
CM3106 Chapter 5:
Digital Audio Synthesis

Prof David Marshall
dave.marshall@cs.cardiff.ac.uk

and

Dr Kirill Sidorov
K.Sidorov@cs.cf.ac.uk

www.facebook.com/kirill.sidorov

School of Computer Science & Informatics
Cardiff University, UK

www.facebook.com/kirill.sidorov


Digital Audio Synthesis

Some Practical Multimedia Digital Audio Applications:

Having considered the background theory to digital audio
processing, let’s consider some practical multimedia related
examples:

Digital Audio Synthesis — making some sounds

Digital Audio Effects — changing sounds via some standard
effects.

MIDI — synthesis and effect control and compression

Roadmap for Next Few Weeks of Lectures
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Digital Audio Synthesis

We have talked a lot about synthesising sounds.

Several Approaches:

Subtractive synthesis

Additive synthesis

FM (Frequency Modulation) Synthesis

Sample-based synthesis

Wavetable synthesis

Granular Synthesis

Physical Modelling
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Subtractive Synthesis

Basic Idea: Subtractive synthesis is a
method of subtracting overtones from a
sound via sound synthesis, characterised
by the application of an audio filter to
an audio signal.

First Example: Vocoder — talking
robot (1939).

Popularised with Moog Synthesisers
1960-1970s
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Subtractive synthesis: Simple Example

Simulating a bowed string

Take the output of a sawtooth generator

Use a low-pass filter to dampen its higher partials generates a
more natural approximation of a bowed string instrument than
using a sawtooth generator alone.
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subtract synth.m MATLAB Code Example Here.
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Subtractive Synthesis: A Human Example

We can regard the way in which humans make noises as
subtractive synthesis:

Oscillator — the vocal cords act as the sound source and

Filter — the mouth and throat modify the sound.

Saying or singing “ooh” and “aah” (at the same pitch.)
Vocal chords are generating pretty much the same raw,
rich in harmonic sound Difference between the two comes
from the filtering which we apply with the mouth and
throat.
Change of mouth shape varies the cutoff frequency of
the filter, so removing (subtracting) some of the
harmonics.
The “aah” sound has most of the original harmonics still
present,
The “ooh” sound has most of them removed (or to be
more precise, reduced in amplitude.)
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Subtractive Synthesis: Another Human
Example

A sweeping filter

”ooh”s to ”aah”s again

By gradually changing from ”ooh” to ”aah” and back again –
simulate the ”sweeping filter” effect

Effect widely used in electronic music

Basis of the ”wahwah” guitar effect, so named for obvious
reasons.

We will see how we produce this effect in MATLAB code
shortly.
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Subtractive Synthesis: One More Human Example

Making Aeroplane Noise

Make a ”ssh” sound — white noise

Now ”synthesise” a ”jet plane landing” sound

Should mostly by use mouth shape to filter the white noise
into pink noise by removing the higher frequencies.

The same technique (filtered white noise) can be used to
electronically synthesise the sound of ocean waves and wind,

Used in early drum machines to create snare drum and other
percussion sounds.
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Subtractive synthesis: Electronic Control

Three Basic elements:

Source signal: Common source signals: square waves,
pulse waves, sawtooth waves and
triangle waves.

Modern synthesisers (digital and
software) may include more complex
waveforms or allow the upload of
arbitrary waveforms

Filtering: The cut-off frequency and resonance of
the filter are controlled in order to
simulate the natural timbre of a given
instrument.

Amplitude Envelope: Further envelope control of signal amplitude (strictly:
not subtractive synthesis but frequently used). Also used
with other synthesis techniques.
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Further Processing: ADSR Envelope

Basic Idea: Modulate some aspect of the instrument’s sound over time —
often its volume.

Why is this needed? (used by many forms of synthesis):

When a mechanical musical instrument produces sound, the relative volume of
the sound produced changes over time — The way that this varies is different
from instrument to instrument

Examples:
Pipe Organ: When a key is pressed, it plays a note at constant volume; the

sound dies quickly when the key is released.

Guitar: The sound of a guitar is loudest immediately after it is played,
and fades with time.

Other instruments have their own characteristic volume patterns.

Also Note: While envelopes are most often applied to volume, they are also
commonly used to control other sound elements, such as filter frequencies or
oscillator pitches.

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 10



Further Processing: ADSR Envelope (Cont.)

Attack: How quickly the sound reaches full volume after
the sound is activated (the key is pressed).

For most mechanical instruments, this period
is virtually instantaneous.
For bowed strings or some popular
synthesised ”voices” that don’t mimic real
instruments, this parameter is slowed down.
’Slow attack’ is commonly part of sounds —
’pads’.

Decay: How quickly the sound drops to the sustain level
after the initial peak.

Sustain: The ”constant” volume that the sound takes after
decay until the note is released. Note that this
parameter specifies a volume level rather than a
time period.

Release How quickly the sound fades when a note ends (the
key is released).

Often, this time is very short. e.g. organ
An example where the release is longer might
be a bell ring, or a piano with the sustain
pedal pressed.
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Using MATLAB Filter Example: Subtractive Synthesis
Example

The example for studying subtractive synthesis uses the butter()

and filter() MATLAB functions:

subtract synth.m:

% simple low pas filter example of subtractive synthesis

Fs = 22050;

y = synth(440,2,0.9,22050,'saw');

% play sawtooth e.g. waveform

doit = input('\nPlay Raw Sawtooth? Y/[N:]\n\n', 's');
if doit == 'y',

figure(1)

plot(y(1:440));

sound(y,Fs);

end

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 12

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/subtract_synth.m


Using MATLAB Filter Example: Subtractive Synthesis
Example (cont)

% make lowpass filter and filter y

[B, A] = butter(1,0.04, 'low');
yf = filter(B,A,y);

[B, A] = butter(4,0.04, 'low');
yf2 = filter(B,A,y);

% play filtererd sawtooths

doit = ...

input('\nPlay Low Pass Filtered (Low order) ?

Y/[N:]\n\n', 's');
if doit == 'y',
figure(2)

plot(yf(1:440));

sound(yf,Fs);

end
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Using MATLAB Filter Example: Subtractive Synthesis
Example (cont)

doit = ...

input('\nPlay Low Pass Filtered (Higher order)?

