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Abstract

The groupwise approach to non-rigid image registration,

solving the dense correspondence problem, has recently

been shown to be a useful tool in many applications, in-

cluding medical imaging, automatic construction of statis-

tical models of appearance and analysis of facial dynam-

ics. Such an approach overcomes limitations of traditional

pairwise methods but at a cost of having to search for the

solution (optimal registration) in a space of much higher

dimensionality which grows rapidly with the number of ex-

amples (images) being registered. Techniques to overcome

this dimensionality problem have not been addressed suffi-

ciently in the groupwise registration literature.

In this paper, we propose a novel, fast and reliable, fully

unsupervised stochastic algorithm to search for optimal

groupwise dense correspondence in large sets of unmarked

images. The efficiency of our approach stems from novel di-

mensionality reduction techniques specific to the problem of

groupwise image registration and from comparative insen-

sitivity of the adopted optimisation scheme (Simultaneous

Perturbation Stochastic Approximation (SPSA)) to the high

dimensionality of the search space. Additionally, our algo-

rithm is formulated in way readily suited to implementation

on graphics processing units (GPU).

In evaluation of our method we show a high robust-

ness and success rate, fast convergence on various types

of test data, including facial images featuring large degrees

of both inter- and intra-person variation, and show consid-

erable improvement in terms of accuracy of solution and

speed compared to traditional methods.

1. Introduction

Image registration is a fundamental problem in com-

puter vision with many applications ranging from character

recognition [8], medical imaging [16] to modelling of facial

dynamics [2]. Typically this involves the analysis of de-

formable structure in groups of images and the construction

of some statistical model of appearance [3]. The fundamen-

tal challenge is to automatically find dense correspondences

between images of deformable objects — a topic that has

recently made significant progress. Furthermore, unsuper-

vised non-rigid registration methods are important for large

data sets for which manual annotation is too time consum-

ing or impractical. Existence of such a method makes it

possible to automatically construct statistical models of ap-

pearance in an entirely unsupervised fashion.

Conventional registration methods [17] work only on

pairs of images. Repeated application of a pairwise reg-

istration algorithm will inevitably be biased to the choice

of reference image which leads to errors in the final align-

ment [9]. In addition, an unfortunate choice of reference,

for example missing features, will corrupt the algorithm fur-

ther. To combat such issues, groupwise approaches that

bring an entire group of images into registration simulta-

neously have been recently developed [1, 2, 9]. Here, the

information from the entire data set is being utilised at each

stage, rather than from only a pair. Only by considering

multiple examples simultaneously can corresponding struc-

tures be reliably identified.

The groupwise approach to finding dense correspon-

dence across a set of unlabelled examples (images or

shapes) has been shown to be superior to pairwise meth-

ods [2]. However, unlike with pairwise methods, the di-

mensionality of the space in which the search for the op-

timal solution is performed, grows very rapidly with the

number of samples in the set when groupwise approach is

employed. In practical problems, very high dimensionality

of the search space presents a significant obstacle to finding

the optimal solution [3]. Suppose N images are to be reg-

istered, and the correspondences between images are con-

trolled by K degrees of freedom per image, yielding 2NK
degrees of freedom in total; even for a modest data set (hun-

dreds of images) and a modest resolution of deformations

(tens of degrees of freedom per image) the dimensionality

of the space in which the solution is to be found is measured

in thousands.

Groupwise registration may be decomposed into three

subproblems [5]:
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• A mechanism for representing and manipulating dense

correspondence between images.

• An objective function F with a minimum at a point

corresponding to the desired registration.

• A global minimisation algorithm which optimises F .

Global minimisation of the objective function, F , whose

arguments are correspondences between all images and

whose value measures the quality of registration, solves the

problem.

The problem of efficient optimisation of the very high

dimensional objective function in the context of groupwise

image registration has not been extensively explored in the

literature. Most traditional optimisation algorithms (used

in e.g. [1, 2]) cannot deal with an optimisation problem of

such magnitude and tend to converge to local minima. Some

stochastic algorithms (e.g. simulated annealing and genetic

algorithms), which attempt to avoid local minima, have im-

practical computation times even for small data sets. The

main contribution of this paper is to describe an efficient

optimisation framework for many-dimensional groupwise

objective functions for non-rigid image registration that can

quickly and reliably find very good (and in practise almost

always the best) minima.

Our approach alleviates the “curse of dimensionality” on

two fronts:

• We propose a novel solution that implicitly reduces

the dimensionality of the search space as the search

progresses by incrementally learning optimal deforma-

tions.

