
Multimedia
Module No: CM3106

Laboratory Worksheet Lab 1 (Week 2):
MATLAB Basic Digital Signal Processing:

Filters and the Fourier Transform

Prof. D. Marshall

Some of exercises are revised from CM0268. Some exercises (Fourier)
are new. You should make sure you are familiar with all the concepts below as
these are essential for understanding the forthcoming lectures of Audio Synthesis
(and later MPEG) and the imminent coursework.

After working through this worksheet you should be familiar with:

• The creation, display and audio output of basic waveforms in
MATLAB.

• The effect of basic lowpass, highpass and bandpass type filters on
simple waveforms and audio.

• The creation and application of Infinite and Finite Impulse Response
(IIR/FIR) Filters in MATLAB.

• The basic theory of frequency space transforms

• The basic operation of Fourier in MATLAB.

• How to display and visualise frequency space in MATLAB

• How to apply filters in frequency space

All Lab Materials available at:
http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/PDF/tutorial.html

All Lab class support files available as a zip download
None of the work here is part of the assessed coursework for this

module

1

http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/PDF/tutorial.html
http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Basic_DSP_FFT.zip

MATLAB Basic Digital Signal Processing

1. Basic Waveform creation and display: Create respective sine, co-
sine, square and sawtooth wave forms each at the frequencies of 220
Hz, 440 Hz, 880 Hz. (You may choose appropriate sample frequen-
cies and duration).

• Display these waveforms in individual MATLAB figures.

• Play each of these waveforms using MATLAB audio output.

• Display each class of waveform (i.e. all sines, cosines etc.) in a
single MATLAB figure — one figure for each class. Make sure
each waveform is easily read in the figure.

• Using subplot display all individual classes (as above) in a
single MATLAB figure.

• Add all the component sine wave forms together and display
and output the sound of the resultant wave. Do the same for
cosine, square etc.
(Note: This is the essence of Additive Synthesis which we will
study shortly.)

• Add all the component sine and cosine wave forms together
and display and output the sound of the resultant wave.
(This is clearly also an example of Additive Synthesis.)

2. Infinite/Finite Impulse Response Filters: With reference to the lec-
ture MATLAB demo IIRdemo.m and subtract synth.m and also built in
MATLAB Signal Processing Toolbox help and demos:

• Create a 2nd order Butterworth IIR/FIR lowpass filter (see help
butter) and apply it to the waveform as in subtract synth.m.
Display the result.

• Create a 4th order Butterworth IIR/FIR lowpass filter (see help
butter) and apply it to the waveform as in subtract synth.m.
Display the result. Compare it to the 2nd order filter above.

• By loading in the inbuilt handel audio data (load handel) or
importing any other wav file:

2

http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Basic_DSP/IIRdemo.m
http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/subtract_synth.m
http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/subtract_synth.m
http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/subtract_synth.m

– Apply a 2nd order Butterworth IIR lowpass filter of varying
frequencies form say 32 Hz to 16 KHz at intervals of 32, 125,
500, 1K, 2K, 4K and 16K Hz. Display and audition the audio
results obtained by the filter.

– Create a 2nd order Butterworth IIR highpass filter and ap-
ply to the audio data over the same frequency intervals as
above. Display and audition the audio results obtained by
the filter.

– Create a 2nd order Butterworth IIR bandstop (see help
butter/buttord) filter between respective frequency in-
tervals as above.

– Create a 2nd order Butterworth IIR bandpass (see help
buttord) filter between respective frequency intervals as
above.

(Note: This is the essence of Subtractive Synthesis which we will
study shortly.)

Fourier Transform

1. Compute the forward Fourier transform of f(x) = cos(2πfx), for
some given frequency, f , (using Phasor Notation), change the phase
(rotate in Fourier Space) of this result by 90◦ anticlockwise (Hint:
Think Phasors) and compute its inverse Fourier transform. Display
the resultant waveform. What should this waveform be?
(see fft phase eg.m example code.)

2. fftshift(): Look up MATLAB help fftshift and also doc
fftshift. The use of this function is probably one the most con-
fusing aspects of understanding Fourier theory and its implemen-
tation in MATLAB (infact this type of computation arises in many
other FFT implementations also). Most computations of FFT repre-
sent the frequency from 0 – N − 1 samples with corresponding fre-
quencies ordered accordingly. Therefore the 0 frequency is not really
the centre. We frequently like to visualise the FFT as the centre of the
spectrum. fftshift() rearranges the outputs of fft, fft2, and fftn
by moving the zero-frequency component to the center of the array.

