
434

!!
""
!
"

Back

Close

Beginning CGI Programming in Perl

In this section we will lay the foundation for CGI script development.

We will introduce general CGI programming concepts relating to
CGI output but then focus on Perl programming.

Specifically we will develop a very simple Perl program and see
how to run it on a Macintosh and UNIX platform.

435

!!
""
!
"

Back

Close

CGI Script Output

We have already mentioned that CGI scripts must adhere to standard
input and output mechanism

• The Interface between browser and server

• Part of HTTP Protocol

For the moment we will not worry about input to a CGI script.

436

!!
""
!
"

Back

Close

CGI Script Output Format

In whatever language a CGI script is programmed it MUST send
information back in the following format:

• The Output Header

• A Blank Line

• The Output Data

NOTE: Between the Header and Data there MUST be a blank line.

437

!!
""
!
"

Back

Close

CGI Output Header

• A browser can accept input in a variety of forms.

• Depending on the specified form it will call different mechanisms
to display the data.

• The output header of a CGI script must specify an output type to
tell the server and eventually browser how to proceed with the
rest of the CGI output.

438

!!
""
!
"

Back

Close

Three forms of Header Type

There are 3 forms of Header Type:

• Content-Type
• Location
• Status

Content-Type is the most popular type.

• We now consider this further.

• We will meet the other types later.

439

!!
""
!
"

Back

Close

Content-Types

The following are common formats/content-types
(there are a few others):

Format Content-Type
HTML text/html

Text text/plain
Gif image/gif

JPEG image/jpeg
Postscript application/

postscript
MPEG video/mpeg

440

!!
""
!
"

Back

Close

Declaring Content-Type

To declare the Content-Type your CGI script must output:

Content-Type: content-type specification

Typically the Content-Type will be declared to produce HTML.

So the first line of our CGI script (for most of our examples) will
look this:

Content-Type: text/html

441

!!
""
!
"

Back

Close

CGI Output Data
Depending on the Content-Type defined the data that follows

the header declaration will vary:

• If it is HTML that follows then the CGI script must output
standard HTML syntax.

Example: To produce a Web page that the server sends to a browser
with a simple line of text ”Hello World!” . A CGI script must output:

Content-Type: text/html

<html>
<head>
<title>Hello, world!</title>
</head>
<body>
<h1>Hello, world!</h1>
</body>
</html>

Now let us see how we write and display in a Browser this CGI
script in Perl

442

!!
""
!
"

Back

Close

A First Perl CGI Script

Let us now look at how we write our first perl program that will be
used as a CGI script.

We will learn three main things in here:

• The basic format of Perl CGI program

• How to comment Perl programs

• One Perl function print — which outputs data:

– As a CGI Perl Program — Data sent to browser
– As a stand alone Perl Program (Non- CGI) — Data sent to

standard output (default: terminal window)

443

!!
""
!
"

Back

Close

Format of a Perl program

Every Perl program MUST obey the following format:

• A first line consisting of:

#!/usr/bin/perl

• The rest of the program consisting of legal Perl syntax and
commands

Strictly speaking the first line is only required for running Perl
programs on UNIX machines.

• Since that is the intended destination of most of our Perl/CGI
scripts.

• It is a good idea to make this the first line of every perl program.

444

!!
""
!
"

Back

Close

What is the purpose of this first line?

The first line declaration has two purposes:

• It indicates that the program is a Perl script.

• It tells UNIX how to run Perl.
Do not worry too much about this last fact — it basically specifies
where in the directory hierarchy the perl interpreter
program resides.

• It MUST be typed exactly as above to run School’s UNIX/MAC
OS X systems.

• The exact location may vary on other systems.

The first line is actually a comment

• Albeit a very special type of comment

445

!!
""
!
"

Back

Close

Comments in Perl

It is good practice to comment all your programs (whatever the
language (HTML, Perl, Java, ...) — Suitable comments serve all
programmers well.

In Perl comments are easy:

• The # symbol indicates a comment.

