
CM3106 Chapter 5:
Digital Audio Synthesis

Prof David Marshall
dave.marshall@cs.cardiff.ac.uk

and

Dr Kirill Sidorov
K.Sidorov@cs.cf.ac.uk

www.facebook.com/kirill.sidorov

School of Computer Science & Informatics
Cardi↵ University, UK

www.facebook.com/kirill.sidorov


Digital Audio Synthesis

Some Practical Multimedia Digital Audio Applications:

Having considered the background theory to digital audio
processing, let’s consider some practical multimedia related
examples:

Digital Audio Synthesis — making some sounds

Digital Audio E↵ects — changing sounds via some
standard e↵ects.

MIDI — synthesis and e↵ect control and compression

Roadmap for Next Few Weeks of Lectures

CM3106 Chapter 5: Audio Synthesis Digital Audio Synthesis 2



Digital Audio Synthesis

We have talked a lot about synthesising sounds.

Several Approaches:

Subtractive synthesis

Additive synthesis

FM (Frequency Modulation) Synthesis

Sample-based synthesis

Wavetable synthesis

Granular Synthesis

Physical Modelling

CM3106 Chapter 5: Audio Synthesis Digital Audio Synthesis 3



Subtractive Synthesis

Basic Idea: Subtractive synthesis is
a method of subtracting overtones
from a sound via sound synthesis,
characterised by the application of an
audio filter to an audio signal.

First Example: Vocoder — talking
robot (1939).

Popularised with Moog Synthesisers
1960-1970s

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 4



Subtractive synthesis: Simple Example

Simulating a bowed string

Take the output of a sawtooth generator
Use a low-pass filter to dampen its higher partials
generates a more natural approximation of a bowed string
instrument than using a sawtooth generator alone.

0 2 4 6 8 10 12 14 16 18 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

subtract synth.m MATLAB Code Example Here.

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 5

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/subtract_synth.m


Subtractive Synthesis: A Human Example

We can regard the way in which humans make noises as
subtractive synthesis:

Oscillator — the vocal cords act as the sound source and

Filter — the mouth and throat modify the sound.

Saying or singing “ooh” and “aah” (at the same
pitch.)
Vocal chords are generating pretty much the same
raw, rich in harmonic sound Di↵erence between the
two comes from the filtering which we apply with
the mouth and throat.
Change of mouth shape varies the cuto↵ frequency
of the filter, so removing (subtracting) some of the
harmonics.
The “aah” sound has most of the original harmonics
still present,
The “ooh” sound has most of them removed (or to
be more precise, reduced in amplitude.)

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 6



Subtractive Synthesis: Another Human
Example

A sweeping filter

”ooh”s to ”aah”s again

By gradually changing from ”ooh” to ”aah” and back
again – simulate the ”sweeping filter” e↵ect

E↵ect widely used in electronic music

Basis of the ”wahwah” guitar e↵ect, so named for
obvious reasons.

We will see how we produce this e↵ect in MATLAB code
shortly.

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 7



Subtractive Synthesis: One More Human Example

Making Aeroplane Noise

Make a ”ssh” sound — white noise

Now ”synthesise” a ”jet plane landing” sound

Should mostly by use mouth shape to filter the white
noise into pink noise by removing the higher frequencies.

The same technique (filtered white noise) can be used to
electronically synthesise the sound of ocean waves and
wind,

Used in early drum machines to create snare drum and
other percussion sounds.

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 8



Subtractive synthesis: Electronic Control

Three Basic elements:

Source signal: Common source signals: square
waves, pulse waves, sawtooth waves
and triangle waves.

Modern synthesisers (digital and
software) may include more complex
waveforms or allow the upload of
arbitrary waveforms

Filtering: The cut-o↵ frequency and resonance
of the filter are controlled in order
to simulate the natural timbre of a
given instrument.

Amplitude Envelope: Further envelope control of signal amplitude
(strictly: not subtractive synthesis but frequently
used). Also used with other synthesis techniques.

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 9



Further Processing: ADSR Envelope

Basic Idea: Modulate some aspect of the instrument’s sound over time
— often its volume.

Why is this needed? (used by many forms of synthesis):

When a mechanical musical instrument produces sound, the relative
volume of the sound produced changes over time — The way that this
varies is di↵erent from instrument to instrument

Examples:

Pipe Organ: When a key is pressed, it plays a note at constant volume;
the sound dies quickly when the key is released.

Guitar: The sound of a guitar is loudest immediately after it is
played, and fades with time.

Other instruments have their own characteristic volume patterns.

Also Note: While envelopes are most often applied to volume, they are
also commonly used to control other sound elements, such as filter
frequencies or oscillator pitches.

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 10



Further Processing: ADSR Envelope (Cont.)

