CM3106 Chapter 5:

Digital Audio Synthesis

Prof David Marshall

dave.marshall@cs.cardiff.ac.uk
and
Dr Kirill Sidorov

K.Sidorov@cs.cf.ac.uk
www.facebook.com/kirill.sidorov

UNIVERSITY
PRIFYSGOL
School of Computer Science & Informatics
Cardiff University, UK

www.facebook.com/kirill.sidorov

Digital Audio Synthesis

Some Practical Multimedia Digital Audio Applications:

Having considered the background theory to digital audio
processing, let's consider some practical multimedia related
examples:

m Digital Audio Synthesis — making some sounds

m Digital Audio Effects — changing sounds via some
standard effects.

m MIDI — synthesis and effect control and compression

Roadmap for Next Few Weeks of Lectures

CM3106 Chapter 5: Audio Synthesis Digital Audio Synthesis

Digital Audio Synthesis

We have talked a lot about synthesising sounds.

Several Approaches:
m Subtractive synthesis
m Additive synthesis
m FM (Frequency Modulation) Synthesis
m Sample-based synthesis
m Wavetable synthesis
m Granular Synthesis
[

Physical Modelling

CM3106 Chapter 5: Audio Synthesis Digital Audio Synthesis

Subtractive Synthesis

Basic Idea: Subtractive synthesis is
a method of subtracting overtones
from a sound via sound synthesis,
characterised by the application of an
audio filter to an audio signal.

First Example: Vocoder — talking
robot (1939).

Popularised with Moog Synthesisers
1960-1970s

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 4

Subtractive synthesis: Simple Example

Simulating a bowed string

m Take the output of a sawtooth generator
m Use a low-pass filter to dampen its higher partials

generates a more natural approximation of a bowed string
instrument than usmg a sawtooth generator anne

‘\.
\\\//

m subtract synth.m MATLAB Code Example Here
CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/subtract_synth.m

Subtractive Synthesis: A Human Example

We can regard the way in which humans make noises as
subtractive synthesis:

Oscillator — the vocal cords act as the sound source and

Filter — the mouth and throat modify the sound.

m Saying or singing "ooh” and “"aah” (at the same
pitch.)

m Vocal chords are generating pretty much the same
raw, rich in harmonic sound Difference between the
two comes from the filtering which we apply with
the mouth and throat.

m Change of mouth shape varies the cutoff frequency
of the filter, so removing (subtracting) some of the
harmonics.

m The “aah” sound has most of the original harmonics
still present,

m The “ooh” sound has most of them removed (or to
be more precise, reduced in amplitude.)

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 6

Subtractive Synthesis: Another Human

Example

A sweeping filter

"ooh”s to "aah”s again

m By gradually changing from "ooh” to "aah” and back
again — simulate the "sweeping filter”" effect

m Effect widely used in electronic music

m Basis of the "wahwah" guitar effect, so named for
obvious reasons.

m We will see how we produce this effect in MATLAB code
shortly.

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 7

Subtractive Synthesis: One More Human Example

Making Aeroplane Noise

Make a "ssh” sound — white noise

m Now "synthesise” a "jet plane landing” sound

m Should mostly by use mouth shape to filter the white
noise into pink noise by removing the higher frequencies.

m The same technique (filtered white noise) can be used to
electronically synthesise the sound of ocean waves and
wind,

m Used in early drum machines to create snare drum and
other percussion sounds.

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis

Subtractive synthesis: Electronic Control

Three Basic elements:

Source signal: Common source signals: square
waves, pulse waves, sawtooth waves
and triangle waves.

Modern synthesisers (digital and
software) may include more complex

waveforms or allow the upload of cotom mmouncY CanABs of comoun

‘. .
(W)

arbitrary waveforms

Filtering: The cut-off frequency and resonance
of the filter are controlled in order
to simulate the natural timbre of a
given instrument.

Amplitude Envelope: Further envelope control of signal amplitude
(strictly: not subtractive synthesis but frequently
used). Also used with other synthesis techniques.

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis

Further Processing: ADSR Envelope

Basic Idea: Modulate some aspect of the instrument’s sound over time
— often its volume.

Why is this needed? (used by many forms of synthesis):

When a mechanical musical instrument produces sound, the relative
volume of the sound produced changes over time — The way that this
varies is different from instrument to instrument

Examples:

Pipe Organ: When a key is pressed, it plays a note at constant volume;
the sound dies quickly when the key is released.

Guitar: The sound of a guitar is loudest immediately after it is
played, and fades with time.
Other instruments have their own characteristic volume patterns.

Also Note: While envelopes are most often applied to volume, they are
also commonly used to control other sound elements, such as filter
frequencies or oscillator pitches.

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 10

Further Processing: ADSR Envelope (Cont.)

