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Motivation

Suppose we want to search a multimedia database.

Applications:

• Medicine: �nd similar diagnostic images.
• Crime: �nd person according to mugshot, �ngerprints, sketch, or

verbal description.
• Art: search museum collection of paintings.
• Copyright: who used my images without permission?
• Retail: �nd shoes similar to these ones, only red.



Traditional techniques

• Text-based multimedia search and retrieval:
• Annotations (metadata).
• File names. Keywords. Captions. Surrounding text. Photography

conditions. Geo tags. Creation date.
• Verbal portrait in the police database.

• Usually does a very good job provided the annotations are accurate
and detailed.
• E.g. google image search, youtube video search.
• Disadvantages:

• Manual annotation requires vast amount of labour.
• Di�erent people may perceive the contents of images di�erently: no

objectivity in keywords/annotations.



Traditional techniques



Traditional techniques

Describe in words what is happening in this image!



How do humans compare images?
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Content-based image retrieval

• Low-level: based on color, texture, shape features.
• Find all images similar to given query image.
• Search by sketch.
• Search by features e.g. “�nd all green images with texture of leaves”.
• Check whether image is used without permissions.
• Images are compared based on low-level features, no semantic

analysis involved.
• A lot of research since 1990’s. Feasible task.

• Mid-level: semantics come into play
• E.g. “�nd images of tigers”.
• Very active and challenging research area.

• High-level:
• E.g. “�nd image of a triumphant woman”.
• Requires very complex logic.
• Far from being available at present level of technology.



Image retrieval



CBIR framework example



Naive per-pixel comparison

• Pixels are the most privitive features, so. . .
• Compare images on a per-pixel basis.
• Feature vector: raw array of pixel intensities.

D(I,Q) =
∑
r

∑
c

dc(I(r, c), Q(r, c)).

Bad Idea!

Why?q



Image/audio �ngerprints

A �ngerprint is a content-based compact signature that summarises
some speci�c audio/video content.

Requirements:
• Discriminating power.

• Ability to accurately identify an item within a huge number of other
items (e.g. large audio collection in Shazam, millions of songs).

• Low probability of false positives.
• Query potentially has low information content: a few seconds of

audio, a crude sketch of an image.



Image/audio �ngerprints

• Invariance to distortions.
• Shazam audio query may be distorted and superimposed with other

audio sources.
• Background noise.
• Transformations: image rotation/scale/translation, warping.

Lighting variations. Audio may be played faster or slower.
• Compression artifacts
• Cropping, framing.

• Compactness.
• Making indexing feasible.
• Allowing for fast search.

• Computational simplicity.
• E.g. for use on mobile devices.



Feature extraction in images

• Object identi�cation, e.g.
• Detect faces (realatively robust these days).
• Segmentation into blobs.
• Text detection/OCR.
• General case is di�cult.

• Colour statistics, e.g. histogram (3-dimensional array that counts
pixels with speci�c RGB or HSV values in an image.)
• Colour layout, e.g. “blue on top, green below”.
• Texture properties, usually based on edges in image.
• Motion information (in videos).



Search by colour histogram

Search by colour histogram of sunset
(scores shown under images).



Histogram comparison

• For each i-th training image generate colour histogram Hd.
• Normalise it so that is sums to one (to reduce the e�ect of the size

of image).
• Store it as the feature in the database.
• For a query image, also compute histogram Hq .



Histogram comparison

• Compare against the database using histogram intersection:

Intersection =
∑
i

min(H i
d, H

i
q).

For similar histograms (images) the intersection is closer to 1.
• Another standard measure of similarity for color histograms:

Di�erence = (Hd −Hq)
TA(Hd −Hq),

where A is a similarity matrix.
• Or simply L1 norm:

Di�erence =
∑
|H i

d −H i
q|.



Search by colour histogram
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Search by colour layout

• An improvement over basic colour/histogram search.
• The user can set up a scheme of how colors should appear in the

image, in terms of coarse blocks of colour, e.g. on a grid.
• The training images are partitioned into regions and histograms (or

simply average colours) are computed for each region.
• Matching process is similar.



Search by colour layout

Retrieval by “color layout” in IBM’s QBIC system.