• The remainder of the line is regarded as a comment

• DO NOT put any Perl code after a # symbol until you type a
carriage return — as this will always be ignored by Perl

So a simple comment in Perl might be:

hello.pl - My first Perl CGI program

446

!!
""
!
"

Back

Close

Output from Perl

To output from a Perl script you use the print statement:

• The print statement takes a string (delimited by "... ")
argument which it outputs.

• Similat to Java (and especially C) the string argument formats
output.

– You can control how the output looks from a single print
statement.

– The \n character indicates that a newline is required at that
point in the text.

– We will introduce further aspects of the print statement later.

447

!!
""
!
"

Back

Close

First Line Output of a CGI script in Perl

For Example, The first line of our CGI script must be

• “Content-Type: text/html” and

• The print statement must have 2 \n characters:

– One to terminate the current line, and
– The second to produce the require blank line between CGI

header and data.

• So our completer Perl line looks like this:

print "Content-Type: text/html\n\n";

448

!!
""
!
"

Back

Close

Finally — Our complete script

Recall that our Perl CGI script must output the header and HTML
code and must begin with a special first line.

Our complete first program (with nice comments) is a follows:

#!/usr/bin/perl
hello.pl - My first Perl CGI program

print "Content-Type: text/html\n\n";
Note there is a newline between
this header and Data

Simple HTML code follows

print "<html> <head>\n";
print "<title>Hello, world!</title>";
print "</head>\n";
print "<body>\n";
print "<h1>Hello, world!</h1>\n";
print "</body> </html>\n";

449

!!
""
!
"

Back

Close

Writing, Creating and Running CGI Perl Scripts

We now know what a (simple) Perl script looks like.

Let us now look at how we create and run Perl scripts.

We will look at how we create Perl Scripts on a Macintosh or UNIX
and how we run Perl scripts as standalone and CGI scripts on
Macintosh and UNIX.

450

!!
""
!
"

Back

Close

Writing/Creating Perl Scripts

Perl Scripts are basically text files with special perl syntax embedded
in the text.

Therefore any text editor can be used to create and edit you Perl
files.

On the Macintosh Computer BBEdit Lite is the recommended text
editor.

451

!!
""
!
"

Back

Close

Running Perl on Mac OS X/UNIX/LINUX Command Line

• Simply fire up a terminal window or

• Open Telnet connection to UNIX machine

• Make sure the Perl script is executable

– The UNIX command:

chmod +x myperl.pl

achieves this.
– To see whether a file is execuable use UNIX command ls -l,

452

!!
""
!
"

Back

Close

ls -l To See if File is Executable Example

E.G.:

ls -l myperl.pl

You should see something like:

-rwxr-xr-x 1 dave staff 356 Nov 19 2003 myperl.pl

Look for the x in the User, Group and/or All file permissions

• Either simply type the file name from the command:

myperl.pl , or

• Run the perl interpreter, perl, with the file name:

perl myperl.pl

453

!!
""
!
"

Back

Close

Test Perl Script Locally First

• If you run perl scripts from the command line they DO NOT
function as a CGI script

• However you can verify that the scripts syntax is correct

– and save wasted file copying to web server

• Possibly you can verify that the scripts output is correct

– by manually viewing the script output on the command line
– E.G. Basic HTML syntax
– and save wasted file copying to web server

454

!!
""
!
"

Back

Close

Running Perl on School’s UNIX/LINUX Web Server

We assume that a Perl Script has been created and tested on a
Macintosh Locally.

To run a CGI Perl script on UNIX, Simply:

• Samba File Copy or FTP (use Fetch) the Perl Script to the
appropriate cgi-bin directory on UNIX (project or public).

• Put associated HTML file in appropriate html directory on UNIX
(project or public).

• Reference Perl script either via

– a FORM — Make sure URL is the Correct UNIX URL
– Directly with a URL

• The URL is either
http://www.cs.cf.ac.uk/project/A.B.Surname/cgi-bin/file.pl ,
or
http://www.cs.cf.ac.uk/user/A.B.Surname/cgi-bin/file.pl.

