CM3106 Chapter 8: Multimedia Data Graphics, Images and Video

Prof David Marshall dave.marshall@cs.cardiff.ac.uk and Dr Kirill Sidorov K.Sidorov@cs.cf.ac.uk www.facebook.com/kirill.sidorov



School of Computer Science & Informatics Cardiff University, UK

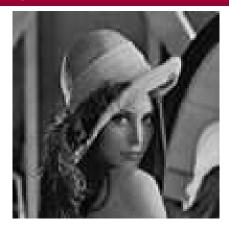
### Common graphics and image file formats:

- <u>http://www.dcs.ed.ac.uk/home/mxr/gfx/</u> comprehensive listing of various formats.
- See *Encyclopedia of Graphics File Formats* book in library
- Most formats incorporate *compression*, including lossless or lossy
- Graphics, video and audio compression techniques in next Chapter.

# Graphic/Image Data Structures

"A picture is worth a thousand words, but it uses up three thousand times the memory."

#### Image Format:


- A digital image consists of many picture elements, termed pixels.
- The number of pixels determine the quality of the image (resolution).
- Higher resolution always yields better quality.
- A bit-map representation stores the graphic/image data in the same manner that the computer monitor contents are stored in video memory.

# Bit-Map (Black-and-White) Images



- Each pixel is stored as a single bit (0 or 1)
- A 640 × 480 bit-mapped image requires 37.5 KB of storage.
- Dithering is often used for displaying monochrome images

## Gray-scale Images



Each pixel is usually stored as a byte (value between 0 to 255)

- A dark pixel may have a value of 10; a bright one may be 240
- A 640 × 480 greyscale image requires over 300 KB of storage.

# Dithering

- Dithering is often used when converting greyscale images to bit-mapped ones e.g. for printing
- The main strategy is to replace a pixel value (from 0 to 255) by a larger pattern (e.g. 4 × 4) such that the number of printed dots approximates the greyscale level of the original image
- If a pixel is replaced by a 4 × 4 array of dots, the intensities it can approximate from 0 (no dots) to 16 (full dots).
- Given a 4 × 4 dither matrix e.g.

| ( | 0  | 8  | 2  | 10 |  |
|---|----|----|----|----|--|
|   | 12 | 4  | 14 | 6  |  |
|   | 3  | 11 | 1  | 9  |  |
|   | 15 | 7  | 13 | 5  |  |

we can re-map pixel values from 0-255 to a new range 0-16 by dividing the value by (256/17) (and rounding down).

# Dithering (cont.)

#### A simple dithering approach:

- Replace each pixel by a 4 × 4 dots (binary pixels). If the remapped intensity is > the dither matrix entry, put a dot at the position (set to 1) otherwise set to 0.
- Note that the size of the dithered image may be much larger. Since each pixel is replaced by 4 × 4 array of dots, the image becomes 16 times as large.
- To keep the image size: an ordered dither produces an output pixel with value 1 iff the remapped intensity level just at the pixel position is greater than the corresponding matrix entry.



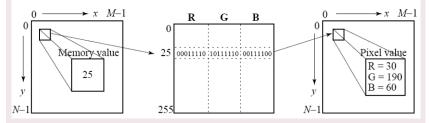
## 24-bit Colour Images



- Each pixel is represented by three bytes (e.g., RGB)
- Supports 256 × 256 × 256 (16,777,216) possible colours
- A 640 x 480 24-bit colour image is 921.6 KB large
- Some colour images are 32-bit images,

the extra byte of data for each pixel is used to store an alpha value representing special effect information

## 8-bit Colour Images




- One byte for each pixel
- Supports 256 out of the millions possible
- Acceptable colour quality
- Requires Colour Look-Up Tables (LUTs)
- A 640 × 480 8-bit colour image takes up 307.2 KB (cf. 8-bit greyscale)

# Colour Look-Up Tables (LUTs)

## The Colour LUT

- Store only the index of the colour LUT for each pixel
- Look up the table to find the colour (RGB) for the index
- LUT needs to be built when converting 24-bit colour images to 8-bit: grouping similar colours (each group assigned a colour entry)
- Possible for palette animation by changing the colour map



CM3106 Chapter 8: Images and Video

Graphic + Image Formats

## Standard System Independent Formats

### GIF (GIF87a, GIF89a)

- Graphics Interchange Format (GIF) devised by the UNISYS Corp. and Compuserve, initially for transmitting graphical images over phone lines via modems
- Uses the Lempel-Ziv Welch algorithm (a form of Huffman Coding), modified slightly for image scan line packets (line grouping of pixels) so lossless — Algorithm Soon
- Limited to only 8-bit (256) colour images, suitable for images with few distinctive colours (e.g., graphics drawing)
- Supports interlacing
- GIF89a: supports simple animation, transparency index etc.

