2.3 Fourier Transform

(Recap from CM2104/CM2208

The Frequency Domain

The Frequency domain can be obtained through the
transformation, via Fourier Transform (FT), from

m one Temporal (Time) or Spatial domain

to the other

m Frequency Domain

m We do not think in terms of signal or pixel intensities
but rather underlying sinusoidal waveforms of varying
frequency, amplitude and phase.
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Applications of Fourier Transform

Numerous Applications includi

m Essential tool for Engineers, Physicists,
Mathematicians and Computer Scientists

m Fundamental tool for Digital Signal
Processing and Image Processing

m Many types of Frequency Analysis: +

B Filtering

Noise Removal

Signal/Image Analysis

Simple implementation of Convolution
Audio and Image Effects Processing.
Signal/Image Restoration — e.g. Deblurring
Signal/Image Compression — MPEG (Audio
and Video), JPEG use related techniques.

bl

B Many more ......
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Introducing Frequency Space

dio Example

Lets consider a 1D (e.g. Audio) example to see what the different domains mean:

Consider a complicated sound such as the a chord played on a piano or a guitar.
We can describe this sound in two related ways:

Temporal Domain : Sample the amplitude of the sound many times a second, which
gives an approximation to the sound as a function of time.

Frequency Domain : Analyse the sound in terms of the pitches of the notes, or
frequencies, which make the sound up, recording the amplitude

of each frequency.
Fundamental Frequencies

Db : 554.40Hz
F : 698.48Hz
Ab : 830.64Hz
C: 1046.56Hz

plus harmonics/partial frequencies ....
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Back to Basics

An 8 Hz e Wave

A signal that consists of a sinusoidal wave !
at 8 Hz.

m 8 Hz means that wave is completing

0.5 .
8 cycles in 1 second i Domain

progdute

m The frequency of that wave is 8 Hz. B s w0 w0 o8
. Time
From the frequency domain we can see (172505

that the composition of our signal is 10
08
m one peak occurring with a frequency g os
of 8 Hz — there is only one sine g o
02
wave here. a

B with a magnitude/fraction of 0 1 40 60 80 100 120

L . F Hz
1.0 i.e. it is the whole signal. BT
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2D Image Example

What do Frequencies in an Image Mean?

Now images are no more complex really:

m Brightness along a line can be recorded as a set of
values measured at equally spaced distances apart,

[ equivalently, at a set of spatial frequency values.

m Each of these frequency values is a frequency
component.

m An image is a 2D array of pixel measurements.
m We form a 2D grid of spatial frequencies.

m A given frequency component now specifies what
contribution is made by data which is changing with
specified x and y direction spatial frequencies.
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Frequency components of an image

What do Frequencies in an Image Mean? (Cont.)

m Large values at high frequency components then the data
is changing rapidly on a short distance scale.
= a page of text
m However, Noise contributes (very) High Frequencies
also

m Large low frequency components then the large scale
features of the picture are more important.
a single fairly simple object which occupies most of
the image.
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Visualising Frequency Domain Transforms

Sinusoidal Decomposition

m Any digital signal (function) can be decomposed into purely sinusoidal
components

B Sine waves of different size/shape — varying amplitude, frequency and
phase.

m When added back together they reconstitute the original signal.

m The Fourier transform is the tool that performs such an operation

DFT of a Square Wave

TS

e

Amplitude

o4t ogy 1 Es g e oLz
——
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Summing Sine Waves. Example: to give a

Square(ish) Wave (E.g. Additive Synthesis)

Digital signals are composite signals made up of many
sinusoidal frequencies

B A 200Hz digital signal (square(ish) wave) may be a composed of 200, 600, 1000, etc. sinusoidal signals

which sum to give:

VIR
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Summary so far

So What Does All This Mean?

Transforming a signal into the frequency domain allows us

m To see what sine waves make up our underlying
signal
u

m One part sinusoidal wave at 50 Hz and
m Second part sinusoidal wave at 200 Hz.
m Etc

m More complex signals will give more complex
decompositions but the idea is exactly the same.
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How is this Useful then?

