CM3106 Multimedia **Content-based Retrieval**

Dr Kirill Sidorov SidorovK@cardiff.ac.uk www.facebook.com/kirill.sidorov

> Prof David Marshall MarshallAD@cardiff.ac.uk

School of Computer Science and Informatics Cardiff University, UK

Motivation

Suppose we want to search a multimedia database.

Applications:

- Medicine: find similar diagnostic images.
- Crime: find person according to mugshot, fingerprints, sketch, or verbal description.
- Art: search museum collection of paintings.
- Copyright: who used my images without permission?
- Retail: find shoes similar to these ones, only red.

Traditional techniques

- Text-based multimedia search and retrieval:
 - Annotations (metadata).
 - File names. Keywords. Captions. Surrounding text. Photography conditions. Geo tags. Creation date.
 - Verbal portrait in the police database.
- Usually does a very good job provided the annotations are accurate and detailed.
- E.g. google image search, youtube video search.
- Disadvantages:
 - Manual annotation requires vast amount of labour.
 - Different people may perceive the contents of images differently: no objectivity in keywords/annotations.

Traditional techniques

Traditional techniques

Describe in words what is happening in this image!

Content-based image retrieval

- Low-level: based on color, texture, shape features.
 - Find all images similar to given query image.
 - Search by sketch.
 - Search by features e.g. "find all green images with texture of leaves".
 - Check whether image is used without permissions.
 - Images are compared based on low-level features, no semantic analysis involved.
 - A lot of research since 1990's. Feasible task.
- Mid-level: semantics come into play
 - E.g. "find images of tigers".
 - Very active and challenging research area.
- High-level:
 - E.g. "find image of a triumphant woman".
 - Requires very complex logic.
 - Far from being available at present level of technology.

Image retrieval

CBIR framework example

Naive per-pixel comparison

- Pixels are the most privitive features, so...
- Compare images on a per-pixel basis.
- Feature vector: raw array of pixel intensities.

$$D(I,Q) = \sum_{r} \sum_{c} d_c(I(r,c),Q(r,c)).$$

Bad Idea!

Why?q

Image/audio fingerprints

A fingerprint is a content-based compact signature that summarises some specific audio/video content.

Requirements:

- Discriminating power.
 - Ability to accurately identify an item within a huge number of other items (e.g. large audio collection in Shazam, millions of songs).
 - Low probability of false positives.
 - Query potentially has low information content: a few seconds of audio, a crude sketch of an image.

Image/audio fingerprints

- Invariance to distortions.
 - Shazam audio query may be distorted and superimposed with other audio sources.
 - Background noise.
 - Transformations: image rotation/scale/translation, warping. Lighting variations. Audio may be played faster or slower.
 - Compression artifacts
 - Cropping, framing.
- Compactness.
 - Making indexing feasible.
 - Allowing for fast search.
- Computational simplicity.
 - E.g. for use on mobile devices.

Feature extraction in images

- Object identification, e.g.
 - Detect faces (realatively robust these days).
 - Segmentation into blobs.
 - Text detection/OCR.
 - General case is difficult.
- Colour statistics, e.g. histogram (3-dimensional array that counts pixels with specific RGB or HSV values in an image.)
- Colour layout, e.g. "blue on top, green below".
- Texture properties, usually based on edges in image.
- Motion information (in videos).

Search by colour histogram

Search by colour histogram of sunset (scores shown under images).

Histogram comparison

- For each i-th training image generate colour histogram H_d .
- Normalise it so that is sums to one (to reduce the effect of the size of image).
- Store it as the feature in the database.
- For a query image, also compute histogram H_q .

Histogram comparison

• Compare against the database using histogram intersection:

Intersection
$$= \sum_{i} \min(H_d^i, H_q^i).$$

For similar histograms (images) the intersection is closer to 1.

• Another standard measure of similarity for color histograms: $\text{Difference} = (H_d - H_q)^T A (H_d - H_q),$

where A is a similarity matrix.

• Or simply L_1 norm:

Difference
$$= \sum |H_d^i - H_q^i|.$$

Search by colour histogram

Search by colour histogram

Search by colour layout

- An improvement over basic colour/histogram search.
- The user can set up a scheme of how colors should appear in the image, in terms of coarse blocks of colour, e.g. on a grid.
- The training images are partitioned into regions and histograms (or simply average colours) are computed for each region.
- Matching process is similar.

Search by colour layout

Retrieval by "color layout" in IBM's QBIC system.

Colour signatures and EMD

For each image, compute color signature:

Define distance between two color signatures to be the minimum amount of "work" needed to transform one signature into another (earth mover's distance):

Colour signatures and EMD

- Transform pixel colors into CIE-LAB color space.
- Each pixel of the image constitutes a point in this color space.
- Cluster the pixels in color space. (Clusters constrained to not exceed *R* units in L,a,b axes.)
- Find centroids of each cluster.
- Each cluster contributes a pair (μ, w) to the signature.
- μ is the average color.
- w is the fraction of pixels in that cluster.
- Typically there are 8 to 12 clusters.