455

!!
""
!
"

Back

Close

CGI Script Input: Accepting Input To Perl
Scripts

A CGI script will typically require some form of input in order to
operate.
• In fact, only very trivial CGI scripts can be created without input.

We have introduced HTML Forms as a prime means of CGI input.
• However, there are several other forms of input to a CGI script.
In this section we will study:
• What form of input a CGI can receive
• How a CGI receives input.
• How to process the input in a CGI Perl script
• How a useful Perl library makes this (and other) tasks easy.

456

!!
""
!
"

Back

Close

Accepting Input from the Browser

A CGI script can receive data in one of four ways:

Environment Variables — It gets various information about the
browser, the server and the CGI script itself through specially
named variables automatically created and setup by the server.
More on these later.

Standard Input — Data can be passed as standard input to CGI script.
Usually this is through the POST method of an HTML Form.
(Standalone Perl scripts get standard input from the keyboard
or a file.)

457

!!
""
!
"

Back

Close

Accepting Input from the Browser (Cont.)

Arguments of the CGI Script — If you call a CGI script directly or
use the GETmethod of HTML Form posting information is passed
as arguments of the CGI script URL.

• Arguments are followed a ? after the CGI script URL and
multiple arguments are separated by &.

• For example:
http://host/cgi-bin?arg1&arg2
The arguments are usually in the form of name/value pairs
(More Soon).

458

!!
""
!
"

Back

Close

Accepting Input from the Browser (Cont.)

Path Information — Files which may be read by a CGI script can be
passed to a CGI script by appending the file path name to the end
of the URL but before the ? and any arguments.

For example:
http://host/cgi-bin/script/mypath/cgiinput?arg1&arg2

Path information is useful if a CGI script requires data that

• Does not frequently change,
• Requires a lot of arguments and/or
• Does not rely on user input values.
• Path Information often refers to files on the Web server such a

configuration files, temporary files or data files.

459

!!
""
!
"

Back

Close

Passing Data to a CGI Script

As mentioned above there are a few ways to pass data to a CGI script.

• Path Information and Arguments of a CGI Script call are explicit
— you (or the HTML Form) have to actually specify the information
ad part of the call.

• Standard input and Environment variables are more transparent
— we will need to deal with accepting the input within the CGI
script.

Let’s consider the arguments of a CGI script call further for the
moment.

The GET method of Form posting or a direct URL call to a CGI
script may use this method.

NOTE: Using the direct method of CGI Script call is a good way to
debug possible Form/CGI script interaction problems.

460

!!
""
!
"

Back

Close

CGI Conventions

There are several conventions adopted when passing arguments to a
CGI script:

• Different fields (e.g. name value pairs are separated by an
ampersand (&).

• Name/value pair assignments are denoted by an equals sign (=).

– The format is name=value.

• Blank spaces must be denoted by a plus sign (+).

• Some special characters will be replaced by a percent sign (%)
followed by a 2 digit hexadecimal (ASCII Value) code.

– For example if you need to input an actual &, % or = character
as input.

The GET Form posting method does these things automatically.
Note: You may need to construct these things yourself if call the

CGI script direct from a URL.

461

!!
""
!
"

Back

Close

A Simple Form CGI Script Call

Let us now return to our minimal form example introduced previously
and examine how the input is passed to a CGI script. We will then
examine how the actual CGI script receives and processes the input
data.

Recall the form simply has a single Text entry field and a submit
button:

Figure 27: The Minimal Form

If we set the Form method attribute to GET via:

<form method = "get" action = "http://.../cgi-bin/minimal.cgi">
<input type="submit">Data: <input name="myfield">
</form>

462

!!
""
!
"

Back

Close

CGI Input via a URL

If you enter some data in the Text field and click on submit then the
call to the CGI script looks something like

http://myhost/minimal.pl?myfield=dddd

where minimal.pl is the CGI script actioned by the form,

If you want to call the CGI script yourself (by-passing the Form)
you simply mimic to input above.