Basic Idea of Filtering in Frequency Space

Filtering now involves attenuating or removing certain
frequencies — easily performed:

m Low pass filter —

m Ignore high frequency noise components — make zero
or a very low value.
m Only store lower frequency components

m High Pass Filter — opposite of above

m Bandpass Filter — only allow frequencies in a certain
range.
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Visualising the Frequency Domain

Think Graphic Equaliser

An easy way to visualise what is happening is to think of a
graphic equaliser on a stereo system (or some software audio
players, e.g. iTunes).
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So are we ready for the Fourier Transform?

We have all the Tools....

m This lecture, so far, (hopefully) set the context for Frequency decomposition.
m Past Maths Lectures:
B Odd/Even Functions: sin(—x) = —sin(x), cos(—x) = cos(x)
B Complex Numbers: Phasor Form re’® = r(cos ¢ + isin ¢)
kx

B Calculus Integration: [ e/dx = &=

m Digital Signal Processing:

B Basic Waveform Theory. Sine Wave y = A.sin(27.n.Fy, /Fs)
where: A = amplitude, F, = wave frequency, Fs = sample frequency, n
is the sample index.

B Relationship between Amplitude, Frequency and Phase:
"5 un(x*f»qa

&;.udc frequemy %

B Cosine is a Sine wave 90° out of phase

B Impulse Responses

m DSP + Image Proc.: Filters and other processing, Convolution
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Fourier Theory

Introducing The Fourier Transform

The tool which converts a spatial or temporal (real space) description
of audio/image data, for example, into one in terms of its frequency
components is called the Fourier transform

The new version is usually referred to as the Fourier space description
of the data.

We then essentially process the data:

m E.g. for filtering basically this means attenuating or setting certain
frequencies to zero

We then need to convert data back (or invert) to real audio/imagery
to use in our applications.

The corresponding inverse transformation which turns a Fourier space
description back into a real space one is called the inverse Fourier

transform.
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1D Fourier Transform

1D Case (e.g. Audio Signal)

Considering a continuous function f(x) of a single variable x representing distance (or
time).

The Fourier transform of that function is denoted F(u), where u represents spatial (or
temporal) frequency is defined by:

Flu) = /  F(x)e= 2T gy

Note: In general F(u) will be a complex quantity even though the original data is
purely real.

m The meaning of this is that not only is the magnitude of each frequency
present important, but that its phase relationship is too.

m Recall Phasors from Complex Number Lectures.

B e 27X above is a Phasor.
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Inverse Fourier Transform

Inverse 1D Fourier Transform

The inverse Fourier transform for regenerating f(x) from
F(u) is given by

Flx) = / " F(u)e™ du,

—00

which is rather similar to the (forward) Fourier transform
m except that the exponential term has the opposite
sign.
m It is not negative
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Fourier Transform Example

Fourier Transform of a Top Hat Function

Let's see how we compute a Fourier Transform: consider a
particular function f(x) defined as

1 ifx| <1
b = { 0 otherwise,

F(x)
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The Sinc Function (1)

We derive the Sinc fun

So its Fourier transform is:

roo o
F(u) = / f(x)e ™™ dx
—oo
1 5
_ / 1% efz'mxu dx
—1
—1

27T iu —2miu
e —e )

27iu

Now (refer to Complex Numbers Lectures/Maths Formula Sheet Handout)

) 0 _ o—if
sinf = ——, So:
2i
sin 27u
F(u) = 5
mu

In this case, F(u) is purely real, which is a consequence of the original data being symmetric in x and —x.

m f(x) is an even function.

A graph of F(u) is shown overleaf.

This function is often referred to as the Sinc function.
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The Sinc Function Graph

The Sinc Function

The Fourier transform of a top hat function, the Sinc
function:
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The 2D Fourier Transform

2D Case (e.g. Image data)

If f(x,y) is a function, for example intensities in an image,
its Fourier transform is given by

F(u,v) = / / f(x,y)e 2m0uwt) gy dy.

and the inverse transform, as might be expected, is

X y / / 27r| (xu+yv) du dv.
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The Discrete Fourier Transform

But All Our Audio and Image data are Digitised!!

Thus, we need a discrete formulation of the Fourier transform:

m Assumes regularly spaced data values, and

m Returns the value of the Fourier transform for a set of
values in frequency space which are equally spaced.