Y/[N:]\n\n', 's');
if doit == 'y',

figure(3)

plot(yf2(1:440));

sound(yf2,Fs);

end

%plot figures

doit = input('\Plot All Figures? Y/[N:]\n\n', 's');
if doit == 'y',
figure(4)

plot(y(1:440));

hold on

plot(yf(1:440),'r+');
plot(yf2(1:440),'g-');
end
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synth.m

The supporting function, synth.m, generates waveforms as we have
seen earlier in this tutorial:

synth.m:

function y=synth(freq,dur,amp,Fs,type)

% y=synth(freq,dur,amp,Fs,type)

%

% Synthesize a single note

%

% Inputs:

% freq - frequency in Hz

% dur - duration in seconds

% amp - Amplitude in range [0,1]

% Fs - sampling frequency in Hz

% type - string to select synthesis type

% current options: 'fm', 'sine', or 'saw'

if nargin<5

error('Five arguments required for synth()');
end
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synth.m (cont)

N = floor(dur*Fs);

n=0:N-1;

if (strcmp(type,'sine'))
y = amp.*sin(2*pi*n*freq/Fs);

elseif (strcmp(type,'saw'))

T = (1/freq)*Fs; % period in fractional samples

ramp = (0:(N-1))/T;

y = ramp-fix(ramp);

y = amp.*y;

y = y - mean(y);

elseif (strcmp(type,'fm'))

t = 0:(1/Fs):dur;

envel = interp1([0 dur/6 dur/3 dur/5 dur], [0 1 .75 .6 0], ...

0:(1/Fs):dur);

I_env = 5.*envel;

y = envel.*sin(2.*pi.*freq.*t + I_env.*sin(2.*pi.*freq.*t));
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synth.m (cont)

else

error('Unknown synthesis type');
end

% smooth edges w/ 10ms ramp

if (dur > .02)

L = 2*fix(.01*Fs)+1; % L odd

ramp = bartlett(L)'; % odd length

L = ceil(L/2);

y(1:L) = y(1:L) .* ramp(1:L);

y(end-L+1:end) = y(end-L+1:end) .* ramp(end-L+1:end);

end
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synth.m (Cont.)

Note the sawtooth waveform generated here has a non-linear up
slope:
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synth.m (Cont.)

This is created with (see synth.m):

ramp = (0:(N-1))/T;

y = ramp-fix(ramp);

Note: fix() rounds the elements of X to the nearest integers
towards zero.
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This form of sawtooth sounds slightly less harsh and is more
suitable for audio synthesis purposes.
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Additive synthesis

Basic Idea:

Additive synthesis refers to the idea that complex tones can be
created by the summation, or addition, of simpler ones.

Frequency mixing is the essence of
additive synthesis.

Each of the frequency components (or
partials) of a sound has its own
amplitude envelope.

This allows for independent behaviour
of these components.

Sources can be other forms of
synthesis or samples.
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Additive synthesis: Examples

Organs: Pipe organs or Hammond organs. The
concept of register-stops of organs =
additive synthesis:

complex timbres result from the
addition of different components to
the spectrum of a sound.
Different pipe stops or
tonewheel/drawbar settings

Telharmonium : An early giant electrical synthesiser
(1900s):

adds together the sounds from
dozens of electro-mechanical tone
generators to form complex tones.
Important place in the history of
electronic and computer music.

Modern Variants: Fairlight CMI, Synclavier, Kawai K5000
series, wavetable synthesis (more soon)
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Additive synthesis: Basic Theory

Basis: Fourier Theory

Simply stated: a complex timbre that has been analysed into
its sinusoidal components can then be reconstructed by means
of additive synthesis.

Additive synthesis has the advantage that the many
micro-variations in the frequency and amplitude of individual
partials, that make natural sounds so rich and lively, can be
recreated.

The disadvantage with this form of synthesis is its inefficiency
in that a great deal of data must be specified to define a
sound of any complexity of detail.

Simple MATLAB Example: additive synth.m in
Ch5 2 Additive Synthesis.mlx
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Further Additive Synthesis Examples: Approximating a
Square Wave

Back in the introduction to Fourier theory we showed how a
Square wave is basically the addition of certain sine waves (and the
Fourier transform can decompose the Square wave into sin waves).

We can grow our own in real space or Fourier space

For code example see: Ch5 2 Additive Synthesis.mlx

CM3106 Chapter 5: Audio Synthesis Additive synthesis 23

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/MATLAB_LIVE_SCRIPTS/Ch5_2_Additive_Synthesis.mlx 


Further Additive Synthesis Examples: Aphex Twin Demo

Recall recreating the Aphex Twin Spectrogram is another example
of Inverse Fourier Transform Additive Synthesis where essentially
“paints” in sinusoids based image intensity and pixel location and
the adds them together.

For code example see: Ch5 2 Additive Synthesis.mlx

CM3106 Chapter 5: Audio Synthesis Additive synthesis 24

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/MATLAB_LIVE_SCRIPTS/Ch5_2_Additive_Synthesis.mlx 


FM (Frequency Modulation) Synthesis

Basic Idea: Timbre of a simple waveform
is changed by frequency modulating it with
a frequency resulting in a more complex
waveform — different-sounding.

Discovered by John Chowning at Stanford
University in 1967-68,
Patented in 1975 and was later licensed to
Yamaha.
Used in popular 1980s Yamaha
Synthesisers: DX7, Casio CZ .....

still in use today
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FM (Frequency Modulation) Synthesis
(cont.)

Radio broadcasts use FM in a different way

FM synthesis is very good at creating both harmonic and
inharmonic (’clang’, ’twang’ or ’bong’ noises) sounds

For synthesizing harmonic sounds, the modulating signal must
have a harmonic relationship to the original carrier signal.
As the amount of frequency modulation increases, the sound
grows progressively more complex.
Through the use of modulators with frequencies that are
non-integer multiples of the carrier signal (i.e., non harmonic),
bell-like dissonant and percussive sounds can easily be created.
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FM (Frequency Modulation) Synthesis (cont.)

