
CM3106 Multimedia

Introduction to Compression
Dr Kirill Sidorov

SidorovK@cardiff.ac.uk
www.facebook.com/kirill.sidorov

Prof David Marshall
MarshallAD@cardiff.ac.uk

School of Computer Science and Informatics
Cardi� University, UK

Modelling and compression

• We are interested in modelling multimedia data.
• To model means to replace something complex with a simpler (=

shorter) analog.
• Some models help understand the original phenomenon/data

better:

Example: Laws of physics
Huge arrays of astronomical observations (e.g. Tycho Brahe’s logbooks)
summarised in a few characters (e.g. Kepler, Newton):

|F | = G
M1M2

r2
.

• This model helps us understand gravity better.
• Is an example of tremendous compression of data.

• We will look at models whose purpose is primarily compression of
multimedia data.

The need for compression

Raw video, image, and audio �les can be very large.

Example: One minute of uncompressed audio
Audio type 44.1 KHz 22.05 KHz 11.025 KHz

16 bit stereo: 10.1 MB 5.05 MB 2.52 MB
16 bit mono: 5.05 MB 2.52 MB 1.26 MB
8 bit mono: 2.52 MB 1.26 MB 630 KB

Example: Uncompressed images
Image type File size

640×480 (VGA) 8-bit gray scale 307 KB
1920×1080 (Full HD) 16-bit YUYV 4:2:2 4.15 MB
2560×1600 24-bit RGB colour 11.7 MB

The need for compression

Example: Videos (involves a stream of audio plus video imagery)

• Raw video — uncompressed image frames 512×512 True Colour
at 25 FPS = 1125 MB/min.
• HDTV (1920×1080) — gigabytes per minute uncompressed, True

Colour at 25 FPS = 8.7 GB/min.

• Relying on higher bandwidths is not a good option —
M25 Syndrome: tra�c will always increase to �ll the current
bandwidth limit whatever this is.
• Compression has to be part of the representation of audio, image,

and video formats.

Basics of information theory

Suppose we have an information source (random variable) S which
emits symbols {s1, s2, . . . , sn} with probabilities p1, p2, . . . , pn.
According to Shannon, the entropy of S is de�ned as:

H(S) =
∑
i

pi log2
1

pi
,

where pi is the probability that symbol si will occur.
• When a symbol with probability pi is transmitted, it reduces the

amount of uncertainty in the receiver by a factor of 1
pi .

• log2
1
pi = − log2 pi indicates the amount of information conveyed

by si, i.e., the number of binary digits needed to code si (Shannon’s
coding theorem).

Entropy example

Example: Entropy of a fair coin
The coin emits symbols s1 = heads and s2 = tails with p1 = p2 = 1/2.
Therefore, the entropy if this source is:

H(coin) = −(1/2× log2 1/2 + 1/2× log2 1/2) =

−(1/2×−1 + 1/2×−1) = −(−1/2− 1/2) = 1 bit.

Example: Grayscale “image”

• In an image with uniform distribution of gray-level intensity (and all
pixels independent), i.e. pi = 1/256, then
• The number of bits needed to code each gray level is 8 bits.
• The entropy of this image is 8.

• We will shortly see that real images are not like that!

Entropy example

Example: Breakfast order #1.
Alice: “What do you want for breakfast: pancakes or eggs? I am unsure, because
you like them equally (p1 = p2 = 1/2). . . ”
Bob: “I want pancakes.”
Question:
How much information has Bob communicated to Alice?

Answer:
He has reduced the uncertainty by a factor of 2, therefore 1 bit.

Entropy example

Example: Breakfast order #1.
Alice: “What do you want for breakfast: pancakes or eggs? I am unsure, because
you like them equally (p1 = p2 = 1/2). . . ”
Bob: “I want pancakes.”
Question:
How much information has Bob communicated to Alice?
Answer:
He has reduced the uncertainty by a factor of 2, therefore 1 bit.

Entropy example

Example: Breakfast order #2.
Alice: “What do you want for breakfast: pancakes, eggs, or salad? I am unsure,
because you like them equally (p1 = p2 = p3 = 1/3). . . ”
Bob: “Eggs.”
Question: What is Bob’s entropy assuming he behaves like a random variable =
how much information has Bob communicated to Alice?