This is done quite naturally by replacing the integral by a
summation, to give the discrete Fourier transform or DFT for
short.
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1D Discrete Fourier transform

In 1D it is convenient now to assume that x goes up in steps of 1, and that there are
N samples, at values of x from 0 to N — 1.

So the DFT takes the form
1 N—1

F —— £ —2mixu/N

(6) = § 3 Fle2re,

while the inverse DFT is
N—-1

F(x) =Y F(u)e? /N,

x=0

NOTE: Minor changes from the continuous case are a factor of 1/ in the
exponential terms, and also the factor 1/ in front of the forward transform which

does not appear in the inverse transform.
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2D Discrete Fourier transform

oCese

The 2D DFT works is similar.

So for an N x M grid in x and y we have

1 N—1 M—
27ri(xu/N+yv/M)
Fluv) = MZZ ,
x=0 y=0
and
N—-1M-1
F 271'1 Xu/N+yv/M)
u=0 v=0
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Balancing the 2D DFT

Most Images are Square

Often N = M, and it is then it is more convenient to redefine
F(u, v) by multiplying it by a factor of N, so that the forward
and inverse transforms are more symmetric:

N—1N—
Z Z —27ri(xu—|—yv)/N7
x=0 y=0
and
1 N—-1N-1
= 2mi(xu+yv)/N
f(x,y) = N;;F(u,v)e AU,
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Fourier Transforms in MATLAB

fft() and ££t2()

MATLAB provides functions for 1D and 2D Discrete Fourier
Transforms (DFT):

fft(X) is the 1D discrete Fourier transform (DFT) of vector X.
For matrices, the FFT operation is applied to each
column — NOT a 2D DFT transform.

fft2(X) returns the 2D Fourier transform of matrix X. If X is a
vector, the result will have the same orientation.

fftn(X) returns the N-D discrete Fourier transform of the N-D
array X.

Inverse DFT ifft(), ifft2(), ifftn() perform the inverse DFT.

See appropriate MATLAB help/doc pages for full details.
Plenty of examples to Follow.
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Visualising the Fourier Transform

Visualising the Fourier Transform

Having computed a DFT it might be
useful to visualise its result:

m It's useful to visualise the L W
Fourier Transform ‘

m Standard tools
m Easily plotted in MATLAB
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The Magnitude Spectrum of Fourier Transform

Recall that the Fourier Transform of our real audio/image data is always
complex

m Phasors: This is how we encode the phase of the underlying
signal's Fourier Components.

How can we visualise a complex data array?

Back to Complex Numbers:

Magnitude spectrum Compute the absolute value of the complex
data:

|F(K)| = \/F3(k) + F2(k) for k=0,1,...,N —1

where Fr(k) is the real part and F;(k) is the imaginary part of the N
sampled Fourier Transform, F(k).

Recall MATLAB: Sp = abs(fft(X,N))/N; (Normalised form)
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The Phase Spectrum of Fourier Transform

The Phase Spectrum

Phase Spectrum
The Fourier Transform also represent phase, the
phase spectrum is given by:

Fi(k
© = arctan (k) for k=0,1,... N—1

Recall MATLAB: phi = angle(fft(X,N))
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Relating a Sample Point to a Frequency Point

|
When plotting graphs of Fourier Spectra and doing other DFT
processing we may wish to plot the x-axis in Hz (Frequency) rather
than sample point number k =0,1,... N -1

)

There is a simple relation between the two:

m The sample points go in steps k =0,1,..., N —1

m For a given sample point k the frequency relating to this is given
by:

f.

fi= k2

where f; is the sampling frequency and N the number of samples.
m Thus we have equidistant frequency steps of L/\s/
Hz to M2 £, Hz

ranging from 0
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Time-Frequency Representation: Spectrogram

It is often useful to look at the frequency distribution over
a short-time:

m Split signal into N segments

m Do a windowed Fourier Transform — Short-Time
Fourier Transform (STFT)

m Window needed to reduce leakage effect of doing a
shorter sample SFFT.
m Apply a Blackman, Hamming or Hanning Window

m MATLAB function does the job: Spectrogram — see
help spectrogram

m See also MATLAB's specgramdemo
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MATLAB spectrogram Example

rogram

load('handel')

[N M] = size(y);

figure(1)
spectrogram(y,512,20,1024,Fs) ;

Produces the following:

Time.