#### JPEG Standard:

- A standard for photographic image compression created by the Joint Photographic Experts Group
- Takes advantage of limitations in the human vision system to achieve high rates of compression
- Lossy compression which allows user to set the desired level of quality/compression
- Algorithm Soon Detailed discussions in next chapter on compression.

### Tagged Image File Format (TIFF)

- TIFF, stores many different types of images (e.g., bit-map, greyscale, 8-bit & 24-bit RGB, etc.) -> tagged
- Developed by the Aldus Corp. in the 1980's and later supported by the Microsoft
- TIFF is a typically lossless format
  - Can utilise JPEG tag which allows for JPEG compression
- It does not provide any major advantages over JPEG and is not as user-controllable it appears to be declining in popularity.

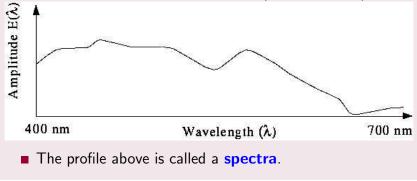
## Portable Network Graphics (PNG)

- PNG meant to supersede GIF standard
- Features of PNG
  - Support up to 48 bits per pixel more accurate colours
  - Support description of gamma-correction and alpha-channel for controls such as transparency
  - Support progress display through  $8 \times 8$  blocks.

## Postscript/Encapsulated Postscript

### Postscript (PS)/Encapsulated Postscript (EPS)

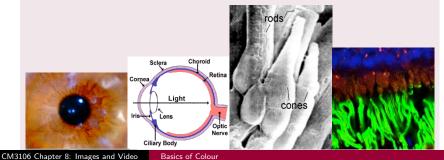
- A typesetting language which includes text as well as vector/structured graphics and bit-mapped images
- Output in several popular graphics programs (*E.g.* Illustrator, FreeHand)
- Does not provide compression, files are often large
  - Although able to link to external compression applications


BMP (bitmap image file or device independent bitmap (DIB) file format)

- A system standard graphics file format for Microsoft Windows
- Raster image format
- Used in Many PC Graphics programs, Cross-platform support
- It is capable of storing 24-bit bitmap images

# Basics of Colour: Image and Video

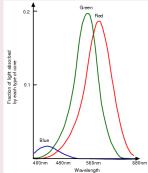
### Light and Spectra


- Visible light is an electromagnetic wave in the 400nm
   700 nm range.
- Most light we see is not one wavelength, it's a combination of many wavelengths (cf. a Rainbow).



# The Human Eye

#### Basic Eye Anatomy


- The eye is basically similar to a camera
- It has a lens to focus light onto the Retina of eye
- Retina full of neurons
- Each neuron is either a *rod* or a *cone*.
- Rods are not sensitive to colour.



## **Cones and Perception**

#### How Humans Perceive Colour:

- Cones come in **3** types: red, green and blue.
- Each responds differently to various frequencies of light. The following figure shows the spectral-response functions of the cones and the luminous-efficiency function of the eye.



#### Luminous-efficiency Function of the Human Eye's Cones

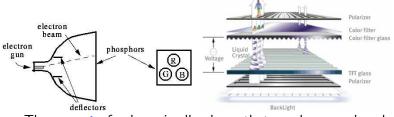
## **RGB** Colour Space



Colour Space is made up of Red, Green and Blue intensity components

## **RGB** Colour Space




## Red, Green, Blue (RGB) Respective Intensities

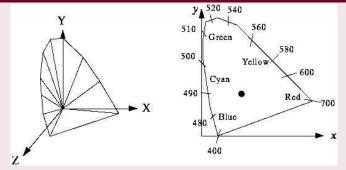
CM3106 Chapter 8: Images and Video

Basics of Colour

# Colour Displays

- (Old) CRT displays have three phosphors (RGB) which produce a mix of colours when excited with electrons.
- (Newer) Colour LCD panels (typically thin-film-transistor liquid-crystal displays (TFT LCD)): Transistor switch for each (R, G or B) pixel



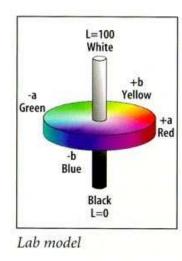

- The gamut of colours is all colours that can be reproduced using the three primaries
- The gamut of a colour monitor is smaller than that of color models, E.g. CIE (LAB) Model — see later.