Answer:

H(Bob) =

3∑
i=1

1

3
log2 3 = log2 3 ≈ 1.585 bits.

Entropy example

Example: Breakfast order #2.
Alice: “What do you want for breakfast: pancakes, eggs, or salad? I am unsure,
because you like them equally (p1 = p2 = p3 = 1/3). . . ”
Bob: “Eggs.”
Question: What is Bob’s entropy assuming he behaves like a random variable =
how much information has Bob communicated to Alice?
Answer:

H(Bob) =

3∑
i=1

1

3
log2 3 = log2 3 ≈ 1.585 bits.

Entropy example

Example: Breakfast order #3.
Alice: “What do you want for breakfast: pancakes, eggs, or salad? I am unsure,
because you like them equally (p1 = p2 = p3 = 1/3). . . ”
Bob: “Hmm, I do not know. I de�nitely do not want salad.”
Question: How much information has Bob communicated to Alice?

Answer: He has reduced her uncertainty by a factor of 3/2 (leaving 2 out of 3
equal options), therefore transmitted log2 3/2 ≈ 0.58 bits.

Entropy example

Example: Breakfast order #3.
Alice: “What do you want for breakfast: pancakes, eggs, or salad? I am unsure,
because you like them equally (p1 = p2 = p3 = 1/3). . . ”
Bob: “Hmm, I do not know. I de�nitely do not want salad.”
Question: How much information has Bob communicated to Alice?
Answer: He has reduced her uncertainty by a factor of 3/2 (leaving 2 out of 3
equal options), therefore transmitted log2 3/2 ≈ 0.58 bits.

English letter frequencies

From D. MacKay “Information Theory, Inference, and Learning Algorithms”, 2003.

http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html

Shannon’s experiment (1951)

Estimated entropy for English text: HEnglish ≈ 0.6− 1.3 bits/letter. (If
all letters and space were equally probable, then it would be
H0 = log2 27 ≈ 4.755 bits/letter.)

External link: Shannon’s original 1951 paper.
External link: Java applet recreating Shannon’s experiment.

https://archive.org/details/bstj30-1-50
http://www.math.ucsd.edu/~crypto/java/ENTROPY/

Shannon’s experiment (1951): my attempt

Estimated entropy for my attempt: 2.03 bits/letter. Why?

Shannon’s coding theorem

Shannon 1948

Basically:
The ideal code length for an event with probability p is L(p) = −log2p
ones and zeros (or generally,−logbp if instead we use b possible values
for codes).

External link: Shannon’s original 1948 paper.

http://www.enseignement.polytechnique.fr/informatique/profs/Nicolas.Sendrier/X02/TI/shannon.pdf

Shannon vs Kolmogorov

What if we have a �nite string?

Shannon’s entropy is a statistical measure of infor-
mation. We can “cheat” and regard a string as in-
�nitely long sequence of i.i.d. random variables.
Shannon’s theorem then approximately applies.

Kolmogorov Complexity: Basically, the length of the
shortest program that ouputs a given string. Algo-
rithmical measure of information.
• K(S) is not computable!
• Practical algorithmic compression is hard.

Compression in multimedia data

Compression basically employs redundancy in the data:

Temporal in 1D data, 1D signals, audio, between video frames etc.

Spatial correlation between neighbouring pixels or data items.

Spectral e.g. correlation between colour or luminescence components.
This uses the frequency domain to exploit relationships between
frequency of change in data.

Psycho-visual exploit perceptual properties of the human visual system.

Lossless vs lossy compression

Compression methods can also be categorised in two broad ways:

Lossless compression: a�er decompression gives an exact copy of the
original data.

Example: Entropy encoding schemes (Shannon-Fano, Hu�man coding),
arithmetic coding, LZ/LZW algorithm (used in GIF image �le format).

Lossy compression: a�er decompression gives ideally a “close”
approximation of the original data, ideally perceptually
lossless.

Example: Transform coding — FFT/DCT based quantisation used in
JPEG/MPEG di�erential encoding, vector quantisation.