Try typing:

http://www.cs.cf.ac.uk/user/
Dave.Marshall/cgi-bin/minimal.pl?myfield=mydata

in the browser location bar.

Exercise: Change to Form method attribute to POST and observe
the difference in the CGI call.

463

!!
""
!
"

Back

Close

The Other Side of CGI — Receiving and processing information
in a CGI (Perl) script

There are basic ways to process or parse input in a Perl

• Do it yourself — write several lines of Perl code to process the
input.

• Use pre-written Perl libraries — somebody has already done the
arduous task of writing Perl code to parse input.

Which option would you choose?

464

!!
""
!
"

Back

Close

Which option would you choose?

Bear in mind that:

• Input can be provided by different mechanism.

• Input of many arguments, name/value pairs may get complex.

• We do not know enough Perl to do it ourselves yet!!

• Prewritten code has been extensively tested — It should work.

THE INFORMED VIEW IS TO USE: pre-written Perl libraries

465

!!
""
!
"

Back

Close

A Simple Perl CGI Input Library

There are many Perl libraries available to read and parse CGI input.

• These are freely available on theWorld Wide Web via the
Comprehensive Perl Archive Network (CPAN)

The library that became one of first the standard CGI libraries is
the cgi-lib.pl library.

Further Information on this library is available from
http://cgi-lib.berkeley.edu/.

Copies of the actual Perl file are available from above web site and
locally.

You should find copies of the cgi-lib.pl file in:

• You can download the file from http://cgi-lib.berkeley.edu/ or
(Locally)
http://www.cs.cf.ac.uk/User/Dave.Marshall/cgi-lib.pl.

466

!!
""
!
"

Back

Close

CGI.pm — A more complete, fully featured and advanced
Perl library

Note: A more complete, fully featured and advanced Perl library
CGI.pm exists

But this is beyond our current Perl knowledge.

Please check this out later (for projects etc.)

467

!!
""
!
"

Back

Close

The cgi-lib.pl library

The cgi-lib.pl Perl library simply consists of handy, easy-to-use
Perl functions. The library is more than simply a means of processing
CGI input. The library includes subroutines to:

• Read and parse CGI input — a value(s) for a given name can be
easily found.

• Conveniently format CGI output.

– Conveniently return Headers and Bottoms of standard CGI
output.

– Conveniently return URLs.
– Conveniently return CGI Error Codes.

• Print in HTML format all name/value pairs input.

• Print in HTML format Environment variables.

468

!!
""
!
"

Back

Close

CGI Input via cgi-lib.pl library is Easy

The cgi-lib.pl input routines can accept all and process all methods
of input (e.g. GET and POST methods).

You do not have to worry about which mechanism has been adopted
by HTML Form

Let us now develop a minimal.pl CGI routine that accepts input
form our minimal form and sends back HTML that echoes the input
data.

We will use the cgi-lib.pl.

469

!!
""
!
"

Back

Close

A Minimal Form Response CGI Perl Script

In this subsection we will develop a minimal.pl CGI routine that
accepts input form our minimal form and sends back HTML that
echoes the input data.

We will use the cgi-lib.pl to

• Parse the input from the form.

• Format the HTML output.

We will need to learn some more basic Perl:

• How to include and call Perl libraries.

• How to call Perl subroutines

470

!!
""
!
"

Back

Close

Our minimal.pl Script

The first thing our Perl script will need to do is to include the Perl
library file cgi-lib.pl.

The Perl command require will load in any external Perl file.

• It is easier and sometimes essential that all library files exist in the
same folder or directory as the main Perl script calling the library.

Therefore make sure that all Perl files required for a Perl program
do exist at the same folder or directory level.

Thus to include our cgi-lib.pl file we need the Perl command:

require "cgi-lib.pl";

Note the format of the require command has the Perl file listed
in ‘‘...’’.

471

!!
""
!
"

Back

Close

Our minimal.pl Script (Cont.)

Having included the library we can call on its many useful subroutines.