0 1000 2000 3000 4000 5000 6000 7000 8000
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Aphex Twin Spectrogram

Aphex Twin famously! embedded images in the spectrogram
of a few tracks on his Windowlicker EP. His face on Track 2
“Formula” or “Equation” (Full title:

AM,_y = —a SN DRIy e cpy Filn — 11+ Fextifn — 111 12

4 1 G4 M « P B M o> S E N R A

@D w2 w3

Follow Playback Page

@ w2 M3

Global Scroll
Global Zoom
Follow Playback Page

1See here for web link to other examples of embedded image
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Filtering in the Frequency Domain

Low Pass Filter The term watershed

. . , ) .. refers to aridge that ...
Example: Audio Hiss, 'Salt and Pepper’ noise in

: =
Q
images, 8
SE
BoE
Noise: 052
Eo >
. . e BEx
m The idea with noise Filtering is to reduce TE 9
o 0 . iTT
varlc.>us spurious effects of a local nature in e L
the image, caused perhaps by refers to aridge that ...

B noise in the acquisition system,

m arising as a result of transmission
of the data, for example from a
space probe utilising a low-power
transmitter.

-
c
@
o]

Ey
CE
a8
2%

T >
@ ®

£5
T>
TT

... divides areas
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Frequency Space Filtering Methods

Low Pass Filtering — Remove Noise

Noise = High Frequencies:
® In audio data many spurious peaks in over a short timescale.

m In an image means there are many rapid transitions (over a short

distance) in intensity from high to low and back again or vice versa,

as faulty pixels are encountered.

m Not all high frequency data noise though!

Therefore noise will contribute heavily to the high frequency
components of the signal when it is analysed in Fourier space.

Thus if we reduce the high frequency components — Low-Pass Filter
should (if tuned properly) reduce the amount of noise in the data.
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(Low-pass) Filtering in the Fourier Space

Low Pass Filtering with the Fourier Transform

We filter in Fourier space by computing

G(u,v) = H(u,v)F(u,v)

where:

m F(u,v) is the Fourier transform of the original image,

m H(u,v) is a filter function, designed to reduce high
frequencies, and

m G(u,v) is the Fourier transform of the improved
image.

m Inverse Fourier transform G(u, v) to get g(x,y) our
improved image
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|deal Low-Pass Filter

We need to design or compute H(u, v)

m If we know h(x, y) or have a discrete sample of h(x, y)
can compute its Fourier Transform

m Can simply design simple filters in Frequency Space

The simplest sort of filter to use is an ideal low-pass filter,
which in one dimension appears as :

H()
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|deal Low-Pass Filter (2)

How the Low Pass Filter Works with Frequencies

2.0
H(u)|

This is a function, H(u), which is a top-hat 1 for u between 0
and ug, the cut-off frequency, and zero elsewhere.

m So all frequency space information above v is
discarded, and all information below uy is kept.

m A very simple computational process.

CM3106 Chapter 2 Filtering in the Frequency Domain 74



Ideal 2D Low-Pass Filter

Ideal 2D Low-Pass Filter

The two dimensional version of this is the Low-Pass Filter:

i, ) = 1 if Ve +v2 < w
771 0 otherwise,

where wy is now the cut-off frequency for both dimensions.

m Thus, all frequencies inside a radius w; are kept, and
all others discarded.
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Not So Ideal Low-Pass Filter? (1)

In practice, the ideal Low-Pass Filter is no so ideal

The problem with this filter is that as well as noise there may
be useful high frequency content:

m In audio: plenty of other high frequency content: high
pitches, rustles, scrapes, wind, mechanical noises, cymbal

crashes etc.

m In images: edges (places of rapid transition from light
to dark) also significantly contribute to the high
frequency components.

Choosing the most appropriate cut-off frequency is not so
easy
m Similar problem to choosing a threshold in image
thresholding.
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Not So Ideal Low-Pass Filter? (2)

What if you set the wrong value for
the cut-off frequency?

If you choose the wrong cut-off
frequency an ideal low-pass filter
will tend to blur the data:

m High audio frequencies become
muffled

m Edges in images become blurred.

