given by three

wavelets:

c 1�i; j� � f�i�c�j�

c 2�i; j� � c�i�f�j�

c 3�i; j� � c�i�c�j�
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The set of wavelet coef®cients typically used are Harr,

Daubechies 4, 12 and 20, and coef®cients and code for such

basis functions are readily published (Press et al., 1986).

Harr wavelet basis functions are frequently used in image

compression algorithms. However, the Daubechies func-

tions offer a smooth (orthonormal and compact) basis for

the computation of wavelet transforms. Ef®cient implemen-

tations of this format using scaling function sequences or

quadrature mirror ®lters exist. In our examples we use a

Daubechies 4 basis function which has been popular in

many image processing applications and also ®ts into the

classes of ®lters used by Li et al.

Individual steps in the production of the extended depth

of focus algorithm are now given with these wavelet meth-

ods and are included under each speci®c algorithm which

we now brie¯y outline.

6. In the Burt and Lolczynski (1993) method, the

maximum activity measure is made by computing the

variance over a 5 £ 5 pixel window. If the measure at

the corresponding center pixels of neighboring slices is

close (has very small variance; we chose a variance of a

value within the range 20.5¼0.5) then an average value

is selected, otherwise the maximum value is chosen. The

use of the wavelet transform and the computation of a

variance can be considered as a nonlinear high pass

®lter. Thus, the wavelet transform algorithms provide

effective methods for determining extended depth of

focus features where in-focus features correspond to

high-frequency components of the transform.

7. In the Li et al. (1995) method, a wavelet maximal

function which computes the maximum absolute value of

(wavelet) image values within a 5 £ 5 pixel window for

corresponding pixel location at different slices is used as

the selection criteria.

8. In the modi®ed wavelet function from Li et al. (1995),

a binary decision map was introduced to help select cohe-

sive regions of in-focus from a pair of slices. This approach

has been modi®ed to allow for p image slices in the follow-

ing manner: The maximum absolute value is computed as in

algorithm 7 above. The results of the selection are then

stored in a decision map that records the selected slice

number. If the majority of the neighboring pixels (decided

by a simple voting scheme over a small dimension window)

come from a different slice than that of the center pixel then

the center pixel (image) value is changed to the value of the

corresponding pixel value from the majority slice, deter-

mined from the voting scheme.

9. We have developed a new method based on a modi®ed

version Burt and Lolczynski (1993) method. The maximum

activity measure is still determined by computing the

variance over a small dimension window. However, ulti-

mate selection of the representative value (center pixel) is

made using an adaptation of the modi®ed voting scheme of

Li et al. described above in algorithm 8.
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10. Finally we present a ®nal new method that is essen-

tially a hybrid of the best ideas of the versions of Burt and

Lolczynski (1993) and Li et al. (1995). In our tests (see

Section 3 below) this hybrid method has the best overall

performance. As mentioned above the wavelet transform

and appropriate selection function can be regarded as a

high pass ®lter. Li et al. argue that their measure is more

effective in selecting dominant in-focus features, and the

voting scheme they developed is ef®cient in selecting appro-

priate features. We have shown this by applying such a

scheme to the basic Burt and Lolczynski (algorithm 9).

However, we have found that the Li et al. algorithm is

occasionally biased toward other high-frequency compo-

nents (e.g. noise and other image artifacts) and may, in

the presence of a not too dominant feature, make an inap-

propriate selection. We, therefore, propose a hybrid

approach fusing together the approaches of Burt and Lolc-

zynski and Li et al. We compute the respective activity

measures as described above (algorithms 6 and 7) and

apply an independent vote count for each method as

described in algorithms 8 and 9. The representative ®nal

(center pixel) value is then selected as the pixel that

comes from the slice which has the most votes from both

counts, considered independently. Thus, a dominant feature

in both counts will always be selected (as is the case with

detailed organism structure in sharp focus) where an anom-

aly between the counts arise (as is the case in areas of less

well-de®ned organism structure in focus) the best represen-

tative feature is selected according to the above criteria.

This is a selection criterion that works well in improving

the effectiveness of the methods in our application domain.

The extra overheads in allowing for such modi®ed voting

scheme are minimal in terms of time and memory consid-

erations.

3. Results

First, the results of the quantitative evaluation of the algo-

rithms will be presented and then their performance with

biological objects will be assessed.