The &ReadParse() subroutine reads either GET or POST input
and conveniently stores the name/value pairs in a Perl array (We
will meet these formally shortly for now we simply use the array).

Thus a Perl call of the form:

&ReadParse(*input);

will store the input in an array input.

& is used to indicate a Perl subroutine call.

472

!!
""
!
"

Back

Close

Our minimal.pl Script (Cont.)

Next we will need to extract out the relevant value of a given name.

This is relatively simple. Perl is very good a process data of this
kind.

In our current example there is only one input field and we are
therefore only interested in the value associated with the myfield
name.

To get this value you simply do:

$input{’myfield’}

Thus to print out the value typed we could do something like:
print "You typed: " . $input{’myfield’} . "\n";

473

!!
""
!
"

Back

Close

Our first Complete minimal Perl script

So pulling together all we have learnt so far. A Perl script to take our
minimal form input and return in HTML the value type could be:
#!/usr/bin/perl# minimal.cgi
This is the minimalist form script
to demonstrate the use of
the cgi-lib.pl library

require "cgi-lib.pl";

Read in all the variables set by the form

&ReadParse(*input);

print "Content-Type: text/html\n\n";
print "<html> <head>\n";
print "<title>Minimal Input</title>\n";
print "</head>\n";
print "<body>\n";

print "You typed: " . $input{’myfield’} . "\n";

print "</body> </html>\n";

474

!!
""
!
"

Back

Close

A second minimal Perl script

We can further than this and exploit some more
cgi-lib.pl subroutines.

Nearly every CGI output has:
• Exactly the same header output.

• Similar HTML head information

• Similar HTML ending

Fortunately subroutines exist to save us typing this same information
all the time.

The &PrintHeader subroutine returns the string:
Content-Type: text/html\n\n

Thus we can use print in conjunction to produce our CGI header
output via:

print &PrintHeader;

475

!!
""
!
"

Back

Close

The &HtmlTop subroutine

The &HtmlTop subroutine accepts a single string argument,
MY TITLE say, and return an HTML Head and Body (opening only)
with the argument as the HTML page TITLE and H1 Header. I.e.

<html>
<head>
<title>MY TITLE</title>
</head>
<body>
<h1>MY TITLE</h1>

which is rather useful.

476

!!
""
!
"

Back

Close

The &HtmlBot subroutine

The &HtmlBot subroutine is the compliment of &HtmlTop
and returns:

</body>
</html>

Thus we can use these functions and we only need to provide the
main HTML body ourselves.

Thus we develop a better minimal.pl script as follows

477

!!
""
!
"

Back

Close

A Better minimal.pl Script
#!/usr/bin/perl

minimal.cgi
This is the minimalist form script
to demonstrate the use of
the cgi-lib.pl library

require "cgi-lib.pl";

Read in all the variables set by the form

&ReadParse(*input);

Read in all the variables set by the form
&ReadParse(*input);

Print the header + html top
print &PrintHeader;
print &HtmlTop ("Minimal Input");

print "You typed: " . $input{’myfield’} . "\n";

print &HtmlBot;

478

!!
""
!
"

Back

Close

Multiple argument input to a Perl CGI script

Let us now return to a more complex form example. We previously
looked at the Python Quiz form.

Figure 28: Multi Field Form

479

!!
""
!
"

Back

Close

The Python Quiz Form
The HTML to produce this is:
<H1>Python Quiz: </H1>

<form method = "post" action = "simple-form.cgi">
What is thy name: <input name="name"><P>
What is thy quest: <input name="quest"><P>

What is thy favorite color:
<select name="color">
<option selected>chartreuse
<option>azure
<option>puce
<option>cornflower
<option>olive draub
.....
<option>amber
<option>mustard
</select>

<P>

What is the weight of a swallow: <input type="radio" name="swallow"
value="african" checked> African Swallow or
<input type="radio" name="swallow" value="continental"> Continental
Swallow
<P>

What do you have to say for yourself
<textarea name="text" rows=5 cols=60></textarea>
<P>

Press <input type="submit" value="here"> to submit your query.
</form>

480

!!
""
!
"

Back

Close

The Python Quiz Form

Note: that the Method attribute is set to POST.