The lower the cut-off frequency is
made, the more pronounced this
effect becomes in useful data content
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|deal Low Pass Filter Example 1

a) Input Image b) Image Spectra

) Ideal Low Pass Filter ) Filtered Image
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|deal Low-Pass Filter Example 1 MATLAB Code

lowpass.m:

% Compute Ideal Low Pass Filter
u0 = 20; 7 set cut off frequency
% Create a white boz on a

% black background image (M-1);

M = 256; N = 256; :(N-1);
image = zeros(M,N) idx=find(u>M/2);
box = ones(64,64); u(idx)=u(idx)-M;
Zboz at centre idy=find(v>N/2);
image(97:160,97:160) = box; v(idy)=v(idy)-N;
[V,U]l=meshgrid(v,u);
7 Show Image D=sqrt(U. 2+V."2);
H=double (D<=u0) ;
figure(1);
imshow (image) ; % display
figure(3);
% compute fft and display its spectra imshow (fftshift (H));
F=fft2(doub1e(image)); 7% Apply filter and do inverse FFT
figure(2); G=H.*F;
imagesc((abs (fftshift (F))/(M*N))); g=real (ifft2(double(G)));
colormap(jet);
axis off; % Show Result
’ figure(4);
imshow(g) ;
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|deal Low Pass Filter Example 2

The term watershed
refers to a ridge that ...

drained by different

... divides areas
river systems.

(a) Input Image (b) Image Spectra

The term watershed
refers to a ridge that ...
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(c) Ideal Low-Pass Filter (d) Filtered Image
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|deal Low-Pass Filter Example 2 MATLAB Code

lowpass2.m

% Compute Ideal Low Pass Filter
u0 = 50; 7 set cut off frequency

0:(M-1);

N-1);

ind (uw>M/2);
u(idx)=u(idx)-M;
idy=find (v>N/2);
v(idy)=v(idy)-N;
[V,U]=meshgrid(v,u);
D=sqrt(U. 2+V."2);

% read in MATLAB demo text image
image = imread('text.png');
[M N] = size(image)

% Show Image

figure(}); H=double (D<=u0) ;
imshow (image) ;
. 7% display
7% compute fft and display its spectra figure(3);

imsh fftshift(H));
F=fft2(double(image)); inshoR(FEehif ()
figure(2); y

Y Appl it d d FFT
imagesc((abs (fftshift (F))/(M*N))); é=HP£F? RECE (G2 (8 Bt
:;1:1‘::};'(35'5) 8 g=real (ifft2(double(G)));

7 Show Result
figure(4);
imshow(g) ;

Chapter 2 Filtering i

81



http://users.cs.cf.ac.uk/Dave.Marshall/CM2208/MATLAB/Fourier_Transform/lowpass2.m

Low-Pass Butterworth Filter (1)

We introduced the Butterworth Filter with IIR/FIR Filters
(Temporal Domain Filtering). Let's now study it in more
detail.

m Much easier to visualise in Frequency space

2D Low-Pass Butterworth Filter

Another popular (and general) filter is the Butterworth low
pass filter.

In the 2D case, H(u, v) takes the form

1

V) = T s ey

where n is called the order of the filter.
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Low-Pass Butterworth Filter (2)

Visualising the 1D Low-Pass Butterworth Filter

This keeps some of the high frequency information, as illustrated
by the second order one dimensional Butterworth filter:

H(u)

0

Consequently reduces the blurring.

m Blurring the filter — Butterworth is essentially a smoothed
top hat functions — reduces blurring by the filter.
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Low-Pass Butterworth Filter (3)

Visualising the 2D Low-Pass Butterworth Filter
The 2D second order Butterworth filter looks like this:

m Note this is blurred circle — blurring of the ideal 2D
Low-Pass Filter.
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Butterworth Low Pass Filter Example 1 (1)

a) Input Image

b) Image Spectra

) Butterworth Low-Pass
Fllter

) Filtered Image
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Butterworth Low-Pass Filter Example 1 (2)

Comparison of Ideal and Butterworth Low Pass Filter:

Ideal Low-Pass Butterworth Low-Pass
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Butterworth Low-Pass Filter Example 1 (3)

% Load Image and Compute FFT as

% in Ideal Low Pass Filter Ezample 1
% Compute Butterworth Low Pass Filter
u0 = 20; 7 set cut off frequency

u=0: (M-1);
v=0:(N-1);
idx=find(u>M/2);
u(idx)=u(idx)-M;
idy=find (v>N/2);
v(idy)=v(idy)-N;
[V,U]=meshgrid(v,u);

for i = 1: M
for j = 1:N
ZApply a 2nd order Butterworth
UVw = double((U(i,j)*U(i,j) + V(i,j)*V(i,j))/(u0*u0));
H(@i,j) = 1/(1 + UVw*UVw);
end
end
% Display Filter and Filtered Image as before
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Low-Pass Butterworth Filter Example 2 (1)

The term watershed
refers to aridge that ...

divides areas
drained by different
river systems.

