
Delay Based E↵ects

Many useful audio e↵ects can be implemented using a delay

structure:

Sounds reflected o↵ walls
In a cave or large room we hear an echo and also
reverberation takes place – this is a di↵erent e↵ect —
see later

If walls are closer together repeated reflections can
appear as parallel boundaries and we hear a modification
of sound colour instead.

Vibrato, Flanging, Chorus and Echo are examples of
delay e↵ects

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 32



Basic Delay Structure

The Return of IIR and FIR filters:

We build basic delay structures out of some very basic IIR and
FIR filters:

We use FIR and IIR comb filters

Combination of FIR and IIR gives the Universal Comb

Filter

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 33



FIR Comb Filter

FIR Comb Filter: A single delay

This simulates a single delay:

The input signal is delayed by a given time duration, ⌧ .

The delayed (processed) signal is added to the input
signal some amplitude gain, g

The di↵erence equation is simply:

y(n) = x(n) + gx(n � M) with M = ⌧/fs

The transfer function is:

H(z) = 1 + gz
�M

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 34



FIR Comb Filter Signal Flow Diagram

+
y(n)

TM

�

�x(n � M)

1

g

x(n)

1

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 35



FIR Comb Filter MATLAB Code

fircomb.m:

x=zeros(100,1);x(1)=1; % unit impulse signal of length 100

g=0.5; %Example gain

Delayline=zeros(10,1); % memory allocation for length 10

for n=1:length(x);
y(n)=x(n)+g*Delayline(10);
Delayline=[x(n);Delayline(1:10-1)];

end;

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 36

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/fircomb.m


IIR Comb Filter

IIR Comb Filter

Simulates endless reflections at both ends of cylinder.

We get an endless series of responses, y(n) to input, x(n).

The input signal circulates in delay line (delay time ⌧) that is
fed back to the input.

Each time it is fed back it is attenuated by g .

Input sometime scaled by c to compensate for high
amplification of the structure.

The di↵erence equation is simply:

y(n) = Cx(n) + gy(n � M) with M = ⌧/fs

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 37



IIR Comb Filter Signal Flow Diagram

� +
y(n)

TM

� y(n � M)

g

c

x(n)

1

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 38



IIR Comb Filter MATLAB Code

iircomb.m:

x=zeros(100,1);x(1)=1; % unit impulse signal of length 100

g=0.5;

Delayline=zeros(10,1); % memory allocation for length 10

for n=1:length(x);
y(n)=x(n)+g*Delayline(10);
Delayline=[y(n);Delayline(1:10-1)];

end;

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 39

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/iircomb.m


Universal Comb Filter

Universal Comb Filter

Combination of the FIR and IIR comb filters.

Basically this is an allpass filter with an M sample delay
operator and an additional multiplier, FF.

TM

x(n � M)

�

�

BL

FF

+ +
y(n)

�
FB

x(n)

1

Parameters:
FF = feedforward, FB = feedbackward, BL = blend

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 40



Universal Comb Filter Parameters

Why is “Universal”?

Universal in that we can form any comb filter, an
allpass or a delay filter:

BL FB FF
FIR Comb 1 0 g

IIR Comb 1 g 0
Allpass a �a 1
delay 0 0 1

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 41



Universal Comb Filter MATLAB Code

unicomb.m:

x=zeros(100,1);x(1)=1; % unit impulse signal of length 100

BL=0.5;
FB=-0.5;
FF=1;
M=10;

Delayline=zeros(M,1); % memory allocation for length 10

for n=1:length(x);
xh=x(n)+FB*Delayline(M);
y(n)=FF*Delayline(M)+BL*xh;
Delayline=[xh;Delayline(1:M-1)];

end;

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 42

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/unicomb.m


Vibrato - A Simple Delay Based E↵ect

Vibrato:

Vibrato — Varying (modulating) the time delay
periodically.

If we vary the distance between an observer and a
sound source (cf. Doppler e↵ect) we hear a change in
pitch.

Implementation: A Delay line and a low frequency

oscillator (LFO) to vary the delay.

Only listen to the delay — no forward or backward feed.

Typical delay time = 5–10 Ms and LFO rate = 5–14Hz.