Why lossy compression?

• Lossy methods are typically applied to high resoultion audio, image
compression.
• Have to be employed in video compression (apart from special

cases).

Basic reason:
• Compression ratio of lossless methods (e.g. Hu�man coding,

arithmetic coding, LZW) is not high enough for audio/video.
• By cleverly making a small sacri�ce in terms of �delity of data, we

can o�en achieve very high compression ratios.
• Cleverly = sacri�ce information that is perceptually unimportant.

Lossless compression algorithms

• Entropy encoding:
• Shannon-Fano algorithm.
• Hu�man coding.
• Arithmetic coding.

• Repetitive sequence suppression.
• Run-Length Encoding (RLE).
• Pattern substitution.
• Lempel-Ziv-Welch (LZW) algorithm.

Simple repetition suppression

If a sequence a series on n successive tokens appears:
• Replace series with a token and a count number of

occurrences.
• Usually need to have a special �ag to denote when the

repeated token appears.

Example:
89400000000000000000000000000000000

we can replace with:

894f32
where f is the �ag for zero.

Simple repetition suppression

• Fairly straight forward to understand and implement.
• Simplicity is its downfall: poor compression ratios.

Compression savings depend on the content of the data.

Applications of this simple compression technique include:

• Suppression of zeros in a �le (zero length suppression)
• Silence in audio data, pauses in conversation etc.
• Sparse matrices.
• Component of JPEG.
• Bitmaps, e.g. backgrounds in simple images.
• Blanks in text or program source �les.

• Other regular image or data tokens.

Run-length encoding (RLE)

This encoding method is frequently applied to graphics-type images (or
pixels in a scan line) — simple compression algorithm in its own right.
It is also a component used in JPEG compression pipeline.

Basic RLE Approach (e.g. for images):
• Sequences of image elements X1, X2, . . . , Xn (row by row).
• Mapped to pairs (c1, L1), (c2, L2), . . . , (cn, Ln),

where ci represent image intensity or colour and Li the length of
the i-th run of pixels.
• (Not dissimilar to zero length suppression above.)

Run-length Encoding Example

Original sequence:
111122233333311112222

can be encoded as:
(1,4),(2,3),(3,6),(1,4),(2,4)

How much compression?

The savings are dependent on the data: In the worst case (random noise)
encoding is more heavy than original �le:
2×integer rather than 1×integer if original data is integer vector/array.

MATLAB example code:
rle.m (run-length encode) , rld.m (run-length decode)

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/runlengthencode.m
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/runlengthdecode.m

Pattern substitution

• This is a simple form of statistical encoding.
• Here we substitute a frequently repeating pattern(s) with a code.
• The code is shorter than the pattern giving us compression.

The simplest scheme could employ prede�ned codes:

Example: Basic pattern substitution
Replace all occurrences of pattern of characters ‘and’ with the
prede�ned code ’&’. So:

and you and I
becomes:

& you & I

Reducing number of bits per symbol

For the sake of example, consider character sequences here. (Other
token streams can be used — e.g. vectorised image blocks, binary
streams.)

Example: Compression ASCII Characters EIEIO
E(69)︷ ︸︸ ︷

01000101

I(73)︷ ︸︸ ︷
01001001

E(69)︷ ︸︸ ︷
01000101

I(73)︷ ︸︸ ︷
01001001

O(79)︷ ︸︸ ︷
01001111 = 5× 8 = 40

bits.

To compress, we aim to �nd a way to describe the same information
using fewer bits per symbol, e.g.:
E (2 bits)︷︸︸︷

xx

I (2 bits)︷︸︸︷
yy

E (2 bits)︷︸︸︷
xx

I (2 bits)︷︸︸︷
yy

O (3 bits)︷︸︸︷
zzz =

2×E︷ ︸︸ ︷
(2× 2) +

2×I︷ ︸︸ ︷
(2× 2) +

O︷︸︸︷
3 = 11 bits.

Code assignment

• A prede�ned codebook may be used, i.e. assign code ci to symbol
si. (E.g. some dictionary of common words/tokens).
• Better: dynamically determine best codes from data.
• The entropy encoding schemes (next topic) basically attempt to

decide the optimum assignment of codes to achieve the best
compression.