• This desirable since many name/value pairs are sent to the CGI
script.

If the method was set to G ET instead the call would look something
like this:
http://dave.cs.cf.ac.uk/.../python.pl?name=Dave&
quest=Find+Holy+Grail&
color=olive+draub&
swallow=continental&
text=I+am+Tired

Also:

• Note relevant character substiutions and argument dividors

• This is all one line of a URL!!

The Post method sends all this dat via standard input which is
far neater.

481

!!
""
!
"

Back

Close

Python Form CGI Input

Clearly fhe form input has several input name/value pairs:
name, quest, color,swallow and text

To extract out the relevant value for a given name is straightforward
though:

• Use &ReadParse(*input)

• Extract out the value for a given name using $input{’name’},
$input{’quest’}, etc.

482

!!
""
!
"

Back

Close

Modifying Text Area Input

It is also useful to process the form input for a Textarea field so
that line breaks are inserted

• Since HTML does not preserve linebreaks and carriage returns
will be present in the multiline output.

The Perl commands:

($text = $input{’text’}) =˜ s/\n/\n
/g;

does this.

We will explain the Perl commands here in detail later and briefly
now.

483

!!
""
!
"

Back

Close

Text Area Modification Brief Explanation

This Perl is a little complex for complete study now. Essentially the
following occurs

• The input value to the text name is copied to a $text array.

($text = $input{’text’})

• All end of lines \n characters are substituted (s/.../ command)
by \n
.

s/\n/\n
/g

The s/old sting/new string/ command is commonly used
in Perl.
The g at the end of the command indicates a global substitution
(all instances get replaced) rather than the (default) first found.

484

!!
""
!
"

Back

Close

Complete python.pl Script

So our complete Perl script is as follows:

• Input is read and parsed as usual with cgi-lib.pl
routine &ReadParse(*input)

• Values pertaining to names (name, color, quest, swallow
and text are sought.

• The text value is processed as above.

• The values are printed out in HTML format.

• cgi-lib.pl subroutines are used to output CGI Header, and
HTML Top and bottom.

• Another cgi-lib.pl subroutine, &PrintVariables(*input),
is also used to print out all the input name/value pairs.

485

!!
""
!
"

Back

Close

The complete Perl code is as follows:
#!/usr/bin/perl

require "cgi-lib.pl";

Read in all the variables from form
&ReadParse(*input);

Print the header
print &PrintHeader;
print &HtmlTop ("cgi-lib.pl demo form output");

Do some processing, and print some output
add
’s after carriage returns
to multline input, since HTML does not
preserve line breaks
($text = $input{’text’}) =˜ s/\n/\n
/g;

print << ENDOFTEXT;

You, $input{’name’}, whose favorite color is $input{’color’} are on a
quest which is $input{’quest’}, and are looking for the air speed/velocity of an
$input{’swallow’} swallow. And this is what you have to say for
yourself:<P> $text<P>

ENDOFTEXT

If you want, just print out a list of all of the variables.
print "<HR>And here is a list of the variables you entered...<P>";
print &PrintVariables(*input);

Close the document cleanly.
print &HtmlBot;

486

!!
""
!
"

Back

Close

Basic Perl Programming
In this section we will explore some basic Perl programming

concepts.

Many of these concepts are similar to what you have learned in
Java or other programming languages.

However there quite a few differences.

Here we will focus on how Perl

• Defines and uses variables

• How basic math and string operations are performed.

• Learn some very useful Perl functions

487

!!
""
!
"

Back

Close

Perl Variables

Perl regards variables as being of one of three basic types:

Scalar — denoted by a $ symbol prefix.

A scalar variable can be either a number or a string.

Array — denoted by a @ symbol prefix.

Arrays are indexed by numbers.

Associative Array — denoted by a % symbol prefix.

Arrays are indexed by strings. You can look up items by name.

Note: This is quite different than Java.