#### Human focussed Colour Models:

- In 1931, the CIE defined three standard primaries (X, Y, Z).
  - The Y primary was intentionally chosen to be identical to the luminous-efficiency function of human eyes (Perceptual Model).
- All visible colours are in a *horseshoe* shaped cone in the X-Y-Z space. Consider the plane X+Y+Z=1 and project it onto the X-Y plane, we get the *CIE chromaticity diagram*.

# CIE Chromaticity Diagram






- The edges represent the pure colours
- White (a blackbody radiating at 6447 kelvin) is at the dot
- Vector-based colour model: When added, any two colours (points on the CIE diagram) produce a point on the line between them.

# L\*a\*b\* (Lab) Colour Model

#### A refined CIE model:

- Named CIE L\*a\*b\* in 1976
- Luminance:L Chrominance:
  - a ranges from green to red,
    b ranges from blue to yellow
- Used by Photoshop



# Lab Image Space



**Original Color Image** 



L, A, B Image Intensities

## Colour Image and Video Representations

Recap: A grey-scale image is a 2-D array of integers.
 Recap: A true colour image: a 2-D array of (R,G,B) integer triplets. These triplets encode how much the corresponding colour pixel should be excited in devices such as an LCD monitor.



Recap: Use Luminance and Chrominance to better encode how Humans 'see' colour.

**Besides** the **RGB** representation, **YIQ** and **YUV** are the two commonly used in video.

(Latter two use a model of Luminance and Chrominance)

CM3106 Chapter 8: Images and Video

Basics of Colour

# YIQ Colour Model

## YIQ Colour Model

- YIQ is used in colour TV broadcasting, it is downward compatible with B/W TV.
- Y (luminance) is the CIE Y primary. Y = 0.299R + 0.587G + 0.114B
- the other two vectors:

I = 0.596R - 0.275G - 0.321B Q = 0.212R - 0.528G + 0.311B

The YIQ transform:

$$\begin{bmatrix} Y\\ I\\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114\\ 0.596 & -0.275 & -0.321\\ 0.212 & -0.528 & 0.311 \end{bmatrix} \begin{bmatrix} R\\ G\\ B \end{bmatrix}$$

## NTSC (Analog) Compression Scheme:

- I is red-orange axis, Q is roughly orthogonal to I.
- Eye is most sensitive to Y, next to I, next to Q.

## Analog Video Compression Scheme:

- 4 MHz is allocated to Y,
- 1.5 MHz to I,
- 0.6 MHz to Q.

# YIQ Colour Space



**Original Color Image** 







Y, I, Q Image Intensities

### YUV Color Model:

- Digital video standard stablished in 1982
- Video is represented by a sequence of fields (odd and even lines). Two fields make a frame.
- Works in PAL (50 fields/sec) or NTSC (60 fields/sec)
- Uses the Y, U, V colour space

Y = 0.299R + 0.587G + 0.114B, U = B - Y,V = R - Y

# YUV Color Model (Cont.)

#### The YUV Transform:

$$\begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.299 & -0.587 & 0.886 \\ 0.701 & -0.587 & -0.114 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

# YCrCb Colour Model

## YCrCb (CCIR 601) Colour Model

- Similar to YUV
- YUV is normalised by a scaling

Cb = (B - Y)/1.772

$$Cr = (R - Y)/1.402$$

$$\begin{bmatrix} Y \\ Cr \\ Cb \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \\ 0.500 & -0.419 & -0.081 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

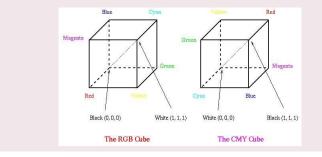
# YCrCb Colour Space



**Original Color Image** 



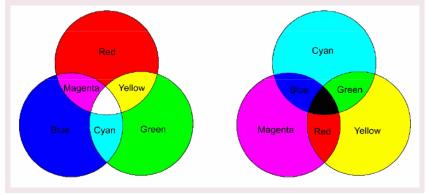





Y, Cr, Cb Image Intensities

## The CMY Colour Model

#### Printing Colour Models: CMY Colour Model


- Cyan, Magenta, and Yellow (CMY) are complementary colours of RGB Subtractive Primaries.
- CMY model is mostly used in printing devices where the colour pigments on the paper absorb certain colours



# The CMY Colour Model (cont.)

### Additive v. Subtractive Colours

Combinations of additive and subtractive colours.



