
CM3106 Multimedia

Discrete Cosine Transform
Dr Kirill Sidorov

SidorovK@cardiff.ac.uk
www.facebook.com/kirill.sidorov

Prof David Marshall
MarshallAD@cardiff.ac.uk

School of Computer Science and Informatics
Cardi� University, UK

Recap: frequency domain

Frequency domain representations can be obtained through the
transformation from one (time or spatial) domain to the other (frequency) via

• (Discrete) Fourier Transform (DFT) (see Chapter 2 and recall from CM2202) —
used in MPEG Audio.
• (Discrete) Cosine Transform (DCT) (new) — heart of JPEG and

MPEG Video, MPEG Audio.

Strongly recommended MIT video lecture by Prof Walter Lewin:
External Link: MIT OCW 8.03 Lecture 11 Fourier Analysis Video

https://www.youtube.com/watch?v=k3byqIaULb8

Recap: Fourier transform

The technique which converts a spatial (real space) representation of
audio/image data into one in terms of its frequency components is called the
Fourier transform.

The result of the transform version is usually referred to as the Fourier- (or
frequency-) space representation of the signal.
We can then manipulate the signal:

• E.g. for �ltering basically this means attenuating or setting certain
frequencies to zero

We then need to convert data back to real audio/imagery to use in our
applications.

The corresponding inverse transformation which turns a Fourier space
representation back into a real space one is called the inverse Fourier transform.

Little Green Men or pulsars?

FT is absolutely essential in e.g.
astronomy to study periodic pro-
cesses: pulsars, exoplanets.

Tides

Animation

Recap: What do frequencies mean in an image?

• Large values at high frequency components mean the data is changing
rapidly on a short distance scale.
E.g.: a page of small font text, brick wall, vegetation.
• Large low frequency components then the large scale features of the picture

are more important.
E.g. a single fairly simple object which occupies most of the image.

The road to compression

How do we achieve compression?

• Low pass �lter — ignore (or better: store with lower �delity) high frequency
(noise) components
• Only store lower frequency components

• High pass �lter — gradual changes in an image
• If changes are too low/slow — eye does not respond so ignore?

Low pass image compression example

MATLAB demo, dctdemo.m, (uses DCT) to
• Load an image.
• Low pass �lter in frequency (DCT) space.
• Tune compression via a single slider value to select n coe�cients.
• Inverse DCT, subtract input and �ltered image to see compression artefacts.

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Frequency_Domain/dctdemo.m

The Discrete Cosine Transform (DCT)

Relationship between DCT and DFT

DCT (Discrete Cosine Transform) is similar to the DFT since it decomposes a signal
into a series of harmonic (cosine) functions.
DCT is actually a cut-down version of the (Discrete) Fourier Transform:

• Only the real part of DFT.
• Computationally simpler than DFT.
• DCT — e�ective for multimedia compression (energy compaction).
• DCT is much more commonly used (than DFT) in multimedia image/video

compression — more later.
• Cheap MPEG Audio variant — more later.
• DFT captures phase, though.

Cosine-, Sine-, and Fourier Transform

(a) Fourier transform, (b) Sine transform, (c) Cosine transform.

1D DCT

For N -dimensional vectors, the 1D DCT is de�ned by:

F (k) = λ(k)

N∑
n=1

f(n) cos
(π

2N
(2n− 1)(k − 1)

)
, k = 1, 2, . . . , N.

and the corresponding inverse 1D DCT transform is:

f(n) =

N∑
k=1

λ(k)F (k) cos
(π

2N
(2n− 1)(k − 1)

)
, n = 1, 2, . . . , N.

All indices k, n start with one, following MATLAB convention.
The normalising weight λ(k) is:

λ(k) =

{
1/
√
N when k = 1,√

2/N when 2 ≤ k ≤ N.