Digital implementation — true analog oscillators difficult to
use due to instability

1960s origin analog – FM discovered when vibrato sped up to
the point that it was creating audible sidebands (perceived as
a timbral change) rather than faster warbling (perceived as a
frequency change).

DX synthesiser FM - Where both oscillators use Sine waves
and are ”musically-tuned” frequencies generated from a
keyboard
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FM Synthesis: Underpinnings

Definitions:

Oscillator: A device for generating
waveforms

Frequency Modulation: Where the frequency (pitch) of
an oscillator (the Carrier) is
modulated by another oscillator
(the Modulator)

Carrier Frequency: The frequency of the oscillator
which is being modulated

Modulator Frequency: The frequency of the oscillator
which modulates the Carrier
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FM Synthesis: Basic Frequency Modulation

Basic FM Equation:

e = A sin(αt + I sinβt)

A is the peak amplitude

e is the instantaneous amplitude of the
modulated carrier

α and β are the respective carrier and
modulator frequencies

I is the modulation index: the ratio of peak
deviation to modulator frequency
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FM MATLAB Example

MATLAB code to produce basic FM (fm eg.m), see also
fm eg plot.m:

fm eg.m:
% Signal parameters

fs = 22050;

T = 1/fs;

dur = 2.0; % seconds

t = 0:T:dur; % time vector

% FM parameters

fc = 440; % center freq

fm = 30;

Imin = 0; Imax = 20;

I = t.*(Imax - Imin)/dur + Imin;

y = sin(2*pi*fc*t + I.*sin(2*pi*fm*t));

plot(t(1:10000), y(1:10000));

sound(y, fs);
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FM Synthesis: Side Frequencies

The harmonic distribution of a simple sine wave signal modulated by
another sine wave signal can be represented with Bessel functions:

e = A{J0sinαt

+J1[sin(α + β)t − sin(α− β)t]

+J2[sin(α + 2β)t − sin(α− 2β)t]

+J3[sin(α + 3β)t − sin(α− 3β)t]

. . .}

Provides a basis for a simple mathematical understanding of FM
synthesis.

Side Frequencies produced and are related to modulation index, I

If I > 1 energy is increasingly stolen from the carrier but with
constant modulation frequency.
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FM Synthesis: Side Frequencies (Cont.)
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A few insights as to how Bessel functions

A few insights as to how Bessel functions can help explain why FM
synthesis sounds the way it does:

J0(I ) decides the amplitude of the carrier.

J1(I ) controls the first upper and lower sidebands.

Generally, Jn(I ) governs the amplitudes of the nth upper and
lower sidebands.

Higher-order Bessel functions start from zero more and more
gradually, so higher-order sidebands only have significant
energy when I is large.

The spectral bandwidth increases with I ; the upper and lower
sidebands grow toward higher and lower frequencies,
respectively.

As I increases, the energy of the sidebands vary much like a
damped sinusoid.
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MATLAB knows about Bessel functions:

Ch5 3 FM Synthesis.mlx

z = 0:0.1:20;

J = zeros(5,201);

for i = 0:4

J(i+1,:) = besselj(i,z);

end

plot(z,J)

grid on

legend('J_0','J_1','J_2','J_3','J_4','Location','Best')
title('Bessel Functions of the First Kind for $\nu \in [0, 4]$',

'interpreter','latex')
xlabel('z','interpreter','latex')
ylabel('$J_\nu(z)$','interpreter','latex')

See also: Ch5 3 FM Synthesis.mlx for further details
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FM Synthesis: Making Complex Sounds

Operators and Algorithms

Operators are just Oscillators in FM Terminology.

FM synths will have either 4 or 6 Operators.
Why so many Operators?
Sounds from one Modulator and one Carrier
aren’t exactly that overwhelmingly complex

Algorithms are the preset combinations of routing available to
you.
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FM Synthesis: FM Algorithms

How to connect up Operators?

Multiple Carriers: One oscillator
simultaneously modulates
two or more carriers

Multiple Modulators: Two or more oscillators
simultaneously modulate
a single carrier

Feedback: Output of oscillator
modulates the same
oscillator
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Some More FM Waveform Examples

See Ch5 3 FM Synthesis.mlx for some further practical examples
of how to synthesise:

A sine wave which ”compresses” and ”uncompress” in time

A sine wave which undergoes an periodic modulation

A Bell Sound

A wood block strike type sound

Brass sounds
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Sample-based synthesis

Basic Ideas: Similar to subtractive synthesis or additive synthesis.

The principal difference is that the seed waveforms are sampled
sounds or instruments instead of fundamental waveforms such as
the saw waves of subtractive synthesis or the sine waves of additive
synthesis.

Samplers, together with traditional Foley artists, are the mainstay
of modern sound effects production.

Musical genres: Hip-hop, Trip-hop, Dance music, Garage, Jungle,
Trance, Modern Electronica invented due to samplers.

Most music production now uses samplers.
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Sample-based synthesis: Comparison with other Synthesis
methods

Advantages (over other methods of digital synthesis such as
physical modelling synthesis (more soon) or additive
synthesis): processing power requirements are much lower.

Nuances of the sound models are contained in the pre-recorded
samples rather than calculated in real-time.

Disadvantage: in order to include more detail, multiple
samples might need to be played back at once

E.g. a trumpet might include a breath noise, a growl, and a
looping soundwave used for continuous play
Reduces the polyphony as sample-based synthesizers rate their
polyphony based on the number of multi-samples that can be
played back simultaneously.
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Sample-based synthesis: Examples

Mellotron (analog tape) (1962)

Computer Music Melodian (1976): Stevie
Wonder’s ”Secret Life of Plants”

CMI Fairlight (1979)

NED Synclavier (1979).

EMU Emulator series (1981)

Akai S Series (1986)

Korg M1 (1988): The M1 also introduced the
”workstation” concept.

Software Samplers (2005) : NI Kontakt,
Steinberg Halion
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Sampling Trivia

CMI Fairlight

Cost the price of a good house (c. £20,000) when released in
1979.

It is now available as an iPad App!