Attack: How quickly the sound reaches full volume after
the sound is activated (the key is pressed).

m For most mechanical instruments, this FILTER AMOUNT
. . . . TMPMASS Of CONTOUR
period is virtually instantaneous.

m For bowed strings or some popular
synthesised "voices” that don’t mimic real
instruments, this parameter is slowed down.
'Slow attack’ is commonly part of sounds —
'pads’.

Decay: How quickly the sound drops to the sustain level
after the initial peak.

Sustain: The "constant” volume that the sound takes after An ADSR envelope
decay until the note is released. Note that this
parameter specifies a volume level rather than a
time period.

Release How quickly the sound fades when a note ends (the
key is released).

m Often, this time is very short. e.g. organ

m An example where the release is longer
might be a bell ring, or a piano with the
sustain pedal pressed.

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 11

Using MATLAB Filter Example: Subtractive

Synthesis Example

The example for studying subtractive synthesis uses the
butter() and filter() MATLAB functions:

subtract_synth.m:

% simple low pas filter example of subtractive synthesis
Fs = 22050;
y = synth(440,2,0.9,22050, 'saw');

% play sawtooth e.g. waveform
doit = input('\nPlay Raw Sawtooth? Y/[N:]\n\n', 's');
if doit == 'y',
figure(1)
plot(y(1:440));
sound(y,Fs);
end

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 12

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/subtract_synth.m

Using MATLAB Filter Example: Subtractive

Synthesis Example (cont)

/% make lowpass filter and filter y
[B, A] = butter(1,0.04, 'low');
yf = filter(B,A,y);

[B, A] = butter(4,0.04, 'low');
y£2 = filter(B,A,y);

% play filtererd sawtooths
doit = ...

input ('\nPlay Low Pass Filtered (Low order) ?

Y/[N:J\n\n', 's'");

if doit == 'y',
figure(2)
plot (yf(1:440));
sound (yf,Fs);
end

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 13

Using MATLAB Filter Example: Subtractive

Synthesis Example (cont)

doit = ...

input ('\nPlay Low Pass Filtered (Higher order)?

Y/[N:1\n\n', 's');
if doit == 'y',
figure(3)

plot (y£2(1:440));
sound (yf2,Fs) ;
end

Zplot figures
doit = input('\Plot All Figures? Y/[N:]\n\n', 's');

if doit == 'y',
figure(4)
plot(y(1:440));
hold on

plot (yf(1:440),'r+');
plot(y£2(1:440),'g-");
end

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 14

The supporting function, synth.m, generates waveforms as we
have seen earlier in this tutorial:

function y=synth(freq,dur,amp,Fs,type)
% y=synth(freq, dur, amp,Fs, type)
A

/% Synthesize a single note

%
%
%
%
%
4
%
4

Inputs:
freq - frequency in Hz
dur - duration in seconds
amp - Amplitude in range [0,1]
Fs - sampling frequency in Hz
type - string to select synthesis type
current options: 'fm', 'sine', or 'saw'

if nargin<5
error('Five arguments required for synth()');
end

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/synth.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/synth.m

synth.m (cont)
.

N = floor(dur*Fs);
n=0:N-1;
if (strcmp(type,'sine'))
y = amp.*sin(2*pi*n*freq/Fs);

elseif (strcmp(type, 'saw'))

T = (1/freq)*Fs; % period in fractional samples
ramp = (0:(N-1))/T;

y = ramp-fix(ramp) ;

y = amp.*y;

y =y - mean(y);

elseif (strcmp(type,'fm'))

t = 0:(1/Fs) :dur;

envel = interpl([0 dur/6 dur/3 dur/5 dur], [0 1 .75 .6 0],
0:(1/Fs) :dur);

I_env = 5.%*envel;

y = envel.*sin(2.*pi.*freq.*t + I_env.*sin(2.*pi.*freq.*t));

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 16

else

error ('Unknown synthesis type');
end
% smooth edges w/ 10ms ramp
if (dur > .02)
L = 2%fix(.01*Fs)+1; / L odd
ramp = bartlett(L)'; / odd length
L = ceil(L/2);
y(1:L) = y(1:L) .* ramp(1:L);
y(end-L+1:end) = y(end-L+l:end) .* ramp(end-L+1:end);
end

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis

synth.m (Cont.)

Note the sawtooth waveform generated here has a non-linear
up slope:

0.2

o1f

~0.05 ‘

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 18

synth.m (Cont.)

This is created with (see synth.m):

ramp = (0:(N-1))/T;
y = ramp-fix(ramp);

Note: £ix () rounds the elements of X to the nearest integers
towards zero.

This form of sawtooth sounds slightly less harsh and is more
suitable for audio synthesis purposes.

CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 19

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Synth/synth.m