Colour signatures and EMD

[Rubner, Guibas, & Tomasi 1998]

Visualisation using MDS with EMD as Distance

[Rubner, Guibas, & Tomasi 1998]

Search by sketch

Example taken from Jacobs, Finkelstein, & Salesin Fast Multi-Resolution Image Querying, SIGGRAPH 1995

Search by shape

(Query shape in top left corner.)

Projection matching

0 4 3 2 1 0

[Smith & Chang, 1996]

In projection matching, the horizontal and vertical projections of a shape silhouette form a histogram.

- Weaknesses?
- Strengths?

Area and perimeter

- Circularity (compactness): $C = 4\pi \frac{A}{P^2}$.
 - C is 1 for circle, smaller for other shapes.
- Convexity: ratio of perimeter of convex hull and original curve.

Tangent angle histograms

Chain codes

Example:

- Sorting chain codes makes them invariant to starting point.
- Use histograms of chain codes.

Curvature

Elastic shape matching

[Del Bimbo & Pala, 1997]

Shape matching problems

Many existing shape matching approaches assume

- Segmentation is given.
- Human selects object of interest.
- Lack of clutter and shadows.
- Objects are rigid.
- Planar (2-D) shape models.
- Models are known in advance.

Texture

Texture

- Texture is a perceptual phenomenon due to local variations in image intensity.
- Local region property.
- Less local than pixel, more local than objects/entire image.
- Usually repeated pattern with salient statistical properties.

Search by texture

(Query shape in top left corner.)

Co-occurence

- We can capture some spatial properties of texture with co-occurence histogram.
- For a displacement vector $\boldsymbol{d} = (d_x, d_y)$:
- Count in $N \times N$ bins of Q(i, j) how many times gray levels i and j are separated by displacement d in the image.
- Q captures some spatial information about distribution of gray levels.
- Statistical properties: entropy $-\sum Q(i,j) \log Q(i,j)$, energy $\sum Q^2(i,j)$, contrast $\sum (i-j)^2 Q(i,j)$.

Orientation histograms

Determine local orientation and magnitude at each pixel:

If magnitude greater than threshold, increment corresponding histogram bin. [Freeman & Adelson, 1991]

Blobworld

- Images are segmented on colour plus texture.
- User selects a region of the query image.
- System returns images with similar regions.

Blobworld

Search by text

Parse text, essentially reducing the problem to traditional search.

Representative frames in videos

• Shots are a sequence of contiguous video frames grouped together:

- Same scene.
- Single camera operation.
- Significant event.
- Automatic shot boundary detection:
 - Change in global color/intensity histogram.
 - Camera operations like zoom and pan.
 - Change in object motion.
- Representative frames:
 - Video broken into shots, and representative frames are selected.
 - Reduce video retrieval problem to image retrieval.
 - E.g. first, last, middle.

Representative frames in videos

Representative frames in videos

Content-based audio retrieval

Example scenarios:

- Song stuck in the head:
 - Search by humming.
 - Search by notes, contour, rhythm. E.g. Musipedia.
- What song is playing now? Search by audio e.g. Shazam.

Audio search: how Shazam works

- Off-line: a large database of audio recordings (in feature space).
 - If metadata available then it is possible to name title, artist etc.
- Query: short audio fragment (5–15 sec). Mobile phone = low quality.
- Goal: identify recording where audio fragment came from.

- Experimentation revealed that spectrogram peaks is a good feature:
 - Robust to noise, room reverb, equalisation, overlapping sounds.
- A time-frequency point is a candidate peak if it has a higher energy content than all its neighbours in a region centered around the point.
- Density: make sure the entire audio covered approximately evenly.
- Choose peaks with higher amplitude. Reason: they are likelier to survive superposition of another sound.
 - Amplitude itself is not part of the fingerprint.

Shazam fingerprints (from Müller-Serrà paper)

Steps:

- 1. Spectrogram
- 2. Peaks

Steps:

- 1. Spectrogram
- 2. Peaks / differing peaks

Robustness:

 Noise, reverb, room acoustics, equalization

Steps:

- 1. Spectrogram
- 2. Peaks / differing peaks

Robustness:

- Noise, reverb, room acoustics, equalization
- Audio codec

Steps:

- 1. Spectrogram
- 2. Peaks / differing peaks

Robustness:

- Noise, reverb, room acoustics, equalization
- Audio codec
- Superposition of other audio sources

Database document

Database document (constellation map)

Query document (constellation map)

Query document

(constellation map)

Query document

(constellation map)

Query document

(constellation map)

Query document

(constellation map)

Query document

(constellation map)

Database document (constellation map)

Query document (constellation map)

- 1. Shift query across database document
- 2. Count matching peaks
- High count indicates a hit (document ID & position)

Further reading

- Original Shazam paper by Wang et al.
- Müller-Serrà paper on audio CBR of music.