(a) Input Image

(b) Image Spectra

The term watershed
refers to aridge that ...
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(c) Butterworth Low-Pass

Eiftor (d) Filtered Image
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Low-Pass Butterworth Filter Example 2 (2)

Comparison of Ideal and Low-Pass Butterworth Filter:

The term watershed The term watershed
refers to a ridge that ... refers to aridge that ...
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Butterworth Low Pass Filter Example 2 MATLAB
©

% Load Image and Compute FFT as in Ideal Low Pass Filter
% Ezample 2

7 Compute Butterworth Low Pass Filter
u0 = 50; 7/ set cut off frequency

u=0: (M-1) ;

v=0: (N-1) ;

idx=find (u>M/2);
u(idx)=u(idx)-M;
idy=find (v>N/2);
v(idy)=v(idy)-N;
[V,U]l=meshgrid(v,u);

fori=1: M
for j = 1:N
ZApply a 2nd order Butterworth
UVw = double((U(i,j)*U(i,j) + V(i,j)*V(i,j))/(u0*u0));
H(i,j) = 1/(1 + UVwxUVw);
end
end
% Display Filter and Filtered Image as before
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Low Pass Filtering Noisy Images

How to create noise and results of Low Pass Filtering

Use Matlab function, imnoise() to add noise to image
(lowpass.m, lowpass2.m):

The term watershed
refers to a ridge that ...

The term watershed
refers to aridge that ...
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(b) Deconvolved Noisy Image (Low Cut Off)

The term watershed
refers to aridge that ...

(a) Input Noisy Image

The term watershed
refers to aridge that ...
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(c) Input Noisy Image (d) Deconvolved Noisy Image (Higher Cut Off)
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Other Filters

Other Filters

High-Pass Filters — opposite of low-pass, select high
frequencies, attenuate those below wyg

Band-pass — allow frequencies in a range up . .. u; attenuate
those outside this range

Band-reject — opposite of band-pass, attenuate frequencies
within g ... u; select those outside this range

Notch — attenuate frequencies in a narrow bandwidth
around cut-off frequency, ug

Resonator — amplify frequencies in a narrow bandwidth
around cut-off frequency, ug
Other filters exist that essentially are a combination/variation
of the above
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High Pass Filtering

Easy to Implement from the above Low Pass Filter

A High Pass Filter is usually defined as 1 - low pass =1 — H:

The term watershed
refers to aridge that ...
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(a) Input Image

The term watershed
refers to aridge that ...

(b) High Pass Filtered Image
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(c) Input Noisy Image (d) High Pass Filtered Noisy Image
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Convolution

Many Useful Applications of Convolution

Several important audio and optical effects can be described in
terms of convolutions.

m Flltering — In fact the above Fourier filtering is
applying convolutions of a low pass filter where the
equations are Fourier Transforms of real space
equivalents.

m Deblurring — high pass filtering

m Reverb — impulse response convolution (more soon).

Note we have seen a discrete real domain example of
Convolution with Edge Detection.
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Formal Definition of 1D Convolution:

Let us examine the concepts using 1D continuous functions.

The convolution of two functions f(x) and g(x), written
f(x) * g(x), is defined by the integral

(o)

F(x) * g(x) = / F(a)g(x — o) da.

— 00

m * is the mathematical notation for convolution.

No Fourier Transform in sight here — but wait!
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1D Convolution Real Domain Example (1)

Convolution of Two Top Hat Functions

For example, let us take two top hat functions:

Let f(«) be the top hat function shown:

1 iflal <1
fla) = { 0 otherwise,

and let g(«) be as shown in next slide, defined by

() { 12 fo<a<i
g\ =1 o otherwise.
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1D Convolution Example (2)

Our Two Top Hat Functions Plots

fla) = 1 if o] <1 () = 172 if0<a<l1
=% o0 otherwise, g\ =1 o otherwise.
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1D Convolution Example (3)

The Convolution Process: Graphical Interpretation

m g(—a) is the reflection of this
function in the vertical y-axis,

m g(x — «) is the latter shifted
to the right by a distance x.