Example:
• Count occurrence of tokens (to estimate probabilities).
• Assign shorter codes to more probable symbols and vice versa.

Ideally we should aim to achieve Shannon’s limit: −logbp!

Morse code

Morse code makes an attempt to approach optimal code length: observe
that frequent characters (E, T, . . .) are encoded with few dots/dashes and
vice versa:

Shannon-Fano algorithm

• This is a basic entropy coding algorithm.
• A simple example will be used to illustrate the algorithm:

Example:
Consider a �nite string S over alphabet {A, B, C, D, E}:

S = ACABADADEAABBAAAEDCACDEAAABCDBBEDCBACAE

Count the symbols in the string:

Symbol A B C D E

Count 15 7 6 6 5

Shannon-Fano algorithm
Encoding with the Shannon-Fano algorithm
A top-down approach:

1 Sort symbols according to their
frequencies/probabilities, e.g. ABCDE.

2 Recursively divide into two parts, each with approximately same
number of counts, i.e. split in two so as to minimise di�erence in
counts. Le� group gets 0, right group gets 1.

Shannon-Fano algorithm

3 Assemble codebook by depth �rst traversal of the tree:

Symbol Count log(1/p) Code # of bits
------ ----- -------- --------- ---------

A 15 1.38 00 30
B 7 2.48 01 14
C 6 2.70 10 12
D 6 2.70 110 18
E 5 2.96 111 15

TOTAL (# of bits): 89

4 Transmit codes instead of tokens. In this case:
• Naı̈vely at 8 bits per char: 8× 39 = 312 bits.
• Naı̈vely at dlog2 5e = 3 bits per char: 3× 39 = 117 bits.
• SF-coded length = 89 bits.

Shannon-Fano Algorithm: entropy

For the above example:

Shannon entropy = (15× 1.38 + 7× 2.48 + 6× 2.7

+6× 2.7 + 5× 2.96)/39

= 85.26/39

= 2.19.

Number of bits needed for Shannon-Fano coding is: 89/39 = 2.28.

Shannon-Fano Algorithm: discussion

Consider best case example:

• If we could always subdivide exactly in half, we would get ideal
code:
• Each 0/1 in the code would exactly reduce the uncertainty by a

factor 2, so transmit 1 bit.

• Otherwise, when counts are only approximately equal, we get only
good, but not ideal code.
• Compare with a fair vs biased coin.

Hu�man algorithm

Can we do better than Shannon-Fano?

Hu�man algorithm! Always produces best binary tree for given
probabilities.
A bottom-up approach:

1 Initialization: put all nodes in a list L, keep it sorted at all times
(e.g., ABCDE).

2 Repeat until the list L has more than one node le�:
• From L pick two nodes having the lowest

frequencies/probabilities, create a parent node of them.
• Assign the sum of the children’s frequencies/probabilities to the

parent node and insert it into L.
• Assign code 0/1 to the two branches of the tree, and delete the

children from L.

3 Coding of each node is a top-down label of branch labels.

Hu�man encoding example

ACABADADEAABBAAAEDCACDEAAABCDBBEDCBACAE (same string as in
Shannon-Fano example)

Symbol Count log(1/p) Code # of bits
------ ----- -------- --------- ---------

A 15 1.38 0 15
B 7 2.48 100 21
C 6 2.70 101 18
D 6 2.70 110 18
E 5 2.96 111 15

TOTAL (# of bits): 87

Hu�man encoding discussion

The following points are worth noting about the above algorithm:

• Decoding for the above two algorithms is trivial as long as the
coding table/book is sent before the data.
• There is a bit of an overhead for sending this.
• But negligible if |string| � |alphabet|.

• Unique pre�x property: no code is a pre�x to any other code (all
symbols are at the leaf nodes)→ great for decoder, unambiguous.
• If prior statistics are available and accurate, then Hu�man coding is

very good.

Hu�man entropy

For the above example:

Shannon entropy = (15× 1.38 + 7× 2.48 + 6× 2.7

+6× 2.7 + 5× 2.96)/39

= 85.26/39

= 2.19.