Fully functional
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Sample-based synthesis Basics: Looping

A sample-based synthesizer’s ability to reproduce the nuances of
natural instruments is determined primarily by its library of
sampled sounds.

Early days of Sampling (c. Late 1980s/Early 90s)

Computer memory expensive:

Samples had to be as short and as few as possible.

This was achieved by looping a part of the sample

Looping today:

Looping still useful for

Saving sample memory space — efficiency

Looping audio material: Drum tracks, sound effects, etc.
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Sample-based synthesis Basics: Looping (Cont.)

Problem: How to find looping points?
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Finding looping points

Simple idea: Find silence points (zero (amplitude)
crossings) in sample. E.g. Drum beats

Loop between these

Alternative: Find portions in sample that have same audio
content — pattern matching.
E.g. Sustaining musical instruments.
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Sample-based synthesis Basics: Looping (cont)

Pitch control:

Speed or slow up sample to change pitch (realism to only a
few semitones in pitch change)

Still need some sample across the range of the keyboard

As memory became cheaper (and now with software based
sample synthesis), it became possible to use multisampling
— looping still used in individual samples.

Finishing off the loop:

Early Days: Use a volume envelope curve to make the sound
fade away.

Today: Include tail off sample in data — triggered by note off.
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Beat Slicing Algorithms Background:
Altering Loops

Silence Points:

Find silence points (zero (amplitude) crossings) in sample.
Snapping to silence points means that no nasty clicks in audio
when joining audio together.
Too simple for many practical looping applications - how to
detect correct loop point?
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Beat Perception:

The human listening system determines the rhythm of music by
detecting a pseudo — periodical succession of beats

The more energy the sound transports, the louder the sound
will seem.

But a sound will be heard as a beat only if his energy is
largely superior to the sound’s energy history, that is to say if
the brain detects a large variation in sound energy.

Therefore if the ear intercepts a monotonous sound with
sometimes big energy peaks it will detect beats,

Example of using Human Perception — a theme of this
module.
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Beat Slicing Algorithms Ideas (1):

Simple sound energy beat detection:

Average
Sound
Energy

Instant
Sound
Energy

Computing the average sound energy of the signal over a
relatively large sample (around 1 second)

Compute instant sound energy (around 5/100 second).

Comparing average to the instant sound energy.

We detect a beat only when the instant energy is larger than
the local energy average.
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Beat Slicing Algorithms Ideas (2):

Frequency selected sound energy:

More elaborate model:
Try to detect large sound energy variations in particular frequency
subbands

Apply Fourier Transform — separate beats according to their frequency
sub-band.
Apply energy analysis but in frequency space:

Compute Fourier Transform over 1024 samples.
Divide into around 32 sub-bands.
Compute the sound energy contained in each of the subbands
Compare it to the recent energy average corresponding to this
subband.

If one or more subbands have an energy superior to their average we

have detected a beat.

For more details search web or see references at end of section.
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Beat Slicing in Recycle — Slice Creation

Launch ReCycle and select and open a file.

In the main window, you may click the Play button to hear
the entire loop, from start to end (repeating until you click
the Stop button.)

To create slices: Adjust the Sensitivity slider to the right —
the exact value depends on the audio.
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Beat Slicing in Cubase

Cubase takes a simpler more user interactive approach to beat
slicing.
In the Sample Editor

Select Hitpoints Editing Option.

Either adjust Threshold or visual horizontal lines to select
the appropriate level of hit points, as displayed.
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Beat Slicing in Cubase (Cont.)

When happy hit the Create Slices button.

Hitpoints can then be edited in a similar fashion to Recycle
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Cubase Drum Sampler

Cubase has a built in Drum Sampler: Groove Agent One.

To map sliced beats (hit points) to Groove Agent One:

Simply drag the sliced audio file onto one of the Drum Pads.

Subsequent slices are mapped to consecutive pads.
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Beat Slicing — Simple Application

Recap: Create a MIDI performance of a chromatic scale, whose
note timing trigger each sample at the perfect time to recreate the
original audio.

Recycle Slicing:

Midi Mapping/Triggering of Slices:
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Beat Slicing — Tempo Change Problems

Replay after tempo is made slower:

Replay after tempo is made faster:
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Beat Slicing - Artefacts, Solving the Tempo Problem

For drum loops etc. — attacks are artefact free.

The most important part of a percussion sound.

Two artefacts (from previous slide):
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Beat Slicing Solution

Solutions

Apply envelope to each slice to fade it to silence before gap or
overlap.

For gaps: loop the end of the tail to extend it through the
gap.
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Sample-based Synthesis: Multisampling

Non-pitched simple example: the concept of drum mapping
— see also general MIDI section later

Need to preserve relationships between key notes

Multisampling Basic Idea:

Sample instrument at regular intervals to cover regions of
several adjacent notes (splits) or for every note.
Advantage: provides a more natural progression from the
lower to the higher registers
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Sample-based Synthesis: Example Kontakt Sampler
Multisample Keymap
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Sample-based Synthesis: Velocity Layers

When pluck a string or hit a drum or press a piano key, sound produced
depends on how hard the action was.
In software, this is measured by the velocity of a key press etc.
Multisampling lays out samples vertically in keymap.
Velocity layers layed out horizontally

CM3106 Chapter 5: Audio Synthesis Sample-based synthesis 60



Sample-based Synthesis: Velocity Layers (1)

(Single key mapped) Single Velocity Layer — Only one type of sound played at any
velocity.

Volume output maybe controlled by velocity but no change in timbre of sound.
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Sample-based Synthesis: Velocity Layers (2)

(Single key mapped) Dual Velocity Layer:

Sound one played at lower level velocity
Sound two played at higher velocity
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Sample-based Synthesis: Velocity Layers (3)

(Single key mapped) Triple Velocity Layer — Three type of sounds
played according to velocity.

Here upper velocity sound is being played.
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Sample-based Synthesis:
Key Map and Velocity Layers

Most instruments are a combination of multisample key mapped
and velocity layers
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Sample-based synthesis Basics:
Sample Keyswitching

Instruments can make vastly different sounds depending how they are
played

Example: Trumpets (muted/not muted), violin (plucked,
slow/fast up/down bow)

For expressive performance samples can be keyswitched:

Use keys (usually lower keys outside of instrument range) to select

appropriate sounds

Essentially banks of key mapped velocity layered samples
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Advanced Software Based Sampling

Sampling now seems to have
very few limits

Full orchestras and
even choirs that can sing

Can sing words too
(Advanced Keyswitching).