• But Hopefully things are easier here once you get used to the
different syntax.

488

!!
""
!
"

Back

Close

Scalar Variables

Scalar variables can be either a number or a string

• What might seem confusing at first sight actually makes a lot of
sense and can make programming a lot easier.

– You can use variable types almost interchangeably.

For Example: Numbers first then strings later
– Numbers are numbers — there is no integer type by default

(These is an integer package but we do not worry about
this in this course.

Perl regards all numbers as floating point numbers for
calculations etc. UNLESS OTHERWISE INSTRUCTED

489

!!
""
!
"

Back

Close

Defining Scalar Variables

You define scalar variables by assigning a value (number or string)
to it.

• You do not declare variable types at a special place in the program
as in C, PASCAL etc.

• It is a good idea to declare all variables together near the top of
the program.

The following are simple examples of variable declarations:
$first_name = "David";
$last_name = "Marshall";

$number = 3;

$another_number = 1.25;

$sci_number = 7.25e25;

$octal_number = 0377; # same as 255 decimal

$hex_number = 0xff; # same as 255 decimal

490

!!
""
!
"

Back

Close

Defining Scalar Variables — Perl Syntax Notes
$first_name = "David";
$last_name = "Marshall";

$number = 3;

$another_number = 1.25;

$sci_number = 7.25e25;

$octal_number = 0377; # same as 255 decimal

$hex_number = 0xff; # same as 255 decimal

NOTE:

• All references to scalar variables need a $.

• Perl commands end with a semicolon (;). This can be omitted from last lines of
“blocks” of statements.

• All standard number formats are supported integer, float and scientific literal
values are supported.

• Hexadecimal and Octal number formats are supported by 0x and 0 prefix.

491

!!
""
!
"

Back

Close

String Scalar Variables

Strings are a sequence of characters.

Perl has two types of string:

Single-quoted strings — denoted by ‘....’.

• All characters are regarded as being literal characters.
• That is to say special format characters like \n are regarded as

being two characters \ and n with no special meaning.
• Two exceptions:

– To get a single-quote character do \n’
– To get a backslash character do \\’

Double-quoted strings — Special format characters \ have a distinct
meaning.

492

!!
""
!
"

Back

Close

Double-quoted strings — Special Format characters

Some special format characters include:

\n newline
\r carriage return
\t tab
\b backspace
\\ backslash character
\" double-quote character
\l lower case next letter
\L lower case all letters until \E
\u upper case next letter
\U upper case all letters until \E
\E Terminate \L or \E

493

!!
""
!
"

Back

Close

Operators

Just as in most standard programming languages variables are
operated on or assign results of operations.

In Perl scalar variables and constants can be mixed an assigned as
normal.

Common arithmetic operation are denoted by +,-,*,/,
% (modulus) and ** (power).

For example:

$x = 3 + 1;
$y = 6 - $x;

$z = $x * $y;

$w = 2**3; # 2 to the power of 3 = 8

494

!!
""
!
"

Back

Close

String Operators

Strings can be concatenated by the . operator.

For example:
$first_name = "David";
$last_name = "Marshall";

$full_name = $first_name . " " . $last_name;

we need the ” ” to insert a space between the strings.

Strings can be repeated with x operator

For example:

$first_name = "David";

$david_cubed = $first_name x 3;

which gives "DavidDavidDavid".

495

!!
""
!
"

Back

Close

String Operators (Cont.)

Strings can be referenced inside strings

For example:

$first_name = "David";

$str = "My name is: $first_name";

which gives

"My name is: David".

496

!!
""
!
"

Back

Close

Conversion between numbers and Strings

This is a useful facility in Perl:
• Scalar variables are converted automatically to string and number

values according to context.

Thus you can do
$x = "40";
$y = "11";

$z = $x + $y; # answer 51

$w = $x . $y; # answer "4011"

Note if a string contains any trailing non-number characters they
will be ignored.

I.e. " 123.45abc" would get converted to 123.45 for numeric
work.

If no number is present or there are non-number characters first
in a string it is converted to 0.