Number of bits needed for Hu�man Coding is: 87/39 = 2.23.

Hu�man coding of images

In order to encode images:

• Divide image up into (typically) 8×8 blocks.
• Each block is a symbol to be coded.
• Compute Hu�man codes for set of blocks.
• Encode blocks accordingly.
• In JPEG: blocks are DCT coded �rst before Hu�man may be applied

(more soon).

Coding image in blocks is common to all image coding methods.

MATLAB Hu�man coding example:
hu�man.m (used with JPEG code later),
hu�man.zip (alternative with tree plotting).

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/huffman.m
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/huffman.zip

Arithmetic coding

What is wrong with Hu�man?

• Shannon-Fano or Hu�man coding use an integer number (k) of
binary digits for each symbol, hence k is never less than 1.
• Ideal code according to Shannon may not be an integer number of

binary digits!

Example: Hu�man failure case
• Consider a biased coin with
pheads = q = 0.999 and ptails = 1− q.
• Suppose we use Hu�man to generate codes for heads and tails and

send 1000 heads.
• This would require 1000 ones and zeros with Hu�man!
• Shannon tells us: ideally this should be− log2 pheads ≈ 0.00144

ones and zeros, so≈ 1.44 for entire string.

Arithmetic coding

Solution: arithmetic coding.

• A widely used entropy coder.
• Also used in JPEG — more soon.
• Only problem is its speed due possibly complex computations due

to large symbol tables.
• Good compression ratio (better than Hu�man coding), entropy

around the Shannon ideal value.

Arithmetic coding: basic idea

The idea behind arithmetic coding is: encode the entire message into a
single number, n, (0.0 ≤ n < 1.0).

• Consider a probability line segment, [0. . . 1), and
• Assign to every symbol a range in this interval:
• Range proportional to probability with
• Position at cumulative probability.

Once we have de�ned the ranges and the probability line:
• Start to encode symbols.
• Every symbol de�nes where the output real number lands within

the range.

Arithmetic coding example

Assume we have the following string: BACA
Therefore:
• A occurs with probability 0.5.
• B and C with probabilities 0.25.

Start by assigning each symbol to the probability range [0. . . 1).

• Sort symbols highest probability �rst:

Symbol Range
A [0.0, 0.5)
B [0.5, 0.75)
C [0.75, 1.0)

• The �rst symbol in our example stream is B

We now know that the code will be in the range 0.5 to 0.74999 . . .

Arithmetic coding example
Range is not yet unique.

• Need to narrow down the range to give us a unique code.

Arithmetic coding iteration:

• Subdivide the range for the �rst symbol given the probabilities of
the second symbol then the symbol etc.

For all the symbols:

range = high - low;
high = low + range * high_range of the symbol being coded;
low = low + range * low_range of the symbol being coded;

Where:

• range, keeps track of where the next range should be.
• high and low, specify the output number.
• Initially high = 1.0, low = 0.0

Arithmetic coding example

For the second symbol we have:
(now range = 0.25, low = 0.5, high = 0.75):

Symbol Range
BA [0.5, 0.625)
BB [0.625, 0.6875)
BC [0.6875, 0.75)

We now reapply the subdivision of our scale again to get for our third
symbol:
(range = 0.125, low = 0.5, high = 0.625):

Symbol Range
BAA [0.5, 0.5625)
BAB [0.5625, 0.59375)
BAC [0.59375, 0.625)

Arithmetic coding example

Subdivide again:
(range = 0.03125, low = 0.59375, high = 0.625):

Symbol Range
BACA [0.59375, 0.60937)
BACB [0.609375, 0.6171875)
BACC [0.6171875, 0.625)

So the (unique) output code for BACA is any number in the range:

[0.59375, 0.60937).

Decoding

To decode is essentially the opposite:

• We compile the table for the sequence given probabilities.
• Find the range of number within which the code number lies and

carry on.

Binary arithmetic coding

This is very similar to above:

• Except we use binary fractions.

Binary fractions are simply an extension of the binary systems into
fractions much like decimal fractions. CM1101!