3

http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Frequency_Domain/fft_phase_eg.m

This is possible due the invariant shift property of the Fourier Trans-
form (http://en.wikipedia.org/wiki/Discrete Fourier transform)
Note: for filtering and other similar processing it is does not matter
which method of FFT ordering you use so long as you can compute
the frequency ‘coordinates’ correctly for each method.
(See lowpass.m for example use of fftshift())

(a) Create a white square on a black background image (Hint: use
ones() and zeros() computer the FFT of this image. Dis-
play the magnitude spectrum of the image with and without
fftshift() applied. Note the differences in display.

(b) Load in an Image into MATLAB, compute its FFT. Display the
magnitude spectrum of the image with and without fftshift()
applied. Note the differences in display.

3. Create a sine wave of frequency 440Hz and of 1/4 second duration at
sample rate 11.025KHz sample rate and store it in a MATLAB array,
perform the Fourier transform on the array. Plot the a graph of the
Fourier magnitude spectrum. Label the x-axis with suitable frequen-
cies. Check you have the peak of the plot labelled correctly. Plot a
spectrogram of the array. (Hint: to force efficient fast Fourier transform
computation round the array size to a power of two before you call
the MATLAB fft() function — always try to do this)
(See fourierspectraeg.m for example)

4. Create a square wave of frequency 440Hz and of 1/4 second dura-
tion at sample rate 11.025KHz sample rate and store it in a MATLAB
array, perform the Fourier transform on the array. Plot the a graph
of the Fourier magnitude spectrum. Label the x-axis with suitable fre-
quencies. Check you have the peak of the plot labelled correctly. Plot
a spectrogram of the array.

• Now perform a lowpass filter in this waveform. Set a cut-off
frequency of around 100-200Hz, experiment with different cut-
off frequency values. (See lowpass.m for an example)
(Note: This is the essence of Subtractive Synthesis which we will
study shortly.)

4

http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Frequency_Domain/lowpass.m
http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Frequency_Domain/fourierspectraeg.m
http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Frequency_Domain/lowpass.m

5. Load some audio data, compute the FFT of the audio data apply an
ideal lowpass filter and butterworth filter with a cut-off frequency of
240Hz to the data. By plotting the waveforms and listening to the
audio output of both files compare the two outputs.

6. Load some audio data, compute the FFT of the audio data apply an
ideal highpass filter and butterworth filter with a cut-off frequency of
240Hz to the data. By plotting the waveforms and listening to the
audio output of both files compare the two outputs.

7. Load some audio data, compute the FFT of the audio data parti-
tion the data into respective filter bands of 0-200Hz,200-400Hz,400-
800Hz,800-1200Hz and 1200Hz and above. Audition each band sep-
arately.
(Note: This implements a bandpass filter — This technique will be
useful later for MP3 audio compression and related techniques but
with different frequency bandwidths.)

8. Using the Daphex.m and im2sound.m code as an example, use any
photograph of your choice and embed it in a spectrogram. Experi-
ment with im2sound’s parameters to note the different spectrogram
and also output audio. Note: please email any suitable good exam-
ples to me — include the original image and the parameters used for
im2sound, or any modified code used to create this result.

5

http://users.cs.cf.ac.uk/Dave.Marshall/CM2208/MATLAB/Fourier_Transform/Daphex.m
http://users.cs.cf.ac.uk/Dave.Marshall/CM2208/MATLAB/Fourier_Transform/im2sound.m

Further Practice

MATLAB Basic Digital Signal Processing

1. Using MATLAB’s Symbolic Toolbox fourier() function — see help/doc
fourier— evaluate the Fourier transform of the following functions:

(a) f(x) = xe−|x|
(b) f(x) = e−x

2

(c) f(x) = eax
2 , where a is a constant.

(d) f(x) = xn, for some integer, n.

2. Using MATLAB’s Symbolic Toolbox ifourier() function — see
help/doc ifourier evaluate the inverse Fourier transform of the
following functions:

(a) F (u) = e
−u2

2 ,

(b) F (u) = e−|u|

3. Create a sawtooth wave of frequency 440Hz and of 1/4 second dura-
tion at sample rate 11.025KHz sample rate and store it in a MATLAB
array, perform the Fourier transform on the array. Plot the a graph
of the Fourier magnitude spectrum. Label the x-axis with suitable fre-
quencies. Check you have the peak of the plot labelled correctly. Plot
a spectrogram of the array.

4. Load an audio sample of data into a MATLAB array. Perform the
Fourier transform on the array. Plot the a graph of the Fourier mag-
nitude spectrum. Label the x-axis with suitable frequencies. Check
you have the peak of the plot labelled correctly. Plot a spectrogram of
the array.

6