### RGB to CMY Conversion:

E.g., convert White from (1, 1, 1) in RGB to (0, 0, 0) in CMY.

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$
$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$

# CMYK Color Model

### An improved Printing Colour Model

- Sometimes, an alternative CMYK model (K stands for Black) is used in colour printing
  - E.g., to produce darker black than simply mixing CMY (which is never really black!).
- Conversion from CMY to CMYK:

$$\begin{split} & K = \min(C_{CMY}, M_{CMY}, Y_{CMY}), \\ & C_{CMYK} = C_{CMY} - K, \\ & M_{CMYK} = M_{CMY} - K, \\ & Y_{CMYK} = Y_{CMY} - K. \end{split}$$

# CMYK Colour Space



### **Original Color Image**



C, M, Y, K image Intensities

CM3106 Chapter 8: Images and Video

# Summary of Colour

- Colour images are encoded as triplets of values.
- Three common systems of encoding in video are RGB, YIQ, and YCrCb.
- Besides the hardware-oriented colour models (i.e., RGB, CMY, YIQ, YUV), HSB (Hue, Saturation, and Brightness, e.g., used in Photoshop) and HLS (Hue, Lightness, and Saturation) are also commonly used.
- YIQ uses properties of the human eye to prioritise information. Y is the black and white (luminance) image, I and Q are the colour (chrominance) images. YUV uses similar idea.
- YUV/YCrCb is a standard for digital video that specifies image size, and decimates the chrominance images (for 4:2:2 video) — more soon.

### Basics of Video

### Types of Colour Video Signals

- Component video each primary is sent as a separate video signal.
  - The primaries can either be RGB or a luminance-chrominance transformation of them (e.g., YIQ, YUV).
  - Best colour reproduction
  - Requires more bandwidth and good synchronisation of the three components
- Composite video colour (chrominance) and luminance signals are mixed into a single carrier wave. Some interference between the two signals is inevitable.
- S-Video (Separated video, e.g., in S-VHS) a compromise between component analog video and the composite video. It uses two lines, one for luminance and another for composite chrominance signal.

# NTSC Video

### Basic NTSC Video Statistics:

- **525** scan lines per frame, **30** frames per second (or to be exact, 29.97 fps, 33.37 msec/frame)
- Aspect ratio 4:3
- Interlaced Video, each frame is divided into 2 fields, 262.5 lines/field
- 20 lines reserved for control information at the beginning of each field
  - So a maximum of 485 lines of visible data
  - Laser disc and S-VHS had an actual resolution of  $\approx\!\!420$  lines
  - Ordinary TV: ≈320 lines

# NTSC Video Colour and Analog Compression

### NTSC Analog Video Compression:

- Colour representation:
  - NTSC uses **YIQ** colour model.
  - Composite = Y + I cos(Fsc t) + Q sin(Fsc t), where Fsc is the frequency of colour subcarrier
  - Basic Compression Idea

Eye is most sensitive to Y, next to I, next to Q.

- This is STILL Analog Compression: In NTSC,
  - 4 MHz is allocated to Y,
  - 1.5 MHz to I,
  - 0.6 MHz to Q.
- Similar (easier to visualise) Compression (Part of ) in digital compression — more soon

### PAL Video

### **Basic PAL Statistics**

- 625 scan lines per frame, 25 frames per second (40 msec/frame)
- Aspect ratio 4:3
- Interlaced, each frame is divided into 2 fields, 312.5 lines/field
- Colour representation:
  - PAL uses YUV (YCrCb) colour model
  - composite =

 $Y + 0.492 \times U sin(Fsc t) + 0.877 \times V cos(Fsc t)$ 

- PAL Analog Video compression:
  - **5.5 MHz** is allocated to **Y**,
  - 1.8 MHz each to U and V.