Fractions in decimal:
0.1 decimal = 1

101
= 1/10

0.01 decimal = 1
102

= 1/100
0.11 decimal = 1

101
+ 1

102
= 11/100

So in binary we get:

0.1 binary = 1
21

= 1/2 decimal
0.01 binary = 1

22
= 1/4 decimal

0.11 binary = 1
21

+ 1
22

= 3/4 decimal

Binary arithmetic coding example

• Idea: Suppose alphabet was X, Y and consider stream:

XXY

Therefore:

prob(X) = 2/3
prob(Y) = 1/3

• If we are only concerned with encoding length 2 messages, then we
can map all possible messages to intervals in the range [0. . . 1):

Binary arithmetic coding example

• To encode message, just send enough bits of a binary fraction that
uniquely speci�es the interval.

Binary arithmetic coding example

Similarly, we can map
all possible length 3
messages to intervals
in the range [0. . . 1)

Code generation

• How to select a binary code for an interval?
• Let [L, H) be the �nal interval.
• Since they di�er, the binary representation will be di�erent starting

from some digit (namely, 0 for L and 1 for H):

L = 0.d1d2d3 . . . dt−10 . . .

H = 0.d1d2d3 . . . dt−11 . . .

• We can select and transmit the t bits: d1d2d3 . . . dt−11.

Arithmetic coding

• In general, number of bits is determined by the size of the interval.
Asymptotically arithmetic code approaches ideal entropy:
− log2 p bits to represent interval of size p.
• Computation can be memory and CPU intensive.
• Resolution of the number we represent is limited by FPU precision.

• So, write your own arbitrary precision arithmetic.
• Or dynamically renormalise: when range is reduced so that all

values in the range share certain beginning digits — send those.
Then shi� le� and thus regain precision.

MATLAB Arithmetic coding examples:
Arith06.m (version 1), Arith07.m (version 2), arithenco.m

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/Arith06.m
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/Arith07.m

Lempel-Ziv-Welch (LZW) algorithm

• A very common compression technique.
• Used in GIF �les (LZW), Adobe PDF �le (LZW),

UNIX compress (LZ Only)
• Patented — LZW not LZ. Patent expired in 2003/2004.

Basic idea/analogy:
Suppose we want to encode the Oxford Concise English
dictionary which contains about 159,000 entries.

dlog2 159, 000e = 18 bits.

Why not just transmit each word as an 18 bit number?

LZW constructs its own dictionary

Problems:

• Too many bits per word,
• Everyone needs a dictionary to decode back to English.
• Only works for English text.

Solution:

• Find a way to build the dictionary adaptively.
• Original methods (LZ) due to Lempel and Ziv in 1977/8.
• Quite a few variations on LZ.
• Terry Welch improvement (1984), patented LZW algorithm

• LZW introduced the idea that only the initial dictionary needs to be
transmitted to enable decoding:
The decoder is able to build the rest of the table from the encoded
sequence.

LZW compression algorithm

The LZW Compression Algorithm can be summarised as follows:

w = NIL;
while (read a character k) {

if wk exists in the dictionary
w = wk;

else {
add wk to the dictionary;
output the code for w;
w = k;

}
}

• Original LZW used dictionary with 4K entries, �rst 256 (0-255) are
ASCII codes.

LZW compression algorithm example:
Input string is "ˆWEDˆWEˆWEEˆWEBˆWET".

w k output index symbol

NIL ˆ
ˆ W ˆ 256 ˆW
W E W 257 WE
E D E 258 ED
D ˆ D 259 Dˆ
ˆ W

ˆW E 256 260 ˆWE
E ˆ E 261 Eˆ
ˆ W

ˆW E
ˆWE E 260 262 ˆWEE

E ˆ
Eˆ W 261 263 EˆW
W E

WE B 257 264 WEB
B ˆ B 265 Bˆ
ˆ W

ˆW E
ˆWE T 260 266 ˆWET

T EOF T

• A 19-symbol input has been
reduced to 7-symbol plus
5-code output. Each
code/symbol will need more
than 8 bits, say 9 bits.

• Usually, compression doesn’t
start until a large number of
bytes (e.g. > 100) are read in.

