
Multimedia
Module No: CM3106

Laboratory Worksheet Lab 3 (Week 4):
MATLAB Digital Audio Synthesis (Part 1)

Prof. D. Marshall

After working through this worksheet you should be familiar with:

• The basic theories of digital audio synthesis: Subtractive, Additive
and FM Synthesis

• The basic implementation of digital synthesis (Subtractive, Additive
and FM Synthesis) techniques in MATLAB.

None of the work here is part of the assessed coursework for this
module ALTHOUGH many of the exercises below will help in parts of
of your solution for the assessed coursework

1



MATLAB Basic Digital Audio Synthesis

Zip file for all Digital Audio Synthesis examples is available here.

1. Subtractive Synthesis: Create a square wave and sawtooth wave
signal at a given frequency. Now apply a low pass/high pass fil-
ter/bandpass filter at different cut-off/centre frequencies. to this
data. Listen to and also display the waveforms you produce. (Hint:
Download the subtract synth.m demo from the lectures and simply
modify some parameters. Also look at the synth.m function it uses
to create assorted waveforms.)

2. Subtractive Synthesis: Create a white noise signal (randomised data).
Now apply a low pass/high pass filter/bandpass filter at different
cut-off/centre frequencies. to this data. Listen to and also display the
waveforms you produce. Also modulate the cut-off frequencies in
the filters. Using these techniques try simulate the sound of aircraft,
ocean waves and/or wind.

3. ADSR: Implement an ADSR MATLAB function that takes in as in-
put parameters: an input waveform, the attack, delay, sustain and
release parameters in milliseconds (or sample duration) and gain pa-
rameter as a percentage of the overall gain and outputs an waveform
with the ADSR envelope applied.
(Note: This functionality is required as part of the assessed course-
work requirements also).

4. Additive Synthesis: Using the MATLAB lecture example code
additive synth.m as a basis experiment with adding square, sawtooth
and sine waves together to create some new waveforms.

5. Additive Synthesis: Perform additive synthesis in Fourier space.
Take two simple waveforms (not all sines of cosines) and/or some
audio samples and compute their Fourier transforms. Filter the Fourier
transformed waveforms into discrete frequency bands, for example,
0-200 Hz,200-300Hz, 400-500Hz etc. or in bands which are steps up
from the input waveform frequency.

Add only certain bands together: write a MATLAB function that for
each frequency band it applies some weight (gain) and adds the two

2

http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth.zip
http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/subtract_synth.m
http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/synth.m
http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/additive_synth.m


frequency space waveforms together. Weights can be 0 (i.e. filter) or
any other values so that different bands can be mixed in any linear
combination.

Inverse Fourier transform the results and listen (and display) to the
outputs. Try a few variations on the above.

6. FM Synthesis Using the lecture example MATLAB code fm eg.m change
the following parameters as given in the MATLAB code fragment be-
low:

fs = 22050;
T = 1/fs;
dur = 7.0;
t = 0:T:dur;
T60 = 1.0;
env = 0.95*exp(-t/T60);

% FM parameters
fc = 200;
fm = 280;
Imax = 10;
I = Imax.*env;

Apply the basic FM synthesis equation as given in fm eg.m. What
does the output sound like?

7. FM Synthesis Using the lecture example MATLAB code fm eg.m change
the following parameters as given in the MATLAB code fragment be-
low:

fs = 22050;
T = 1/fs;
dur = 0.2;
t = 0:T:dur;
T60 = 0.1*dur;
env1 = exp(-t/T60);
env2 = 1.0 - t./(0.2*dur);
env2 = env2 .* (1.0 + sign(env2))/2.0;

3

http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/fm_eg.m
http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/fm_eg.m
http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/fm_eg.m


% FM parameters
fc = 80;
fm = 55;
Imax = 25;
I = Imax.*env2;

Apply the basic FM synthesis equation as given in fm eg.m but mod-
ified so that env1 modifies the amplitude of the basic FM equation,
ı.e.:

y = env1.*sin(2*pi*fc*t + I.*sin(2*pi*fm*t));

What does the output, y, sound like?

4

http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/fm_eg.m