# MATLAB Colour functions

MATLAB's image processing toolbox colour space functions:

#### **Colormap manipulation**:

colormap — Set or get colour lookup table rgbplot —Plot RGB colourmap components cmpermute — Rearrange colours in colormap.

#### Colour space conversions:

hsv2rgb/rgb2hsv — Convert HSV values/RGB colour space lab2double/lab2uint16/lab2uint8 — Convert Lab colour values to double etc.

 $\frac{\texttt{ntsc2rgb/rgb2ntsc}}{\texttt{VIQ}} = Convert \ \texttt{NTSC} \ (\texttt{YIQ}) / \texttt{RGB} \ \texttt{colour} \ \texttt{values}$ 

ycbcr2rgb/ rgb2ycbcr — Convert YCbCr/RGB colour

#### See forthcoming Lab Class

### Chroma subsampling:

A method that stores an image's (or video frame's) **colour** information at **lower resolution** than its **intensity** information.

- Main Application: COMPRESSION
- Used in JPEG Image and MPEG Video Compression (More Soon):

One (of two) primary Lossy sources.

# Chroma Subsampling (Cont.)

### Exploit traits of Human visual system (HVS)

- HVS more sensitive to variations in brightness than colour.
- So devote more bandwidth to Y than the color difference components Cr/I and Cb/Q.
  - HVS is less sensitive to the position and motion of color than luminance
  - Bandwidth can be optimised by storing more luminance detail than color detail.
- Reduction results in almost no perceivable visual difference.

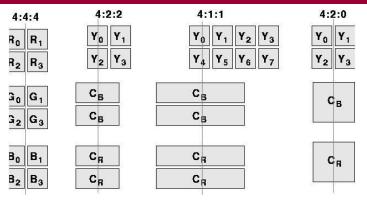
### How to Chroma Subsample?

#### Operate on color difference components

```
The signal is divided into:
```

Luma (Y): the intensity component and Chroma: two color difference components which we subsample in some way to reduce its bandwidth Analogous to Analog Video Compression (NTSC or PAL).

#### How to subsample for chrominance?


The subsampling scheme is commonly expressed as a three part ratio (e.g. **4:2:2**)

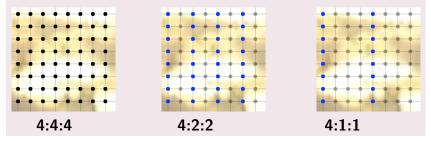
#### Chroma Subsample 3 Part Ratio:

Each part of the three part ratio is respectively:

- Luma (Y) or Red (R): Horizontal sampling reference (originally, as a multiple of 3.579 MHz in the NTSC analog television system — rounded to 4)
- Cr/I/G: Horizontal factor (relative to first digit)
- 3 Cb/Q/B: Horizontal factor (relative to first digit), except when zero.
  - Zero indicates that Cb (Q/B) horizontal factor is equal to second digit, and,
  - Both Cr (I/G) and Cb (Qb) are subsampled 2:1 vertically.

# Chroma Subsampling Examples

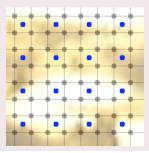



■ 4:4:4 — no subsampling in any band — equal ratios.

- 4:2:2 ->Two chroma components are sampled at half the sample rate of luma, horizontal chroma resolution halved.
- 4:1:1  $\rightarrow$  Horizontally subsampled by a factor of 4.
- 4:2:0 -> Subsampled by a factor of 2 in both the horizontal and vertical axes

# Chroma Subsampling: How to Compute?

### Simple Image sub-sampling:


- Simply different frequency sampling of digitised signal
- Digital Subsampling: For 4:4:4, 4:2:2 and 4:1:1
   Perform 2x2 (or 1x2, or 1x4) chroma subsampling
  - Subsample horizontal and, where applicable, vertical directions
  - *i.e.* Choose every second, fourth pixel value.



# Chroma Subsampling: How to Compute? (Cont.)

### 4:2:0 Subsampling:

- For 4:2:0, Cr and Cb are effectively centred vertically halfway between image rows.:
  - Break the image into 2x2 pixel blocks and
  - Stores the average color information for each 2x2 pixel group.