LZW decompression algorithm (simpli�ed)

The LZW decompression algorithm is as follows:

read a character k;
output k;
w = k;
while (read a character k)
/* k could be a character or a code. */
{

entry = dictionary entry for k;
output entry;
add w + entry[0] to dictionary;
w = entry;

}

Note: LZW decoder only needs the initial dictionary. The decoder is able
to build the rest of the table from the encoded sequence.

LZW decompression algorithm example:

Input string is: "ˆWED<256>E<260><261><257>B<260>T"
w k output index symbol

--
ˆ ˆ
ˆ W W 256 ˆW
W E E 257 WE
E D D 258 ED
D <256> ˆW 259 Dˆ

<256> E E 260 ˆWE
E <260> ˆWE 261 Eˆ

<260> <261> Eˆ 262 ˆWEE
<261> <257> WE 263 EˆW
<257> B B 264 WEB

B <260> ˆWE 265 Bˆ
<260> T T 266 ˆWET

LZW decompression algorithm (proper)

read a character k;
output k;
w = k;
while (read a character k)
/* k could be a character or a code. */
{

entry = dictionary entry for k;
/* Special case */
if (entry == NIL) // Not found

entry = w + w[0];

output entry;
if (w != NIL)

add w + entry[0] to dictionary;

w = entry;
}

MATLAB LZW code

norm2lzw.m: LZW Encoder

lzw2norm.m: LZW Decoder

lzw demo1.m: Full MATLAB demo

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/lzw/norm2lzw.m
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/lzw/lzw2norm.m
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/lzw/lzw_demo1.m

Source coding techniques

Source coding is based on changing the content of the original signal.

Compression rates may be higher but at a price of loss of information.
Good compression rates may be achieved with source encoding with
(occasionally) lossless or (mostly) little perceivable loss of information.

Some broad methods that exist:

• Transform coding.
• Di�erential encoding.
• Vector quantisation.

Transform coding example

Consider a simple example transform:

A Simple Transform Encoding procedure maybe described by the
following steps for a 2×2 block of gray scale pixels:

1 Take top le� pixel as the base value for the block, pixel A.

2 Calculate three other transformed values by taking the
di�erence between these (respective) pixels and pixel A,
i.e. B −A, C −A, D −A.

3 Store the base pixel and the di�erences as the values of the
transform.

Transform coding example

Given the above we can easily form the forward transform:

X0 = A

X1 = B −A

X2 = C −A

X3 = D −A

and the inverse transform is:

A = X0

B = X1 + X0

C = X2 + X0

D = X3 + X0

Compressing data with this transform?

Exploit redundancy in the data:
• Redundancy transformed to values, Xi.
• Statistics of di�erences will hopefully be more amenable to entropy

coding.
• Compress the data by using fewer bits to represent the

di�erences — quantisation.
• E.g. if we use 8 bits per pixel then the 2×2 block uses 32 bits
• If we keep 8 bits for the base pixel, X0,
• Assign 4 bits for each di�erence then we only use 20 bits.
• Better with an average 5 bits/pixel.

Transform coding example

Consider the following 4×4 image block:

120 130
125 120

then we get:

X0 = 120

X1 = 10

X2 = 5

X3 = 0

We can then compress these values by taking fewer bits to represent the
data.

Transform coding example: discussion

• It is too simple — not applicable to slightly more complex cases.
• Needs to operate on larger blocks (typically 8×8 minimum).
• Simple encoding of di�erences for large values will result in loss of

information.
• Poor losses possible here with 4 bits per pixel = values 0. . .15

unsigned,
• Signed value range: −8. . .7 so either quantise in larger step value or

massive over�ow!

Practical approaches: use more complicated transforms e.g. DCT.

Di�erential transform coding schemes

• Di�erencing is used in some compression algorithms:
• Later part of JPEG compression.
• Exploit static parts (e.g. background) in MPEG video.
• Some speech coding and other simple signals.

• Good on repetitive sequences.
• Poor on highly varying data sequences.

• E.g. audio/video signals.