Attack: How quickly the sound reaches full volume after
the sound is activated (the key is pressed).

For most mechanical instruments, this
period is virtually instantaneous.
For bowed strings or some popular
synthesised ”voices” that don’t mimic real
instruments, this parameter is slowed down.
’Slow attack’ is commonly part of sounds —
’pads’.

Decay: How quickly the sound drops to the sustain level
after the initial peak.

Sustain: The ”constant” volume that the sound takes after
decay until the note is released. Note that this
parameter specifies a volume level rather than a
time period.

Release How quickly the sound fades when a note ends (the
key is released).

Often, this time is very short. e.g. organ
An example where the release is longer
might be a bell ring, or a piano with the
sustain pedal pressed.

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 11



Using MATLAB Filter Example: Subtractive
Synthesis Example

The example for studying subtractive synthesis uses the
butter() and filter() MATLAB functions:

subtract synth.m:

% simple low pas filter example of subtractive synthesis
Fs = 22050;
y = synth(440,2,0.9,22050,'saw');

% play sawtooth e.g. waveform
doit = input('\nPlay Raw Sawtooth? Y/[N:]\n\n', 's');
if doit == 'y',

figure(1)
plot(y(1:440));
sound(y,Fs);
end

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 12

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/subtract_synth.m


Using MATLAB Filter Example: Subtractive
Synthesis Example (cont)

% make lowpass filter and filter y
[B, A] = butter(1,0.04, 'low');
yf = filter(B,A,y);

[B, A] = butter(4,0.04, 'low');
yf2 = filter(B,A,y);

% play filtererd sawtooths
doit = ...

input('\nPlay Low Pass Filtered (Low order) ?
Y/[N:]\n\n', 's');

if doit == 'y',
figure(2)
plot(yf(1:440));
sound(yf,Fs);
end

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 13



Using MATLAB Filter Example: Subtractive
Synthesis Example (cont)

doit = ...
input('\nPlay Low Pass Filtered (Higher order)?

Y/[N:]\n\n', 's');
if doit == 'y',

figure(3)
plot(yf2(1:440));
sound(yf2,Fs);
end

%plot figures
doit = input('\Plot All Figures? Y/[N:]\n\n', 's');
if doit == 'y',
figure(4)
plot(y(1:440));
hold on
plot(yf(1:440),'r+');
plot(yf2(1:440),'g-');
end

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 14



synth.m

The supporting function, synth.m, generates waveforms as we
have seen earlier in this tutorial:
synth.m:

function y=synth(freq,dur,amp,Fs,type)
% y=synth(freq,dur,amp,Fs,type)
%
% Synthesize a single note
%
% Inputs:
% freq - frequency in Hz
% dur - duration in seconds
% amp - Amplitude in range [0,1]
% Fs - sampling frequency in Hz
% type - string to select synthesis type
% current options: 'fm', 'sine', or 'saw'

if nargin<5
error('Five arguments required for synth()');

end

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 15

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/synth.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/synth.m


synth.m (cont)

N = floor(dur*Fs);
n=0:N-1;
if (strcmp(type,'sine'))

y = amp.*sin(2*pi*n*freq/Fs);

elseif (strcmp(type,'saw'))

T = (1/freq)*Fs; % period in fractional samples
ramp = (0:(N-1))/T;
y = ramp-fix(ramp);
y = amp.*y;
y = y - mean(y);

elseif (strcmp(type,'fm'))

t = 0:(1/Fs):dur;
envel = interp1([0 dur/6 dur/3 dur/5 dur], [0 1 .75 .6 0], ...

0:(1/Fs):dur);
I_env = 5.*envel;
y = envel.*sin(2.*pi.*freq.*t + I_env.*sin(2.*pi.*freq.*t));

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 16



synth.m (cont)

else
error('Unknown synthesis type');

end
% smooth edges w/ 10ms ramp
if (dur > .02)

L = 2*fix(.01*Fs)+1; % L odd
ramp = bartlett(L)'; % odd length
L = ceil(L/2);
y(1:L) = y(1:L) .* ramp(1:L);
y(end-L+1:end) = y(end-L+1:end) .* ramp(end-L+1:end);

end

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 17



synth.m (Cont.)

Note the sawtooth waveform generated here has a non-linear
up slope:

0 10 20 30 40 50 60 70 80 90 100
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 18



synth.m (Cont.)

This is created with (see synth.m):

ramp = (0:(N-1))/T;
y = ramp-fix(ramp);

Note: fix() rounds the elements of X to the nearest integers
towards zero.

0 10 20 30 40 50 60 70 80 90 100
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

This form of sawtooth sounds slightly less harsh and is more
suitable for audio synthesis purposes.

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 19

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/synth.m