Programming script control
over sampler (Kontakt 2 and
above).
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A Symphonic Choir Sample Library

Symphonic Choirs

Source: video
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Symphonic_Choirs.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/PDF/Symphonic_Choirs.mov


Sample Based Synthesis Further References

www.cs.berkeley.edu/ lazzaro/class/music209 — Good
overview of Beat slicing. (I borrowed a few figures from here)

Sound on Sound Magazine Beat Slicing Masterclass —
www.soundonsound.com/sos/jun04/articles/beatslicing.htm

emusician.com/mag/square one/emusic slice/index.html —
Electronic Musician Magazine Article on Beat Slicing
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Wavetable synthesis

What is wavetable synthesis?

Similar to simple digital sine wave generation/additive synthesis
but extended at least two ways.

Waveform lookup table contains samples for not just a single
period of a sine function but for a single period of a more
general waveshape.

Mechanisms exists for dynamically changing the waveshape as
the musical note evolves:
thus generating a quasi-periodic function in time.

Not to be confused with common PCM sample buffer
playback: soundcards
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Wavetable synthesis: Examples

PPG Wave Series: Implementation of wavetable synthesis
employed an array containing 64
pointers to individual single-cycle waves.

Waldorf Microwave: Next generation PPG.

Roland D-50 (and Roland MT-32/variants:) ”Linear
Arithmetic” synthesizers — combined
complex sampled attack phases with less
complex sustain/decay phases (basically
a wavetable synthesizer with a 2-entry
wave sequence table).

Prophet-VS, (Sequential Circuits)

Korg Wavestation: ”Vector synthesis” — move through
wavetables and sequences arranged on a
2-dimensional grid.
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Wavetable Basics: Making Waves

The sound of an existing instrument (a single note) is

sampled and parsed into a circular sequence of

samples or wavetables:

each having one period or cycle per wave;

A set of wavetables with user specified harmonic

content can also be generated mathematically.

At playback, these wavetables are used to fetch
samples (table-lookup)

However the output waveform is not normally static
and evolves slowly in time as one wavetable is mixed
with another, creating a changing waveform via ADSR
Enveloping.

Looping maybe used to slow, reverse wavetable
evolution
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Wavetable Basics: Practicalities

Put more simply, a wavetable synthesiser will store two parts of an
instrument’s sound.

A sample of the attack section (e.g. the sound of the hammer
hitting a piano string)

A small segment of the sustain portion of the instrument’s
sound.

When triggered:

The attack sample is played once immediately followed by a
loop of the sustain segment.

The endlessly looping segment is then enveloped to create a
natural sounding decay (dying away of the sound).
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Wavetable v. Sample Playback

Differs from simple sample playback as

Output waveform is always generated in real time as the CPU
processes the wave sequences
Waves in the tables are rarely more than 1 or 2 periods in
length.

CM3106 Chapter 5: Audio Synthesis Wavetable synthesis 73



Wavetable synthesis:Dynamic Waveshaping (1)

Simplest idea: Linear crossfading

Crossfade from one wavetable to the next sequentially.

Crossfade = apply some envelope to smoothly merge
waveforms.
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Wavetable Synthesis Example

Simple example — create one sine wave and one saw and then
some simple cross-fading between the waves: wavetable synth.m.

wavetable synth.m:

f1 = 440; f2 = 500; f3 = 620;

Fs = 22050;

%Create a single sine waves

y1 = synth(f1,1/f1,0.9,Fs,'sine');

doit = input('\nPlay/Plot Raw Sine

y1 looped for 10 ...

seconds? Y/[N:]\n\n', 's');
if doit == 'y',
figure(1)

plot(y1);

loopsound(y1,Fs,10*Fs/f1);

end

%Create a single Saw wave

y2 = synth(f2,1/f2,0.9,Fs,'saw');

doit = input('\nPlay/Plot Raw saw

y2 looped for 10 ...

seconds? Y/[N:]\n\n', 's');
if doit == 'y',
figure(2)

plot(y2);

loopsound(y2,Fs,10*Fs/f2);

end
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wavetable synth.m (Cont.)

Making the crossfades

%concatenate wave

ywave = [y1 , y2];

% Create Cross fade half width

% of wave y1 for xfade window

xfadewidth = floor(Fs/(f1*2));

ramp1 = (0:xfadewidth)/xfadewidth;

ramp2 = 1 - ramp1;

doit = input('\nShow Crossfade

Y/[N:]\n\n', 's');
if doit == 'y',
figure(4)

plot(ramp1);

hold on;

plot(ramp2,'r');
end;

% Apply crossfade centered over

% the join of y1 and y2

pad = (Fs/f1) + (Fs/f2)

- 2.5*xfadewidth;

xramp1 = [ones(1,1.5*xfadewidth),

ramp2, zeros(1,floor(pad))];

xramp2 = [zeros(1,1.5*xfadewidth),

ramp1, ones(1,floor(pad))];

% Create two period

% waveforms to fade between

ywave2 = [y1 , zeros(1,Fs/f2)];

ytemp = [zeros(1,Fs/f1), y2];

ywave = ywave2;
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wavetable synth.m (Cont.)