• We propose a novel application of stochastic optimi-

sation algorithms that do not significantly degrade in

performance as the dimensionality grows.

Additionally, due to the efficient formulation of our ap-

proach, it is amenable for GPU implementation — apart

from the control logic all steps can be performed on a GPU.

Due to the robustness of our approach we are also able

to perform inter-person groupwise registration — we take a

corpus of individual face images [11] and can successfully

register them. This is the first time that the automatic non-

rigid registration of data possessing such variety has been

reported.

2. Problem statement: groupwise registration

The input to the registration algorithm is a (possibly un-

ordered) set of N images {Ii, i = 1 . . . N} of different

examples of a deformable object or a deformable structure

in an object. We seek to automatically (without user inter-

vention) derive a dense spatial correspondence between the

examples. Deformation fields (one for each image) define

spatial correspondences between the images, by specifying

where each pixel on the underlying object structure is lo-

cated on that image.

3. Our groupwise registration algorithm

As mentioned in Section 1, we regard the problem of

groupwise registration as an optimisation problem. Before

we explain the optimisation regime, we need to define the

deformation mechanism and the objective function to min-

imise.

3.1. Deformation mechanism

We need to represent deformation fields that transform

one image into another. The most common ways to repre-

sent them are: fields defined by a sparse set of control points

which control either a set of splines [16] or nodes of a trian-

gulated mesh [2], compositions of simple warps [1] or dense

fields representing the displacement of each pixel [7]. In

our approach we use both dense deformation fields (to store

accumulated deformations) and fields controlled by sparse

set of points (when incrementally improving accumulated

deformations, see Section 3.2). In the latter case, for com-

putational efficiency, we piece-wise linearly interpolate the

deformation inside the triangles of a mesh obtained by trian-

gulating the set of control points, given the deformations at

vertices (control points), as in [2]. Although this represen-

tation has been criticised for being insufficiently smooth [1]

and have limited flexibility and spatial resolution [12], as

we will show below, this is no longer a problem with our

methods and we are thus able to benefit from its computa-

tional efficiency without any sacrifices (see also Section 4).

Let D denote a dense deformation field; we store a de-

formation field in a vector-valued matrix (deformation map,

of the same size as the images) whose elements contain the

pixel displacements. Thus, given an image I and a dense

deformation map D, a warped image I ′ is obtained thus:

I ′(x) = I(x + D(x)), ∀x, which we will abbreviate to

I ′ = W (I,D), this is illustrated in Fig. 1. Given two

(ordered) sets of control points C1 and C2 placed corre-

spondingly in images I1 and I2, a dense deformation map

from I1 to I2 can be obtained by interpolation as described

above; we will abbreviate it thusly: D = L(C1, C2).

3.2. Incrementally learning optimal deformation

Let there exist a dense set of control points, CD, and a

sparse subset of CD, CS ∈ CD. Suppose, for ease of expla-

nation, that they are vertices of a triangular mesh describing

the deformation of an image (in Fig. 2(a) CD is all points,

CS is points on the solid lines). Let CD−S denote the set

of points in CD not in CS (in Fig. 2(a) solely on dashed

lines). If we could express the optimal position of points in

CD−S as a function of optimal position of points in CS then

this would obviously yield a dimensionality reducing repa-

rameterisation of the deformation — by means of which we

would be able to control more complex deformations with

the same number of control points (increased resolution) or
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Sample Deformation Transformed
Figure 1. Samples from the data set [6] together with the computed

deformation maps and shape-normalised images. In deformation

maps, color indicates direction, and brightness — the magnitude

of the displacement.

(a) CD and CS (b) 1 mesh (c) 2 meshes (d) 8 meshes

Figure 2. (a) A dense mesh and its subset. (b)–(d) Superposition

of random meshes.

control the deformations with a smaller number of control

points keeping the same resolution (dimensionality reduc-

tion).

Unfortunately, such a function is not known in advance.

Instead, we propose to incrementally learn and accumu-

late the optimal dense deformation everywhere between the

sparse control points. The power of our algorithm comes

from this fact. We only use control points when search-

ing for an optimal improvement for an already established

dense deformation map. Moreover, instead of using only

one set of control points, as other approaches do, we ran-

domly generate a completely new set of control points at

each minimisation stage (see Alg. 2). This allows us to ap-

proximate more and more complex deformation fields as

a superposition of simple deformation fields (parameterised

by control points at each stage), as the algorithm progresses.