MATLAB simple vector di�erential example:
di�encodevec.m: Di�erential Encoder
di�decodevec.m: Di�erential Decoder
di�encodevecTest.m: Di�erential Test Example

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/diffcoding/diffencodevec.m
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/diffcoding/diffdecodevec.m
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/diffcoding/diffencodevecTest.m

Di�erential encoding

Simple example of transform coding mentioned earlier is an instance of
this approach.

• The di�erence between the actual value of a sample and a
prediction of that values is encoded.
• Also known as predictive encoding.
• Example of technique include: di�erential pulse code modulation,

delta modulation, and adaptive pulse code modulation — di�er in
prediction part.
• Suitable where successive signal samples do not di�er much, but

are not zero. E.g. video — di�erence between frames, some audio
signals.

Di�erential encoding

Di�erential pulse code modulation (DPCM)

Simple prediction (also used in JPEG):

fpredict(ti) = factual(ti−1)

I.e. a simple Markov model where current value is the predict next value.
So we simply need to encode:

∆f(ti) = factual(ti)− factual(ti−1)

If successive sample are close to each other we only need to encode �rst
sample with a large number of bits:

Simple DPCM

Actual data: 9 10 7 6

Predicted data: 0 9 10 7

∆f(t): +9, +1, -3, -1.

MATLAB DPCM Example (with quantisation):
dpcm demo.m, dpcm.zip.m:

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/dpcm/dpcm_demo.m.m
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/dpcm.zip

Di�erential encoding

• Delta modulation is a special case of DPCM:
• Same predictor function.
• Coding error is a single bit that indicates the current sample should

be increased or decreased by a step.
• Not suitable for rapidly changing signals.

• Adaptive pulse code modulation
Better temporal/Markov model:
• Data is extracted from a function of a series of previous values.
• E.g. average of last n samples.
• Characteristics of sample better preserved.

Frequency domain methods

another form of transform coding

Transformation from one domain — time (e.g. 1D audio,
video: 2D imagery over time) or spatial (e.g. 2D imagery) domain to the
frequency domain via

• Discrete Cosine Transform (DCT)— Heart of JPEG and
MPEG Video.
• Fourier Transform (FT) — MPEG Audio.

Theory already studied earlier

Recap: compression in frequency space

How do we achieve compression?

• Low pass �lter — ignore high frequency noise components.
• Only store lower frequency components.
• High Pass Filter — spot gradual changes.
• If changes to low eye does not respond so ignore?

Vector quantisation

The basic outline of this approach is:

• Data stream divided into (1D or 2D square) blocks — regard them as
vectors.
• A table or code book is used to �nd a pattern for each vector

(block).
• Code book can be dynamically constructed or prede�ned.
• Each pattern for as a lookup value in table.
• Compression achieved as data is e�ectively subsampled and coded

at this level.
• Used in MPEG4, Video Codecs (Cinepak, Sorenson), Speech coding,

Ogg Vorbis.

http://www.data-compression.com/vq.html

Vector quantisation encoding/decoding

• Search Engine:
• Group (cluster) data into vectors.
• Find closest code vectors.

• When decoding, output needs to be unblocked (smoothed).

Vector quantisation code book construction

How to cluster data?

• Use some clustering technique,
e.g. K-means, Voronoi decomposition
Essentially cluster on some closeness measure, minimise
inter-sample variance or distance.

http://en.wikipedia.org/wiki/K-means_algorithm
http://en.wikipedia.org/wiki/Voronoi_diagram

K-Means

This is an iterative algorithm:

• Assign each point to the cluster whose centroid yields the least
within-cluster squared distance. (This partitions according to
Voronoi diagram with seeds = centroids.)
• Update: set new centroids to be the centroids of each cluster.

Vector Quantisation Code Book Construction

How to code?

• For each cluster choose a mean (median) point as
representative code for all points in cluster.

Vector quantisation image coding example

• A small block of images and intensity values

• Consider Vectors of 2x2 blocks, and only allow 8 codes in table.
• 9 vector blocks present in above:

Vector quantisation image coding example

• 9 vector blocks, so only one has to be vector quantised here.
• Resulting code book for above image

MATLAB example: vectorquantise.m

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/vectorquantise.m

	Basics of Information Theory
	Compression Overview Cont.
	Entropy coding
	Lempel-Ziv-Welch