Adding the crossfade

% do xfade

ywave2 = xramp1.*ywave2

+ xramp2.*ytemp;

doit = input('\nPlay/Plot Additive

Sines together? Y/[N:]\n\n', 's');
if doit == 'y',
figure(5)

subplot(4,1,1);

plot(ywave);

hold off

set(gca,'fontsize',18);
ylabel('Amplitude');
title('Wave 1');
set(gca,'fontsize',18);
subplot(4,1,2);

plot(ytemp);

set(gca,'fontsize',18);
ylabel('Amplitude');
title('Wave 2');
set(gca,'fontsize',18);
subplot(4,1,3);

plot(xramp1);

hold on

plot(xramp2,'r')
hold off

set(gca,'fontsize',18);
ylabel('Amplitude');
title('Crossfade Masks');
set(gca,'fontsize',18);
subplot(4,1,4);

plot(ywave2);

set(gca,'fontsize',18);
ylabel('Amplitude');
title('WaveTable Synthesis');
set(gca,'fontsize',18);
loopsound(ywave2,Fs,

10*Fs/(f1 + f2));

end
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MATLAB Example: Linear Crossfading (Cont.)
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WaveTable Synthesis

Note: This sort of technique is useful to create an ADSR
envelope in MATLAB
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Wavetable synthesis: Dynamic Waveshaping (2)

More sophisticated method: Sequential Enveloping

Example below: two wavetables are being mixed at any one
instance of time by moving envelope scale
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Wavetable synthesis: Dynamic Waveshaping (Cont.)

Linear Crossfading as Sequential Enveloping?

The simple linear crossfading method can be thought of as a
subclass of the more general basis mixing method where the
envelopes are overlapping triangular pulse functions.
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Wavetable synthesis: Advantages

Well suited for synthesising quasi-periodic musical tones
because wavetable synthesis can be as compact in storage
requirements

Amount of data being stored and used for this synthesis
method is far less than just the PCM sample of same sound.
As general as additive synthesis but requires much less
real-time computation.

Wavetable synthesis takes advantage of the quasiperiodic
nature of the waveform to remove redundancies and to reduce
the data.
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Wavetable synthesis: Advantages (cont.)

Enabling Faster Playback

Precomputes the inverse Discrete Fourier Transform (DFT) of
the waveform spectrum before playback

Rather than computing the inverse DFT in real-time as
additive synthesis does.

Precomputed, real-time synthesis is reasonably simple to
implement.
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Built in MATLAB Wavetable examples

MATLAB has a basic wavetable synthesiser built-in to its Audio
Toolbox:

doc wavetableSynthesizer

See this MATLAB page for some examples

Generate Variable-Frequency Staircase Wave:

Manipulate Audio Samples Using Wavetable Synthesizer

Modify Wavetable While Stream Processing

Tune Wavetable Synthesizer Parameters
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Granular Synthesis

”All sound is an integration of grains, of elementary sonic particles,
of sonic quanta.” -Iannis Xenakis, Greek Composer (1971).

Granular Synthesis

Sound synthesis method that operates on the microsound time scale.

Based on the same principles as sampling/wavetable synthesis but
often includes analog technology as well.

Difference Samples are not used directly to make usual sounds:
Split in small pieces of around 1 to 50 ms (milliseconds) in
length, the grains.
Multiple grains may be layered on top of each other all playing
at different speed, phase and volume.
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Granular Synthesis: Soundscape

Result is no single tone, but a soundscape!

Often a cloud, that is subject to manipulation

Unlike any natural sound and also unlike the sounds produced
by most other synthesis techniques.

By varying the waveform, envelope, duration, spatial position,
and density of the grains many different sounds can be
produced.
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Granular Synthesis: Is this musical?

Usable as music or soundscapes (ambient)

Usable as Sound effects

MUSICAL: Usable to alter sample speed while preserving the
original pitch/tempo information —pitch/tempo
synchronous granular synthesis

Usable as Raw material for further processing by other
synthesis or DSP effects.

The range of effects that can be produced include amplitude
modulation, time stretching, stereo or multichannel scattering,
random reordering, disintegration and morphing.
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Granular Synthesis: Background

Strong Physics Background:

Quantum physics has shown that sound can be atomically
reduced to physical particles

Physical form of sound was first envisioned by the Dutch
scientist Isaac Beeckman (1618):
”Sound travels through the air as globules of sonic data.

Denis Gabor (1947) proposed the idea of a grain as the
quantum of sound and more recently

Xenakis (1971) first musical use of granular synthesis — a reel
to reel tape recorder, a razor blade, sticky tape, and a lot of
time.

Curtis Roads (1988), digital granular synthesis

Barry Truax (1990) real-time granular synthesis composition
Riverrun, Buy the CD!

CM3106 Chapter 5: Audio Synthesis Granular Synthesis 87

https://www.youtube.com/watch?v=u81IGEFt7dM
http://www.sfu.ca/~truax/river.html
http://www.sfu.ca/~truax/cd1a.html


Granular Synthesis: Implementations

Software:
Many implementations nowadays:

Programmable: Csound, MATLAB,
MAX/MSP routines:

Standalone: Supercollider, Granulab,
RTGS X.

DAW plug-ins standalone: VSTis etc.
Modern Music Samplers: Native

Instruments’ Kontakt,
Intakt...., others

Hardware: Korg Kaos Pad.
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Novum Granular Synthesis

12

• In addition to being so much fun Granular 
synthesis is one of the most powerful techniques 
around. In the very beginning it takes a bit until 
you are familiar with it and how to twiddle the 
parameters to achieve what you want. However: 
the end result is worth it! 

• Did you know? Almost all professional techniques 
to alter playback speed, for example in your DAW, 
work based on granular synthesis. 

First put a lower value to density. You will now hear 
that the sound fades in and out rhythmically. That’s a 
nice effect, but its more important that you understand, 
why this is happening: as we have have fewer grains 
playing, there are times where no grain is playing. 

3

4
PAN JIT works in a similar way and adds 
randomness to the panning of each 
grain. This can create rich stereo even 
from mono material. 

Grain size refers to the length of 
each grain. 

If you now reduce the SIZE the grains become 
shorter. To maintain the same average density 
more grains need to be generated per second - 
the pulsation goes faster. 

So far the pulsation is very regular. We can 
add randomness to the “birth date” of grains 
with EMIT JIT. Increase this to make the 
pulsation go wild. 

5 POS JIT adds randomness to the grain 
position within the sample. This is one of the 
most important parameters to shape the 
granular sound. 

6

7
When “HOMOGENIZED” is active it is 
displayed green. Use this when:

 you want a smooth sound 
 you want to remove transients 
 you want to edit / exchange the 
envelope

 

GRANULAR SYNTHESIS TIPS
START HERE
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Cubase Padshop Granular Synthesiser
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Web Audio Granular Synthesisers

https://zya.github.io/granular/
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Granite Granular Syntehiser

http://www.newsonicarts.com/html/granite.php

Note: Commercial application but demo available)

Plenty of other example — just search
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Granular Synthesis: What is a grain?