Compare with DFT

Recap: Discrete Fourier Transform

F (k) =

N∑
n=1

f(n)

(
cos

(
−2π
N

(k − 1)(n− 1)

)
+ i sin

(
−2π
N

(k − 1)(n− 1)

))
,

k = 1, 2, . . . , N.

f(n) =
1

N

N∑
k=1

F (k)

(
cos

(
2π

N
(k − 1)(n− 1)

)
+ i sin

(
2π

N
(k − 1)(n− 1)

))
,

n = 1, 2, . . . , N.

Very similar idea, but di�erent basis functions.

1D DCT

Algebraically:

• F = Df , where D is the matrix of DCT coe�cients.
• Inverse transform: f = D−1F .
• D is orthogonal, therefore D−1 = DT .
• Easy to see that DCT is linear: dct(αx+ βy) = α dct(x) + β dct(y).

DCT example

Let’s consider a DC signal that is a constant 100,
that is f(n) = 100 for n = 1 . . . 8
(see DCT1Deg.m):

• So the domain is [1, 8] for both n and k
• We therefore have N = 8 samples and will need to compute the 8 values

(DCT coe�cients) for k = 1 . . . 8.

We can now see how we work out F (k):

• As k varies we work can work for each k the k-th DCT coe�cient.
• For each F (k), we can compute the value for each Fn(k) to de�ne a basis

function.
• Basis functions can be pre-computed and simply looked up in DCT

computation.

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Frequency_Domain/DCT1Deg.m

Plots of f(n) and F (k)

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

f(n) = 100 for n = 1 . . . 8 F (k): F (1) ≈ 283, F (2 . . . 8) = 0

DCT example: F (1)

So for 1 = 0:

• Note: λ(1) = 1√
2

and cos(0) = 1

• So F (1) is computed as:

F (1) =
1

2
√
2
(1 · 100 + 1 · 100 + 1× 100 + 1 · 100 + 1 · 100

+1 · 100 + 1 · 100 + 1 · 100)
≈ 283

• Here the values Fn(1) = 1
2
√
2

(n = 1 . . . 8).
These are the bases of Fn(1)

F (1) basis function plot

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F (1) basis function

DCT example: F (2 . . . 8)

So for k = 2:
Note: λ(1) = 1 and we have cos to work out: so F (2) is computed as:

F (1) =
1

2
(cos

π

16
· 100 + cos

3π

16
· 100 + cos

5π

16
· 100 + cos

7π

16
· 100

+ cos
9π

16
· 100 + cos

11π

16
· 100 + cos

13π

16
· 100 + cos

15π

16
· 100)

= 0

(since cos π
16 = − cos 15π

16 , cos 3π
16 = − cos 13π

16 etc.)
Here the values

Fi(1) =

[
1

2
cos

π

16
,
1

2
cos

3π

16
,
1

2
cos

5π

16
, . . . ,

1

2
cos

11π

16
,
1

2
cos

13π

16
,
1

2
cos

15π

16

]

form the basis function

F (3 . . . 8) similarly = 0

F (1) basis function plot

1 2 3 4 5 6 7 8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

F (1) basis function

Note:
• Bases are re�ected about centre and negated since cos π

16 = − cos 15π
16 ,

cos 3π
16 = − cos 13π

16 etc.
• only because our example function is a constant is F(1) zero.

DCT Matlab example

DCT1Deg.m explained:

i = 1:8 % dimension of vector

f(i) = 100% set fucntion

figure(1) % plot f

stem(f);

% compute DCT

D = dct(f);

figure(2) % plot D

stem(D);

• Create our function, f and plot it.
• Use Matlab 1D dct function to compute DCT of f and plot it.

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Frequency_Domain/DCT1Deg.m

DCT Matlab example

% Illustrate DCT bases compute DCT bases

% with dctmtx

bases = dctmtx(8);

% Plot bases:each row(j) of bases is the jth

% DCT Basis Function

for j = 1 : 8

figure %increment figure

stem(bases(j,:)); % plot rows

end

• Matlab dctmtx function computes DCT basis functions.
• Each row j of bases is the basis function F (j).
• Plot each row.