# Chroma Subsampling in MATLAB

The MATLAB function imresize() readily achieves all our subsampling needs:

```
IMRESIZE Resize image.
IMRESIZE resizes an image of any type using the specified
interpolation method. Supported interpolation methods
include:
            'nearest' --- (default) nearest neighbour interpolation
            'bilinear' bilinear interpolation
        B = IMRESIZE(A,M,METHOD) returns an image that is M times the
size of A. If M is between 0 and 1.0, B is smaller than A. If
M is greater than 1.0, B is larger than A.
B = IMRESIZE(A,[MROWS MCOLS],METHOD) returns an image of size
MROWS-by-MCOLS.
```

After MATLAB colour conversion to YUV/YIQ, For U/I and V/Q channels:

- Use nearest for 4:2:2 and 4:2:1 and scale the MCOLS to half or quarter the size of the image.
- Use bilinear (to average) for 4:2:0 and set scale to half.

### See forthcoming Lab worksheet

CM3106 Chapter 8: Images and Video

Chroma Subsampling

# Digital Chroma Subsampling Errors (1)

#### This sampling process introduces two kinds of errors:

- A minor problem is that colour is typically stored at only half the horizontal and vertical resolution as the original image —*subsampling*. This is not a real problem:
  - Recall: The human eye has lower resolving power for colour than for intensity.
  - Nearly all digital cameras have lower resolution for colour than for intensity, so there is no high resolution colour information present in digital camera images.

# Digital Chroma Subsampling Errors (2)

### Integer Rounding Errors:

- Another issue: The subsampling process demands two conversions of the image:
  - From the original RGB representation to an intensity+colour (YIQ/YUV) representation , and
  - Then back again (YIQ/YUV -> RGB) when the image is displayed.
  - Conversion is done in integer arithmetic some round-off error is introduced.
    - This is a much smaller effect,
    - But (slightly) affects the colour of (typically) one or two percent of the pixels in an image.
  - Do not compress/recompress videos too often:
    - Edit the original

# Aliasing in Images

**Stair-stepping**: Stepped or jagged edges of angled lines, *e.g.*, at the slanted edges of letters.

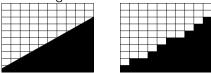



 Image Zooming: changing resolution or not acquiring image in adequate resolution, *e.g.* digital zoom on cameras, digital scanning. (see <u>zoom\_alias.m</u>)



**Explanation:** Simply Application of Nyquist's Sampling Theorem: Zooming in by a factor *n* divides the sample resolution by *n* CM3106 Chapter 8: Images and Video Aliasing

# Aliasing in Video

### Temporal aliasing:

*e.g.*, rotating wagon wheel spokes apparently reversing direction:



# Aliasing in Video

#### Temporal aliasing:

### e.g., Optical Illusion - Train Moves Both Ways:



### Sampling at Below Nyquist Video Sample Rate

■ see aliasing\_wheel.m + spokesR.gif:



Below Nyquist Video

#### Click on image or links to see video.

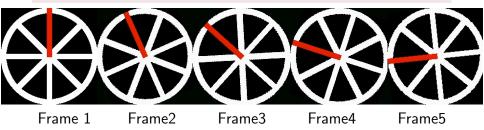
### Sampling at Nyquist Video Sample Rate



### At Nyquist Video

#### Click on image or links to see video.

### Sampling at Above Nyquist Video Sample Rate




Above Nyquist Video

#### Click on image or links to see video.

### Aliasing Explained:

- 'Strobing Effect': e.g., rotating wagon wheel spokes apparently reversing direction,
  - See aliasing\_wheel.m + spokesR.gif
- The incorrect sampling rate "freezes" the frames at the wrong moment



### Aliasing in Video: Raster scan aliasing

#### Raster scan aliasing:

# *e.g.*, twinkling or strobing effects on sharp horizontal lines, (see raster\_aliasing.m + barbara.gif):





Strobing Alias Video

Strobing Alias Frequency Distributions Video

#### Click on image or links to see video.

CM3106 Chapter 8: Images and Video

Aliasing

# Aliasing in Video

### Other Video Aliasing Effects

Interlacing aliasing: Some video is interlaced, this effectively halves the sampling frequency. *e.g.*: Interlacing Aliasing effects



Image aliasing: Stair-stepping/Zooming aliasing effects per frame (as in images).

# **Explanation:** Simply Application of Nyquist's Sampling Theorem