A Grain:

A grain is a small piece of sonic
data

Usually have a duration ≈ 10 to 50
ms.

The grain can be broken down into
smaller components
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Granular Synthesis: What is a grain?

Grain components:

Envelope: used so no distortion and crunching noises
at the beginning and end of the sample.
The shape of the envelope has a
significant effect on the grain sound.

For a sampled sound, a short linear
attack and decay prevents clicks
being added to the sound.
Changing the slope of the grain
envelope changes the resulting grain
spectrum,
E.g. Sharper attacks producing
broader bandwidths, just as with
very short grain durations.

Contents: The audio: derived from any source: basic
waveforms or samples
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Granular Synthesis: Making Sounds

Sounds made by the generation of thousands of short sonic grains:

Combined linearly to form large scale audio events,

3 Possible combinations:

Quasi-synchronous granular synthesis
Asynchronous granular synthesis
Pitch/Tempo-synchronous granular synthesis

The grains’ characteristics are also definable and when
combined affect the overall sound.
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Granular Synthesis: Making Sounds (Cont.)

Quasi-synchronous granular synthesis:

A grain stream of equal duration grains, produces amplitude modulation
(see later) with grain durations less than 50 ms.

Grain streams with variable delay time between grains: the sum of which
resembles asynchronous granular synthesis.
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Granular Synthesis: Making Sounds (Cont.)

Asynchronous granular synthesis:

Grains are distributed stochastically with no quasi regularity.
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Granular Synthesis: Making Sounds (Cont.)

Pitch/Tempo-synchronous granular synthesis:

Preserve Pitch/Tempo whilst altering sample playback speed
E.g. Intakt, Kontakt.

Overlapping grain envelopes designed to be synchronous with
the frequency of the grain waveform, thereby producing
fewer audio artifacts.
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Granular Synthesis MATLAB Example

Simple MATLAB Example: granulation.m

[filename,path] = uigetfile({'*.wav;*.waV;','Wav Files'; ...

'*.*', 'All files (*.*)'}, ...

'Select a sound file');

if isequal(filename,0) | isequal(path,0)

cd(savedir);

return;

end

filenamepath = [path filename];

[x, fs] = audioread(filenamepath);

figure(1)

plot(x);

doit = input('\nPlay Original Wav file? Y/[N:]\n\n', 's');
if doit == 'y',
sound(x,fs);

end
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MATLAB Granular Synthesis Example (Cont.)

granulation.m (cont.):

Ly=length(x); y=zeros(Ly,1); %output signal

timex = Ly/fs;

% Constants

nEv=400; maxL=fs*0.02; minL=fs*0.01; Lw=fs*0.01;

% Initializations

L = round((maxL-minL)*rand(nEv,1))+minL; %grain length

initIn = ceil((Ly-maxL)*rand(nEv,1)); %init grain

initOut= ceil((Ly-maxL)*rand(nEv,1)); %init out grain

a = rand(nEv,1); %ampl. grain

endOut=initOut+L-1;

% Do Granular Synthesis

for k=1:nEv,

grain=grainLn(x,initIn(k),L(k),Lw);

figure(2)

plot(grain);

y(initOut(k):endOut(k))=y(initOut(k):endOut(k))+ grain;

end

% Plot figure and play sound

.......
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MATLAB Granular Synthesis Example (Cont.)

grainLn.m

function y = grainLn(x,iniz,L,Lw)

% extract a long grain

% x input signal

% init first sample

% L grain length (in samples)

% Lw length fade-in and fade-out (in samples)

if length(x) <= iniz+L , error('length(x) too short.'), end

y = x(iniz:iniz+L-1); % extract segment

w = hanning(2*Lw+1);

y(1:Lw) = y(1:Lw).*w(1:Lw); % fade-in

y(L-Lw+1:L) = y(L-Lw+1:L).*w(Lw+2:2*Lw+1); % fade-out
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More Advanced Granular Synthesis

Above is quite simple and general and can be employed to
obtain very different sounds and sound effects.
More control over the sound:

The above sonds is greatly influenced by the criterion used to
choose the instants .

If these points are regularly spaced in time and the grain
waveform does not change too much,

the technique can be interpreted as a filtered pulse train,
i.e. it produces a periodic sound whose spectral envelope is
determined by the grain waveform interpreted as impulse
response.
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PSOLA based Pitch/Tempo-synchronous granular
synthesis

The above is an example is the PSOLA based
Pitch/Tempo-synchronous granular synthesis (more soon),
where:

When the distance between two subsequent grains is much
greater than Lk , the sound will result in grains separated by
interruptions or silences with a specific character.

When many short grains overlap (i.e. the distance is less than
Lk), a sound texture effect is obtained.

See accompanying lab exercise
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Short and Overlapping Grains

Short Grains

The above code, for simplicity of illustration, only uses long
grains.

experiment by mixing or swapping in short grains via the
grainSh.m function — See accompanying lab exercise

Overlapping Grains
It is quite simple to extend the code above to account for
overlapping grains:

To overlap a grain gk at instant nk = iniOLA with amplitude
ak , See accompanying lab exercise.

endOLA = iniOLA+length(grain)-1;

y(ini0LA:endOLA) = y(ini0LA:endOLA) + ak * grain;
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PSOLA based Pitch/Tempo-synchronous granular
synthesis

PSOLA exists as common means of pitch and tempo shifting
outside of any synthesis method.

Historically, predates the phase vocoder but still common
approach.

Historically important to the development of Granular
synthesis.

PSOLA originated for speech processing, paarticularly speech
synthesis,

It also applicable to musical applications.
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PSOLA in action

Not unlike the phase vocoder:

Used to modify the pitch (scaling) and duration (time
stretching) of a speech signal.
PSOLA works by dividing the speech waveform in small
overlapping segments.

To change the pitch of the signal, the segments are moved
further apart (to decrease the pitch) or closer together (to
increase the pitch).
To change the duration of the signal, the segments are then
repeated multiple times (to increase the duration) or some are
eliminated (to decrease the duration).
The segments are then combined using the overlap add
technique.