3.1. Test 1

In this test we control the amount of out of focus material

that is presented to the algorithms. We have previously

established the exact position of the reference image slice

(slice index 327). Our experiments summarized in Figs. 2

and 3 show the mean square error at increasing distance

from the plane of focus for the 10 algorithms and for the

®ve best, respectively. The ªDistance to the focus planeº on

the x axis of the ®gures represents adding simultaneously

out of focus material above and below the reference plane:

each increment step in the x axis includes image slices up to

the speci®ed distance in micrometers. Thus at a 1 mm step

we include the plane of focus (image 327) plus one above

and one below at 1 mm, respectively (images 317 and 337,

in this instance). For a 2 mm step we include those images at

1 mm from the reference plane plus those at 2 mm above and

below the plane of focus (the set is formed by the following

images: 307, 317, 327, 337 and 347). And so on. As we

move further in distance from the reference image we

obviously increase the number of images to be processed.
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Fig. 3. Mean square error for the ®ve best extended depth of focus algorithms on a set of images at different distances of the peak focus image slice and on an

expanded y axis.



This imposes another test on the algorithms in terms of

computational speed and memory requirements.

One minor difference in image selection is for the

distance ªnullº where we chose a set of three optical slices

that were all of the same reference image slice. This was

used to calculate the ªresidualº error of the algorithms. Only

the wavelet functions and Tympel algorithm gave values

different from zero with this set. This means that these algo-

rithms introduce some image artifacts into the ®nal image.

For the Tympel algorithm the residual error introduced is

initially poor and remains relatively uniform. For wavelet

methods one would expect some artifacts to be introduced

by their nature of processing, however we show that wavelet

methods are generally the best-performing methods in the

presence of out of focus material. Our main emphasis is

naturally on the algorithm's ability to accurately choose

correct in-focus portions of the image.

The best-performing algorithms, i.e. the ones that

produce the lowest mean square error, are the modi®ed

Burt and Lolczynski (algorithm 9) and the decision sorting

(algorithm 10) wavelet fusion methods. Both perform

almost equally well, algorithm 10 having a slight advantage

when more slices are used above and below the slice nearer

the plane of focus. This clearly shows that the addition of the

voting scheme, which accounts for area coherence, has a

marked improvement on the original Burt and Lolczynski

method (algorithm 6). The best performance of algorithm 10

with images that extend beyond the limit of the best focus

(sets 12 and onward) can be further explained as the addi-

tional (with respect to algorithm 9) dominant feature selec-

tion of Li et al. contributes a slight but noteworthy

improvement. The modi®ed algorithms 9 and 10 show a

signi®cant improvement on the original methods (algo-

rithms 6±8). Li et al. report values for the mean square

error of 3.279 for their best fusion algorithm, the one that

included an area-selection rule and consistency veri®cation.

It should be noted that this value was obtained for a two-

image fusion over a manually fused reference. Our test has

been done on a more complex set, a higher number of

images to ®lter and fuse and still our values for the mean

square error are lower. It is notable that this wavelet fusion

algorithm procedure keeps its performance to a very high

level without doubling its initial error with a large slice

selection. These wavelet algorithms do not deteriorate heav-

ily with increasing distance from the plane of focus. The Wu

et al. algorithm performs close to the modi®ed wavelet algo-

rithms. The worst-performing algorithm is that described by

Tympel, which begins at a poor performance level and,

although it does not degrade very much with distance, it is

not very useful due to its poor initial starting point. All the

other algorithms performed correctly (as expected) at short

distances from the target but deteriorate quickly with
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Fig. 4. Results on tilted stage micrometer of algorithm 10 (Burt-Vote) and algorithm 5 (Wu). The lower row is a sample of the testing image set.



increasing distance. The best-performing algorithm of those

based in pixel and area processing in the spatial domain is

the Sobel operator (algorithm 3) but this does not compare

very favorably with the frequency-based methods.

3.2. Test 2

The processing of the set of images of a tilted slide rein-

force the previous results. Behavior of all the algorithms

was similar as with the 2D test target. Fig. 4 shows a detailed

view of the result using our algorithm 10 (labeled Burt-Vote

in the ®gure), which is representative of the wavelet-based

algorithms and that of Wu et al. (algorithm 5, labeled Wu)

which is the best-performing (nonwavelet) algorithm (Test

1) in the other subgroup of algorithms. Below there is a row

of images from the set used as test. It is visually clear that

algorithm 10 performs much better that algorithm 5, which

yields some clearly poor image artifacts. This can be further

veri®ed by recording and analyzing the pixel slices indexes

selected by the algorithms. Whilst it is ultimately dif®cult to

assess the exact empirical nature of the algorithms as in

regions of no detail (focus) there is no de®nite notion of a

perfect selection, and in many cases the same feature is in

focus, in adjacent slices some notion of the algorithms'

performance can be gained. By looking at pixels on the

actual micrometer rule we note a de®nite steady linear

selection of pixels across the slices.