Colour signatures and EMD

For each image, compute color signature:

De�ne distance between two color signatures to be the minimum
amount of “work” needed to transform one signature into another (earth
mover’s distance):



Colour signatures and EMD

• Transform pixel colors into CIE-LAB color space.
• Each pixel of the image constitutes a point in this color space.
• Cluster the pixels in color space. (Clusters constrained to not

exceed R units in L,a,b axes.)
• Find centroids of each cluster.
• Each cluster contributes a pair (µ,w) to the signature.
• µ is the average color.
• w is the fraction of pixels in that cluster.
• Typically there are 8 to 12 clusters.



Colour signatures and EMD

[Rubner, Guibas, & Tomasi 1998]



Visualisation using MDS with EMD as Distance

[Rubner, Guibas, & Tomasi 1998]



Search by sketch



Search by shape

(Query shape in top le� corner.)



Projection matching

[Smith & Chang, 1996]

In projection matching, the horizontal and vertical projections of a shape
silhouette form a histogram.
• Weaknesses?
• Strengths?



Area and perimeter

• Circularity (compactness): C = 4π A
P 2 .

• C is 1 for circle, smaller for other shapes.

• Convexity: ratio of perimeter of convex hull and original curve.



Tangent angle histograms



Chain codes

• Sorting chain codes makes them invariant to starting point.
• Use histograms of chain codes.



Curvature



Elastic shape matching

[Del Bimbo & Pala, 1997]



Shape matching problems

Many existing shape matching approaches assume
• Segmentation is given.
• Human selects object of interest.
• Lack of clutter and shadows.
• Objects are rigid.
• Planar (2-D) shape models.
• Models are known in advance.



Texture



Texture

• Texture is a perceptual phenomenon due to local variations in
image intensity.
• Local region property.
• Less local than pixel, more local than objects/entire image.
• Usually repeated pattern with salient statistical properties.



Search by texture

(Query shape in top le� corner.)



Co-occurence

• We can capture some spatial properties of texture with
co-occurence histogram.
• For a displacement vector d = (dx, dy):
• Count in N ×N bins of Q(i, j) how many times gray levels i and j

are separated by displacement d in the image.
• Q captures some spatial information about distribution of gray

levels.
• Statistical properties: entropy−

∑
Q(i, j) logQ(i, j), energy∑

Q2(i, j), contrast
∑

(i− j)2Q(i, j).



Orientation histograms

Determine local orientation and magnitude at each pixel:

If magnitude greater than threshold, increment corresponding histogram
bin. [Freeman & Adelson, 1991]



Blobworld

• Images are segmented on colour plus texture.
• User selects a region of the query image.
• System returns images with similar regions.



Blobworld



Search by text

Parse text, essentially reducing the problem to traditional search.



Representative frames in videos

• Shots are a sequence of contiguous video frames grouped together:
• Same scene.
• Single camera operation.
• Signi�cant event.

• Automatic shot boundary detection:
• Change in global color/intensity histogram.
• Camera operations like zoom and pan.
• Change in object motion.

• Representative frames:
• Video broken into shots, and representative frames are selected.
• Reduce video retrieval problem to image retrieval.
• E.g. �rst, last, middle.



Representative frames in videos
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Content-based audio retrieval

Example scenarios:
• Song stuck in the head:

• Search by humming.
• Search by notes, contour, rhythm. E.g. Musipedia.

• What song is playing now? Search by audio
e.g. Shazam.



Audio search: how Shazam works

• O�-line: a large database of audio recordings (in feature space).
• If metadata available then it is possible to name title, artist etc.

• Query: short audio fragment (5–15 sec). Mobile phone = low quality.
• Goal: identify recording where audio fragment came from.



Shazam �ngerprints

• Experimentation revealed that spectrogram peaks is a good feature:

• Robust to noise, room reverb, equalisation, overlapping sounds.

• A time-frequency point is a candidate peak if it has a higher energy
content than all its neighbours in a region centered around the
point.
• Density: make sure the entire audio covered approximately evenly.
• Choose peaks with higher amplitude. Reason: they are likelier to

survive superposition of another sound.
• Amplitude itself is not part of the �ngerprint.



Shazam �ngerprints (from Müller-Serrà paper)
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Shazam �ngerprints



Further reading

• Original Shazam paper by Wang et al.
• Müller-Serrà paper on audio CBR of music.

http://www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf
http://ismir2011.ismir.net/tutorials/msd_tutorial_ismir11.pdf
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