Fig. 2(b)–(d) illustrates this idea: as we use a new random

mesh each time we progressively sample points on the un-

derlying accumulated deformation field with increasing res-

olution. It is critical to note that when a new set of control

points is generated, the improvements obtained using the

previous set are not lost but are accumulated in dense de-

formation maps. Also note, the number of control points

(and thus the number of optimisation parameters) always re-

mains the same. The key to the power stems therefore from

the ability of our algorithm to search for more and more

complex deformations whilst keeping the dimensionality of

the search space constantly low.

3.3. Objective function

Let G(Ii, Ij) be the pixelwise discrepancy function

for images Ii and Ij (of size r× c): G(Ii, Ij) =
1
rc

∑

∀x g(Ii(x), Ij(x)), where g(a, b) is a pixel discrep-

ancy function which can be simply g(a, b) = ‖a − b‖ or

g(x) = (a− b)2/(1+(a− b)2/d2) (Geman-McClure func-

tion). Also, let D
a
i denote the corresponding deformation

map for an image Ii. Then we define the groupwise objec-

tive function, F , as follows:

F (Da
1 , . . . ,Da

N ) =

1

N

N
∑

i=1

G



W (Ii,D
a
i ),

1

N − 1

∑

∀j 6=i

W (Ij ,D
a
j )





(1)

This amounts to computing the average discrepancy be-

tween every image warped to reference space and the cur-

rent estimate of the reference computed by averaging all

other shape normalised images.

From the information-theoretical point of view, an at-

tractive choice for the objective function is the so-called

minimal description length (MDL) of the model (set of

transformed images) [9, 16]. For implementation on a

GPU, however, our discrepancy-based cost function is more

suited. However, MDL could be substituted with no loss of

generality.

3.4. Optimisation regime

A naı̈ve attempt to minimise F in Eq. (1) would be to

exhaustively search in the space of all possible deformation

maps, D
a
i , for all N images. As mentioned in Section 3.1,

in practice some reparameterisation of D
a
i is used, for ex-

ample using control points defining triangular meshes [2] or

splines [16]). Even after such reparameterisation, finding a

minimum of our objective function is a difficult task since

the number of parameters in the optimisation is still very

large (see Section 1).

In [2, 3, 4] it has been shown that it is sufficient to opti-

mise the deformations of one image at a time. This is equiv-

alent to optimising a 2NK dimensional objective function

along 2K dimensions at a time and is analogous to Pow-

ell’s classic optimisation method. In our method we adopt

a similar technique: as we show below, in an iterative fash-

ion, for one image at a time, we improve it’s corresponding

deformation map which leads to a minimisation of Eq. 1.

We now give the complete description of the registration

procedure which is summarised in Alg. 1. The deformation

maps D
a
i0

for all images are initialised to identity trans-

form (line 2). The algorithm then operates by incremen-

tally improving the accumulated deformation maps, D
a
ik

,

in an iterative fashion. The iterative body (lines 4–11) is

repeated until no further improvement is possible. In order

to avoid biasing the algorithm, we randomise the order in
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Figure 3. Evolution of the deformation map for one image as the

algorithm progresses.

which the images in the set (and their corresponding defor-

mation maps) are processed: at each iteration we randomly

permute the set.

When optimising deformations for each image Ii, first

compute an estimate of the reference imageMik
by aver-

aging all images Ij (except Ii) transformed to the reference

space using the deformation learnt at the previous stages

D
a
jk−1

and the improvement ∆Djk
learnt at the current step

(line 7). The optimal improvement ∆Dik
is then computed

using Alg. 2 by minimising G(·) over the space of all pos-

sible improvements ∆D (line 8). After the deformations of

all images have been improved, the improvements are added

to the previously learnt deformations (line 10) and the pro-

cess repeats. The evolution of the deformation map for an

image is illustrated if Fig. 3.

We next address the outsanding problem of minimising

G(Mik
, W (Ii,D

a
ik−1

+ ∆D)) in line 8 as a function of

∆D which is exacerbated by its non-linear nature and many

local minima.

3.5. Stochastic optimisation

Most traditional optimisation algorithms, such as Down-

hill Simplex [1] and gradient descent [2], cannot efficiently

deal with an optimisation problem of the above magnitude

and tend to converge to local minima especially in the pres-

ence of measurement noise [3]. Some stochastic algorithms,

such as simulated annealing and genetic algorithms, have

been designed to avoid local minima. However, such tech-

niques tend to be inefficient and have impractical computa-

tion times even for small data sets.