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 43



Vibrato MATLAB Code

vibrato.m function:

See vibrato eg.m for sample call this function

function y=vibrato(x,SAMPLERATE,Modfreq,Width)

ya_alt=0;
Delay=Width; % basic delay of input sample in sec
DELAY=round(Delay*SAMPLERATE); % basic delay in # samples
WIDTH=round(Width*SAMPLERATE); % modulation width in # samples
if WIDTH>DELAY

error('delay greater than basic delay !!!');
return;

end;

MODFREQ=Modfreq/SAMPLERATE; % modulation frequency in # samples
LEN=length(x); % # of samples in WAV-file
L=2+DELAY+WIDTH*2; % length of the entire delay
Delayline=zeros(L,1); % memory allocation for delay
y=zeros(size(x)); % memory allocation for output vector

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 44

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/vibrato.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/vibrato_eg.m


Vibrato MATLAB Code (Cont.)

vibrato.m (Cont.)

for n=1:(LEN-1)
M=MODFREQ;
MOD=sin(M*2*pi*n);
ZEIGER=1+DELAY+WIDTH*MOD;
i=floor(ZEIGER);
frac=ZEIGER-i;
Delayline=[x(n);Delayline(1:L-1)];
%---Linear Interpolation-----------------------------
y(n,1)=Delayline(i+1)*frac+Delayline(i)*(1-frac);
%---Allpass Interpolation------------------------------
%y(n,1)=(Delayline(i+1)+(1-frac)*Delayline(i)-(1-frac)*ya_alt);
%ya_alt=ya(n,1);

end

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 45

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/vibrato.m


Vibrato MATLAB Example (Cont.)

The output from the above code is (red plot is original audio):

0 50 100 150 200 250 300 350 400 450 500
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Vibrato First 500 Samples

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click image or here to hear: original audio, vibrato audio.

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 46

out_vibrato.mov
Media File (video/quicktime)

acoustic2.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_vibrato.wav


Comb Filter Delay E↵ects:

Flanger, Chorus, Slapback, Echo

A few other popular e↵ects can be made with a comb filter (FIR or
IIR) and some modulation.
Flanger, Chorus, Slapback, Echo same basic approach but di↵erent
sound outputs:

E↵ect Delay Range (ms) Modulation
Resonator 0 . . . 20 None
Flanger 0 . . . 15 Sinusoidal (⇡ 1 Hz)
Chorus 10 . . . 25 Random
Slapback 25 . . . 50 None
Echo > 50 None

Slapback (or doubling) — quick repetition of the sound,
Flanging — continuously varying LFO of delay,
Chorus — multiple copies of sound delayed by small random
delays

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 47



Flanger MATLAB Code

flanger.m:

% Creates a single FIR delay with the delay time oscillating from
% Either 0-3 ms or 0-15 ms at 0.1 - 5 Hz

infile='acoustic.wav';
outfile='out_flanger.wav';

% read the sample waveform
[x,Fs] = audioread(infile);

% parameters to vary the effect %
max_time_delay=0.003; % 3ms max delay in seconds
rate=1; %rate of flange in Hz

index=1:length(x);

% sin reference to create oscillating delay
sin_ref = (sin(2*pi*index*(rate/Fs)))';

%convert delay in ms to max delay in samples
max_samp_delay=round(max_time_delay*Fs);

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 48

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/flanger.m


Flanger MATLAB Code (Cont.)

flanger.m (Cont.):

% create empty out vector
y = zeros(length(x),1);

% to avoid referencing of negative samples
y(1:max_samp_delay)=x(1:max_samp_delay);

% set amp suggested coefficient from page 71 DAFX
amp=0.7;

% for each sample
for i = (max_samp_delay+1):length(x),

cur_sin=abs(sin_ref(i)); %abs of current sin val 0-1
% generate delay from 1-max_samp_delay and ensure whole number
cur_delay=ceil(cur_sin*max_samp_delay);
% add delayed sample
y(i) = (amp*x(i)) + amp*(x(i-cur_delay));

end

% write output
audiowrite(outfile, y, Fs);

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 49

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/flanger.m


Flanger MATLAB Example (Cont.)

The output from the above code is (red plot is original audio):

0 5 10 15

x 10
4

−1.5

−1

−0.5

0

0.5

1

1.5
Flanger and original Signal

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click here to hear: original audio, flanged audio.

CM3106 Chapter 7: Digital Audio E↵ects Delay Based E↵ects 50

out_flanger.mov
Media File (video/quicktime)

acoustic3.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_flanger.wav