The difference between PSOLA and the phase vocoder
is there is no STFT in PSOLA.

See Live Scripts for more details and code examples:
Ch5 6 Granular Synthesis.mlx
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Physical Modelling

Physical modelling synthesis

The synthesis of sound by using a mathematical model: sets of
equations and algorithms to simulate a physical source of sound.

Sound is generated using model parameters that describe the
physical materials used in the instrument and the user’s
interaction with it,

For example, by plucking/bowing a string, or covering
toneholes on a flute, clarinet etc.

For example, to model the sound of a drum, there would be a
formula for how striking the drumhead injects energy into a
two dimensional membrane.
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Physical Modelling: Examples

Hardware: Yamaha VL1 (1994), Roland
COSM, Many since.

Software: Arturia Moog, PianoTeq

Examples of physical modelling algorithms:

Karplus-Strong strong synthesis (1971)

Digital waveguide synthesis
(1980s)

Formant synthesis (1950s)
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Physical Modelling Exampe

Karplus-Strong Algorithm

Simple Algorithm: Makes a musical sound from noise

Loops a short noise burst through a filtered delay line to
simulate the sound of a hammered or plucked string or some
types of percussion.

T
D

Feedback, Filtering and delay.

Essentially subtractive synthesis technique based on a
feedback loop similar to that of a comb filter.
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Physical Modelling Example

Karplus-Strong Algorithm More Details:

T
D

Input: A burst of white noise, L samples long, (can use other
signal).

Output signal and feedback into a delay line.

Output of the delay line is fed through a filter -gain of the
filter must be less than 1 at all frequencies, usually a first
order lowpass filter

Filtered output is simultaneously mixed back into the output
and fed back into the delay line.
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Physical Modelling Example

Karplus-Strong Algorithm Tuning

Period of the resulting signal is the period of the delay line
plus the average group delay of the filter;

Fundamental frequency is the reciprocal of the period.

Required delay D for a given fundamental frequency F1is
therefore calculated as:

D =
Fs
F1

where Fs is the sampling frequency.

T
D
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Physical Modelling MATLAB Example

MATLAB Karplus-Strong Algorithm: karplus.m:

% ******* Constants and Other Parameters ******* %

fs = 44100; % sampling rate

N = 80000; % length of vector to compute

D = 200; % delay line (or wavetable) length

% ******* Simple String Attenuation Filter ******* %

b = -0.99*[0.5 0.5];

z = 0;

% ******* Initialize delay lines ******* %

y = zeros(1,N); % initialize output vector

dline = 2 * rand(1, D) - 1.0;

ptr = 1;

figure(1); subplot(3,1,1);plot(dline);set(gca,'fontsize',18);
title('Original delayline');

subplot(3,1,2);plot(dline);set(gca,'fontsize',18);
title('Filter delayline step n');
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Physical Modelling MATLAB Example (Cont.)

karplus.m

loopsound(dline,fs,fs/D);

subplot(3,1,3); plot(y); title('Waveform Step n');set(gca,'fontsize',18);

figure(1);

% ******* Run Loop Start ******* %

for n = 1:N,

y(n) = dline(ptr);

[dline(ptr), z] = filter(b, 1, y(n), z);

% Increment Pointers & Check Limits

ptr = ptr + 1;

if ptr > D

ptr = 1;

end
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Physical Modelling MATLAB Example (Cont.)

karplus.m

if mod(n,2000) == 0

subplot(3,1,2);plot(dline)

str = sprintf('Filter delayline step %d',n);
title(str);

subplot(3,1,3); plot(y);

str = sprintf('Waveform Step %d',n);
title(str);

figure(1);

end

end

% Scale soundfile if necessary

max(abs(y))

if max(abs(y)) > 0.95

y = y./(max(abs(y))+0.1);

disp('Scaled waveform');
end

figure(2);clf;plot(y); title('Final Step');set(gca,'fontsize',18);
sound(y',fs);

See also Ch5 7 Physical Modelling Synthesis.mlx for results
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Physical Modelling MATLAB Example: Drum Sound

The basic algorithm is as follows:

Start with wavetable X , of length p,

such that
X (t) = +1/2(X (t − p) + X (t − p + 1))

with probability b, and

X (t) = −1/2(X (t − p) + X (t − p + 1))

with probability 1 − b for t > p.

Since b introduces randomness into the sound, the initial wavetable can be anything from a completely
random signal to a sine wave to a constant.

The wavetable length p affects the decay rate of the sound (big = long decay) as well as the pitch
somewhat (big = low pitch).

p should be in a range from about 150 − −500.

The probability b is called the blend factor and can range from 0 to 1.

b = 1/2 introduces the most randomness and produces the best snare sounds.
b near 0 simply averages the samples, and produces string-like sounds where p controls the pitch.
Note: doesn’t work for constant or sine wavetables.
b near 1 produces wierd electric crash cymbal-like sounds where most of the pitches die out
quickly. Note: doesn’t work for constant or sine wavetables.

See Ch5 7 Physical Modelling Synthesis.mlx for code and to hear
results.
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Crash cymbal sounds

Choose values:

b > 0.98 ,

p = 200−−800,

random wavetable

decaying envelope

See Ch5 7 Physical Modelling Synthesis.mlx for code and to hear
results
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Metallic plink sounds

Choose values:

b > 0.98 ,

p = 5−−50,

random wavetable

Envelope decay usually needed for b = 1

See Ch5 7 Physical Modelling Synthesis.mlx for code and to hear
results
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And back to string sounds

Choose values:

b < 0.05 ,

p = 20−−400,

random wavetable

Envelope decay usually needed for b = 1

See Ch5 7 Physical Modelling Synthesis.mlx for code and to hear
results
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Some more examples

See Ch5 7 Physical Modelling Synthesis.mlx for

FULL MATLAB (Demo) EXAMPLE: Generating Guitar
Chords Using the Karplus-Strong Algorithm

Playing a Note on an Open String
Playing a Note on a Fretted String
Playing Guitar Chords
Guitar Strumming
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