
Multimedia
Module No: CM3106

Laboratory Worksheet Lab 6 (Week 7):
Basic Compression Algorithms

Dr. Kirill Sidorov

Aims and Objectives

After working through this worksheet you should be familiar with:

• Entropy coding methods.

• LZW Compression Algorithm.

• Basic transform coding for images.

• The basic use of MATLAB to investigate the above.

None of the work here is part of the assessed coursework for this module.

1

Basic Compression in MATLAB

1. Preliminaries.

• Download basic compression lab.zip from the CM3106 web site.

• Uncompress and install in an appropriate MATLAB accessible directory.

2. Entropy Coding.

(a) • Recall the formula for Shannon’s entropy and implement it in MATLAB (one
liner!). Alternatively. . .
• Open and examine ent.m (computes Shannon entropy for a string or a vector)

and probs.m (estimates probabilities by counting frequencies). To get some
intuition, try computing entropies for your own strings, chaotic as well fairly
regular e.g. AAABAAABCC. . .
What observations can you make?
• Open, examine, and run coin.m which plots the entropy of a biased coin as

a function of bias, thus convincing yourself that the entropy is highest (1 bit)
when the coin is fair.
Optional: write a piece of code to plot the entropy of a three-sided die (with some
probabilities p1 + p2 + p3 = 1), in a similar fashion. Since this will be a function
of two variables (biases), you may need to use the surf command for plotting.
When is the entropy the highest? What about n-sided die?

(b) For symbols with frequencies {6, 2, 6, 3, 12} manually work out codewords using
Shannon-Fano and Huffman algorithms. Verify your solution in MATLAB using the
provided huffman.m and shannon_fano.m. Read through these functions and
compare their operation with your lecture notes.

(c) Investigate how economically can English text be encoded with these algorithms.
Assume, as an approximation, a basic 0-order Markov model for English (i.e. all
letters are i.i.d.) and for simplicity assume alphabet A. . . Z with no special characters.
The letter frequencies for English are found in engfreq.m.

• Build a codeword dictionary using Huffman algorithm, hence compute how
many ones and zeros does it take, on average, to encode a letter using Huffman.
• Compare this result with Shannon’s limit.
• Build a dictionary using Shannon-Fano algorithm and compare its efficiency

with Huffman.
• Optional: repeat the same experiment for Klingon.

(d) Investigate how economical Morse code is.

• Compute how many dots/dashes are required on average to encode a letter
using Morse code (you will find Morse code lengths in engfreq.m).
• Compare your result with the above results for Huffman. What do you observe?

Why is this the case?

2

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/basic_compression_lab.zip

• How would you make the comparison more fair (Hint: what is the fundamental
difference between Morse code and Huffman code?).

(e) Open arith_vs_huffman.m and read through it. It encodes a string (produced by
0-order Markov process, with frequencies defined by freq variable) using Huffman
and Arithmetic Coding and compares the resulting lengths.

• Explain the observed differences.
• Try running this example with other frequencies and note the results.
• Can you change the frequencies so as to make Huffman fail more miserably

relative to Arithmetic Coding?
• Optional: take a very long English text and compare the performance of Arith-

metic Coding vs Huffman. How does it behave as the text gets longer?

3. LZW Compression.

(a) In MATLAB, cd to the lzw directory1. The demo file lzw_demo.m reproduces
the example discussed in the lecture notes .

• Open the file in MATLAB
– Examine the lzw_demo.m code and familiarise yourself with the func-

tions called and the variables used.

(b) Run lzw_demo.m example and note the output.

• Examine the lzw_compress.m LZW encoder code. Compare this to the
pseudocode given in lecture.
• Examine the lzw_decompress.m LZW decoder code. Compare this to the

pseudocode given in lecture.

(c) Input and encode/decode your own character sequences. Try and design se-
quences that build up a set of repetitions to see the code working most effectively.
Observe and explain the performance of LZW on a string of the same repeated
character, i.e. AAAAAA. . . .

(d) Optional: To better remember the algorithm, pick a string e.g. BANANA BANDANA
and manually compress and decompress it with LZW. Verify your result by run-
ning the provided MATLAB code on the same string.

1The lzw new directory contains a modified version of this demo with an alternative (easier to read) trace
output and uses the initial dictionary of only the characters present in the string.

3

http://www.cs.cf.ac.uk/Dave/Multimedia/PDF/09_Basic_Compression.pdf

4. Basic Transform Coding.

(a) Open and examine simpletrans.m. This implements the basic example we
considered in the lectures: taking advantage of correlation between the colours of
adjacent pixels.
The simpletransquant.m demo additionally uses quantisation.

• Run these demos and explain the output.
• Plot the histograms (using hist command) for the original pixel colours, and

for the differences. What do the observed histograms tell you about coding
efficiency?
• Try using different quantisation constants and note the compression ratios vs

image quality.

(b) Optional: Examine the following useful transform algorithms (we did not cover
these in lectures, but it is good to be aware of them. These will not be in the exam.)

• Burrows-Wheeler transform.
See http://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_
transform
I am providing the implementation in bwt.m and (inverse) ibwt.m. Inves-
tigate whether text pre-transformed with BWT is indeed easier to compress
with the algorithms already known to you than the raw text.
• Try you hand at implementing the move-to-front transform. See http://en.
wikipedia.org/wiki/Move-to-front_transform and also answer
the question above.

4

http://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
http://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
http://en.wikipedia.org/wiki/Move-to-front_transform
http://en.wikipedia.org/wiki/Move-to-front_transform