DCT Matlab example

% construct DCT from Basis Functions Simply

% multiply f' (column vector) by bases

D1 = bases*f';

figure % plot D1

stem(D1);

• Here we show how to compute the DCT from the basis functions.
• bases is an 8× 8 matrix, f an 1× 8 vector. Need column 8× 1 form to do

matrix multiplication so transpose f.

2D DCT
For a 2D N by M matrix (e.g. image) the 2D DCT is:

F (p, q) = λ(p)λ(q)

M∑
m=1

N∑
n=1

(
f(m,n)×

cos
(π

2M
(2m− 1)(p− 1)

)
cos
(π

2N
(2n− 1)(q − 1)

))
,

for p ∈ 1 . . .M, q ∈ 1 . . . N

and the corresponding inverse 2D DCT transform is:

f(m,n) =
M∑
p=1

N∑
q=1

λ(p)λ(q)
(
F (p, q)×

cos
(π

2M
(2m− 1)(p− 1)

)
cos
(π

2N
(2n− 1)(q − 1)

))
,

for m ∈ 1 . . .M, n ∈ 1 . . . N

Applying the 2D DCT

• Similar to the 2D discrete Fourier transform:
• It also transforms an image from the spatial domain to the frequency domain.
• DCT can approximate lines well with fewer coe�cients.

• Helps separate the image into parts (or spectral sub-bands) of di�ering
importance (with respect to the image’s visual quality).

Separability

• One of the properties of the 2-D DCT is that it is separable meaning that it
can be separated into a pair of 1-D DCTs.
• To obtain the 2-D DCT of a block a 1-D DCT is �rst performed on the rows of

the block then a 1-D DCT is performed on the columns of the resulting block.
• The same applies to the IDCT.

Separability

• Factoring reduces problem to a series of 1D DCTs
(No need to apply 2D form directly):
• As with 2D Fourier Transform.
• Apply 1D DCT (vertically) to columns.
• Apply 1D DCT (horizontally) to resultant vertical DCT.
• Or alternatively horizontal to vertical.

Separability

2D DCT basis functions

From the above DCT formulæ, extending what we have seen with the 1D DCT we
can derive basis functions for the 2D DCT:

• We have a basis for a 1D DCT (see bases = dctmtx(8) example above).
• We discussed above that we can compute a DCT by �rst doing a 1D DCT in

one direction (e.g. horizontally) followed by a 1 DCT on the intermediate DCT
result.
• This is equivalent to performing matrix pre-multiplication by bases and

matrix post-multiplication the transpose of bases.
• take each row i in bases and you get 8 basis matrices for each j.
• there are 8 rows so we get 64 basis matrices.

Visualisation of DCT 2D basis functions

• Computationally easier to implement and more e�cient to regard the DCT
as a set of basis functions.
• Given a known input array size (8 x 8) they can be precomputed and stored.
• The values are simply calculated from DCT formulæ.

See MATLAB demo, dctbasis.m,
to see how to produce these
bases.
http://weitz.de/dct/
nice DCT 2D demo.

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Frequency_Domain/dctbasis.m
http://weitz.de/dct/

Example: DCT of 8×8 image block

DCT basis functions

A = dctmtx(8);

A = A';

offset = 5;

basisim = ones(N*(N+offset))*0.5;

• Basically just set up a few things: A = 1D DCT basis functions
• basisim will be used to create the plot of all 64 basis functions.

DCT basis functions

B=zeros(N,N,N,N);

for i=1:N

for j=1:N

B(:,:,i,j)=A(:,i)*A(:,j)';
end;

end;

• B = computation of 64 2D bases.
• Create a 4D array: �rst two dimensions store a 2D image for each i, j.
• 3rd and 4th dimension i and j store the 64 basis functions.

Compression with DCT

• For most images, much of the signal energy lies at low
frequencies;
• These appear in the upper le� corner of the DCT.

• Compression is achieved since the lower right values
represent higher frequencies, and are o�en small
• Small enough to be neglected with little visible distortion.

	1D DCT
	2D DCT

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