Thus, one of the most challenging aspects in the devel-

opment of optimisation approaches to groupwise registra-

tion is designing an efficient minimisation routine [3]. Si-

multaneous Perturbation Stochastic Approximation (SPSA)

is an attractive choice for the optimiser: it is capable of

evading local minima due to its stochastic nature and, when

adapted for our framework, is orders of magnitude more ef-

ficient [13] than the traditional stochastic algorithms. More-

over, while in traditional gradient-based methods the num-

ber of function evaluations required to estimate the gradi-

ent at a point grows linearly with the dimensionality of the

space, SPSA offers independence of the number of function

evaluations at each iteration on the dimensionality of the

space. An overview of the SPSA algorithm can be found

in [15], for completeness we summarise the idea of the al-

Algorithm 1 Register a batch of images

Require: Images Ii, i ∈ {1 . . . N}
1: k ← 1
2: D

a
i0
← 0, ∀i ∈ {1 . . . N}

3: while not happy do

4: Randomly permute the order of images.

5: ∆Dik
← 0, ∀i ∈ {1 . . . N}

6: for i = 1 to N do

7: Mik
← 1

N−1

∑

∀j∈{1...N}
j 6=i

W (Ij ,D
a
jk−1

+ ∆Djk
)

8: Using Algorithm 2, compute

∆Dik
← arg min

∆D

G(Mik
, W (Ii,D

a
ik−1

+ ∆D))

9: end for

10: Learn improved deformation map:

D
a
ik
← D

a
ik−1

+ ∆Dik

11: k ← k + 1
12: end while

Algorithm 2 Optimise improvement ∆D to deformation

D
a
ik−1

of Ii intoMik
using SPSA [14, 15]

Require: Mik
, Ii, D

a
ik−1

, mmax, c0, a0, α, γ, A
1: m← 1
2: Set gains ak ←

a0

(A+m)α and cm ←
c0

mγ

3: Select randomly CR and initialise φ̂m ← CR

4: while not converged and m < mmax do

5: Generate δm, δmi
← Bernoulli(−1 or 1)

6: Using

G(φ̂m) := G
(

W (Ii,D
a
ik−1

+ L(φ̂m, CR)),Mik

)

Estimate gm ← g(G(φ̂m), φ̂m, cm, δm), see Eq. (2)

7: Update φ̂m+1 ← φ̂m − amĝm, see Eq. (3)

8: m← m + 1
9: end while

10: return The optimal ∆D ← L(φ̂m, CR)

gorithm here. Let f(φ) be a real-valued function and φ be

a p−dimensional vector of parameters. Assume that only

the direct measurements of f(φ) are available, but not of its

gradient. Measurements of f(φ) might also be noisy, and

p might be very large. We aim to minimise f(φ) to find

φ = arg min f(φ). Let δ = (δ1, δ2, . . . , δp)
T be a vector

of independent random variables with symmetric Bernoulli

distribution: δi = ±1 and Pr(δi = 1) = Pr(δi = −1) =
1/2. Let ĝ(φ) denote the stochastic approximation of the

gradient g(φ):

ĝ(f(·),φ, ck, δk) =









(f(φ̂k+ckδk)−f(φ̂k−ckδk))
2ckδk1

. . .
(f(φ̂k+ckδk)−f(φ̂k−ckδk))

2ckδkp









(2)

and φ̂ denote the “current” estimate for φ.
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The SPSA algorithm incrementally updates φ̂ by the fol-

lowing process:

φ̂k+1 = φ̂k − akĝ(φ̂k) (3)

The gain sequences ck and ak are chosen as follows: ak =
a0

(A+k)α and ck = c0

kγ Note that at each iteration k only two

= O(1) evaluations of f are required, as opposed to O(p) in

traditional gradient-based methods. Extensive convergence

theory [10] establishes performance guarantees for SPSA

and shows that φ̂k → arg min f(φ) as k →∞.

Alg. 2 summarises our adaptation of SPSA for the task

at hand. As stochastic algorithms are notoriously hard to

tune, we now address issue of tuning SPSA. In Alg. 2, the

tuning parameters c0 and a0 are measured in units of image

size (say, pixels) and control the “greediness” of the algo-

rithm — larger values correspond to less greedy search. We

choose c0 to be about 1–4% of the image size and experi-

mentally choose a0 to be of the same order of magnitude.