1.0

m Thus for a given value of x,
f(a)g(x — «) integrated over all
« is the area of overlap of these
two top hats, as f(«) has unit
height.

m An example is shown for x in the
range —1 < x < 0 opposite

-5.0 x0.0 5.0
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1D Convolution Example (4)

So the solution is:

If we now consider x moving from —oo to +00, we can see
that

m For x < —1 or x > 2, there is no overlap;

m As x goes from —1 to 0 the area of overlap steadily
increases from 0 to 1/2;

m As x increases fromQ to 1, the overlap area remains at
1/2;

m Finally as x increases from 1 to 2, the overlap area
steadily decreases again from 1/2 to 0.

m Thus the convolution of f(x) and g(x), f(x) * g(x), in
this case has the form shown on next slide
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1D Convolution Example (5)

-5.0 0.0 5.0

Result of f(x) * g(x)
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1D Convolution Example (6)

Mathematically the convolution is expressed by:

(x+1)/2 if-1<x<0

_ 1/2 ifo<x<1
F)xe()=9 1242 if1<x<2
0 otherwise.
1.0
-5.0 0.0 5.0
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Fourier Transforms and Convolution

Convolution Theorem: Convolution in Frequency Space is Easy

One major reason that Fourier transforms are so important in
signal /image processing is the convolution theorem which
states that:

If f(x) and g(x) are two functions with Fourier transforms
F(u) and G(u), then the Fourier transform of the convolution
f(x) * g(x) is simply the product of the Fourier transforms of
the two functions, F(u)G(u).

CM3106 Chapter 2 Filtering in the Frequency Domain 102



Fourier Transforms and Convolution (Cont.)

Recall our Low Pass Filter Example (MATLAB CODE)

% Apply filter
G=H.x*F;

Where F was the Fourier transform of the image, H the filter
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Computing Convolutions with the Fourier

Transform

Example Applications:

m To apply some reverb to an audio signal.
m To compensate for a less than ideal image capture system.

More soon.
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Example Applications (Cont.)

Deconvolution: Compensating for undesirable effects

To do this fast convolution we simply:
m Take the Fourier transform of the audio/imperfect image,

m Take the Fourier transform of the function describing the effect
of the system,

m Multiply by the effect to apply effect to audio data

m To remove/compensate for effect: Divide by the effect to obtain
the Fourier transform of the ideal image.

m Inverse Fourier transform to recover the new improved audio
image.

This process is sometimes referred to as deconvolution.
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Image Deblurring Deconvolution Example

Inverting our Previous Low-Pass Filter

Recall our Low Pass (Butterworth) Filter example of a few slides ago: butterworth.m:
deconv.m and deconv2.m reuses this code and adds a deconvolution stage:

m  Our computed butterworth low pass filter, H is our blurring function
m  So to simply invert this we can divide (as opposed to multiply) by H with the blurred image G —
effectively a high pass filter

Ghigh = G./H;
ghigh=real (ifft2(double(Ghigh)));
figure(5)
imshow(ghigh)
m In this ideal example we clearly get F back and to get the image simply to inverse Fourier Transfer.

In the real world we don't really know the exact blurring function H so things are not so easy.

(a) Input Image (b) Blurred Low-Pass Filtered Image (c) Deconvolved Image
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deconv2.m results

The term watershed The term watershed The term watershed
refers to aridge that ... refers to aridge that ... refers to aridge that ...

drained by different
river systems.
drained by different
river systems.
divides areas
drained by different

... divides areas
river systems.

.. divides areas

(a) Input Image (b) Blurred Low-Pass Filtered Image (c) Deconvolved Image
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Deconvolution is not always that simple!

The term watershed
refers to a ridge that ...

drained by different

... divides areas
river systems.

(a) Input Image (b) Deconvolved Image

The term watershed
refers to aridge that ...
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(c) Input Noisy Image (d) Deconvolved Noisy Image
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