3.3. Test 3

A test with a 3D object is presented in Fig. 5 which shows

the results of algorithms 10 and 5. As in Fig. 4 the image

row below is a subset of the images used for the test. The

resulting images are shown in their original size because

slight differences between both can only be discerned at

this resolution. Again, algorithm 10 produces a better result-

ing image with fewer artifacts than algorithm 5.

The last two tests con®rm the numerical results obtained

with the stage micrometer as a reference object.

4. Discussion

Extended depth of focus algorithms are a promising tool

for biological microscopy. Simple pixel by pixel or area

algorithms have had some success in certain areas (Tieman

et al., 1986), but the true potential is still waiting for a more

generalized usage. Computer limitations (processor speed,

memory, storage and bandwidth overheads, in particular)

have been the main reason in the past for their restricted

applications. These limitations have almost disappeared

nowadays.
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Fig. 5. Results on a palp of water mite Piona sp of algorithm 10 (Burt-Vote) and algorithm 5 (Wu). The lower row is a sample of the testing image set.



The analysis of depth of focus algorithms with a simple

target allows a clear comparison of robustness of the depth

of focus algorithms. The main objective of this test is that

the function used to select the reference image is robust

enough to point to that which is nearest to the focal plane

of the objective. It is expected that the robust extended depth

of focus algorithms will select the majority of pixels from

the reference image, and the higher this number the better.

Only the algorithm that is based on a point process proce-

dure (algorithm 1) performs worst. This is an expected beha-

vior as the point spread function (PSF) of the microscope is

an area-based function that depends on the distance to the

focus plane.

Area- and frequency-based transforms perform much

better. This is especially illustrated in the case of algorithms

6±10. Algorithm 6 is a method that operates on a pixel by

pixel basis, while the other algorithms are based on area

(3 £ 3 and 5 £ 5 windows). The introduction of an area

coherence measure (to algorithm 6) in algorithm 9 shows

a signi®cant improvement. The best-performing method,

algorithm 10, uses two area-based measures (both) in the

frequency domain to perform the analysis.

The Wu et al. method is similar in philosophy (they oper-

ate in the frequency domain) to the Burt and Lolczynski and

Li et. al methods but different in implementations. Wu et al.

use a Gaussian function to ®lter the image. Their method is

also based in the Fourier domain. Firstly, they perform a

high pass ®lter to extract the high-frequency in-focus

portions of the image and then perform a low pass ®lter to

obtain an energy measure for selection of maximally in-

focus areas of slices. The high pass, low pass energy

approach is therefore similar in principle to the Burt and

Lolczynski and Li et al. methods. However, the last two

methods employ wavelet theory to perform the high pass

®ltering and energy measures.

It is clear that, for all the algorithms tested here, increas-

ing the distances between slices has a detrimental effect (a

kind of mosaicing effect) beyond a certain distance.

The Burt and Lolczynski maximal variance of a wavelet

transform approach is clearly good because it is a nonlinear

adaptive high pass ®lter and one would expect it to behave

well. The modi®ed Li et al. methods might be expected to

outperform the basic Li method as it attempts to account for

image coherence in the voting scheme. Li et al. claim that

using maximum absolute value within a window accounts

for the presence of dominant features. However, occasion-

ally their measure can give a biased selection. This we

believe is particularly true in regions where there is a lack

of structure in the underlying image, as is the case in many

biological images. In this case, a simple nonlinear high pass

®lter (Burt and Lolczynski, 1993) behaves more robustly.

Note, however, that the addition of the voting scheme (algo-

rithm 9), which accounts for area coherence whilst high pass

®ltering, has a marked improvement on the original Burt and

Lolczynski method. The best performance of algorithm 10

can be further explained as the additional (with respect to

algorithm 9) dominant feature selection procedure of Li et al.

contributes to a better selection of higher de®nition in-focus

features. It should be noted that the modi®ed algorithms 9

and 10 show a signi®cant improvement over the original

methods (algorithms 6±8).

Although wavelet transforms do not necessarily require

image sizes to be of the order of a power of 2, the actual

implementation of the wavelet algorithms is based on quad-

rature mirror banks (Press et al., 1986) that implicity

requires width and height be powers of 2. However,

image width and height can always be ªpaddedº to the

next power of 2 with 0 in order to allow for processing.

This minor implementation detail should not detract from

the fact that our study (also Li et al., 1995) clearly shows

that the wavelet-based approach is the most promising tech-

nique for extended depth of focus processing of images.
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