The decay parameters α and γ are set to the theoretically

optimal values α = 0.602 and γ = 0.101 as discussed

in [14] which also covers the choice of tuning parameters

in various settings.

4. Experiments

Here, we describe the experiments we carried out to eval-

uate the efficiency of our optimisation framework.

In our experiments we have used a subset of 128 im-

ages from the publicly available FGNET “talking face” data

set [6]. For inter-person registration experiment, we have

used frontal images from the publicly available IMM face

database [11]. We have also applied our algorithm to brain

and face data sets acquired in our lab with similar results,

space limitations preclude inclusion here.

As shown in Fig. 4, as the algorithm progresses and

incrementally establishes the correct correspondences, the

shape-normalised average of the images converges to a true,

crisp picture of the underlying structure. This means that

all images have been well aligned by the groupwise regis-

tration. In Fig. 5, on inter-person data, the average of non-

shape normalised (no registration) images does not exhibit

much structure but after applying our algorithm we get a

good approximation of the average face. There is clearly

much variation in the inter-person data set but our algorithm

admirably copes with this.

As discussed in [10], SPSA proved to be very suitable

for global optimisation. Fig. 6 (left) shows the compari-

son of our approach with incrementally learning the defor-

mations to the traditional approaches that do not learn. To

evaluate the performance we evaluate the objective function

at each iteration. SPSA was used as the optimiser in each

case here. The FGNET data set was used. It is clear from

Fig. 6 that our approach yields an improvement in the speed

of convergence and converges to better minima. It is also

n = 0 n = 32 n = 64 n = 128
Figure 4. Evolution of the mean shape normalised face. Shown

after n iterations of the Alg. 1.

Figure 5. Inter-personal registration. Left: Samples data. Mid-

dle: Averaged images (no registration). Right: Averaged shape-

normalised images after registration with our algorithm.
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Figure 6. Comparison of algorithm performance. Left: With and

without incrementally learning the deformations. Rightmost part

magnified. Right: SPSA vs. Downhill Simplex.

important to note that our method requires no initialisation

(although conventional approaches benefit from initialisa-

tion [2]). For example, the FGNET data set contains a lot of

affine deformations (head movement); it helps to initialise

the algorithm by performing rigid registration first (dashed

lines). In our experiments, after such initialisation the algo-

rithm quicker arrives to the solution but at a cost of minor

loss in accuracy: this initialisation is essentially too greedy

a search and tends to throw the algorithm into a strong but

not best local minima. All approaches beat a hand labelled

annotation of the data (Fig. 6 (left) horizontal line). In all

experiments our algorithm numerically demonstrates linear

convergence. Note, however, that the critical performance

cost is the number of objective function evaluation, not the

number of iterations, as shown in Section 3.5 — this is an

important property and compares favourably with other op-

timisers. In Fig. 6 (right) we compare SPSA with the com-

monly used Downhill Simplex method and obtain a better

optimal solution with a better convergence rate.
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−2 s.d. mean +2 s.d.
Figure 7. An Active Appearance Model of a talking head.

Having registered the images, we can construct statisti-

cal appearance models, using deformation maps directly to

build high resolution shape model. If memory is a concern,

however, one might obtain traditional control point-based

representation of shape in the end by sampling the defor-

mation maps. The first two modes of variation of combined

model of the FGNET data set are shown in Fig. 7.

5. Conclusion

We have proposed a novel approach to groupwise non-

rigid image registration which requires no initialisation. We

have developed methods that implicitly reduce the dimen-

sionality of the search space by representing increasingly

complex deformations as a superposition of simpler defor-

mations. Due to this formulation we are able to take ad-

vantage of the simplicity and speed of piece-wise linear in-

terpolation to model deformations and overcome previous

limitations of this approach due to limited smoothness, flex-

ibility and spatial resolution. We also use a novel efficient

and reliable, fully unsupervised stochastic optimiser — an

adaptation of SPSA — which is independent of the number

of function evaluations at each iteration on the dimension-

ality of the space.

In evaluation of our method we have demonstrated a

high robustness and success rate, fast (linear) convergence

on various types of test data which shows considerable im-

provement in terms of accuracy of solution and speed com-

pared to existing methods. Due to the robustness of ap-

proach we are also able to perform inter-person registration

This is the first time that the groupwise registration of data

possessing such variety has been reported.

Due to the efficient formulation of our approach, it is
amenable for GPU implementation — in our experiments,
apart from the control logic, all steps are performed on a
GPU.
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