497

!!
""
!
"

Back

Close

Binary Assignment Operators

In common with Java and C, Perl has two short hand operators that
can prove useful.

In many statements we frequently write something like:
$a = $a + 1;

we can write this more compactly as:

$a += 1;.

This works for any operator so this is equivalent:

$a = $a * $b;
$a *= $b;

498

!!
""
!
"

Back

Close

Auto Increment/Decrement Operators

You can also automatically increment and decrement variables in
Perl with the ++ and -- operators.

For example all three expressions below achieve the same result —
adding one to the value of a:

$a = $a + 1;
$a += 1;
++$a;

499

!!
""
!
"

Back

Close

Prefix/Postfix Auto Increment/Decrement Operators

The ++ and -- operators can be used in prefix and postfix mode in
expressions.

• There is subtle a difference in their use.

In Prefix Mode: the operator comes before the variable and this
indicates that the value of the operation be used in the expression:

E.g.

$a = 3;
$b = ++$a;

results in a being incremented to 4 before this new value is assigned
to b.

That is to say BOTH a and b have the value 4 after these statements
have been executed.

500

!!
""
!
"

Back

Close

Prefix/Postfix Auto Increment/Decrement Operators (Cont.)

In Postfix Mode: the operator comes after the variable and this
indicates that the value of the variable before the operation be used
in the expression and then the variable is incremented or decremented:

E.g.

$a = 3;
$b = $a++;

results in the value of a (3) being assigned to b and then a gets
incremented to 4

That is to say that after these statements have been executed
b = 3 and a = 4.

501

!!
""
!
"

Back

Close

The chop() operator

chop() is a useful operator which takes a single argument (within
parenthesis) and simply removes the last character from the string.
The new string is returned as a value to the expression.

Thus
chop(’suey’) would give the result ’sue’

502

!!
""
!
"

Back

Close

The chomp() operator

chomp() is a similar operator which takes a single argument (within
parenthesis) and removes the last character from the string only if it
is the newline, \n, character.

Why is chomp() useful?

• Most strings input in Perl will end with a \n:

– Most lines of text and some strings read in by Perl will have
this \n character present (more on reading files etc. soon)

• If we want to line/string operations for output formatting and
many other processed then the \n might be inappropriate.

• chomp() can easily achieve this.

503

!!
""
!
"

Back

Close

Arrays

What is an Array?

An array, in Perl, is an ordered list of scalar data.

• This is quite different to standard arrays in JAVA or C

• Syntax is also slightly different.

• Each element of an array is an separate scalar variable with a
independent scalar value — unlike JAVA or C.

• Arrays can therefore have mixed elements, for example

(1,"fred", 3.5)

is perfectly valid.

504

!!
""
!
"

Back

Close

Literal Arrays

Arrays can be defined literally in Perl code by

• Simply enclosing the array elements in parentheses, (...) , and

• Separating each array element with a comma.

For example

(1, 2, 3)
("fred", "albert")
() # empty array (zero elements)
(1..5) # shorthand for (1,2,3,4,5)

505

!!
""
!
"

Back

Close

Indexed Arrays

You declare an ordinary indexed array by giving it:

• A name AND

• Prefixing it with a @

Values are assigned to arrays in the usual fashion:

@array = (1,2,3);

@copy_array = @array;

@one_element = 1;
not an error but creates the array (1)

506

!!
""
!
"

Back

Close

References to Arrays Within Arrays

Arrays can also be referenced within the literal array list, for example:

@array1 = (4,5,6);

@array2 = (1,2,3, @array1, 7,8);

This results in the elements of array1 being inserted in the
appropriate parts of the list.

Therefore after the above operations

@array2 = (1,2,3,4,5,6,7,8)

This means Array cannot contain other Arrayelements recursively
only scalars allowed as Array elements

507

!!
""
!
"

Back

Close

Indexing Array Elements

Elements of arrays are indexed by index, For Example:

$array1[1] = $array2[3];

Assigns “third” element of array2 to “first” element of array1.

Each array element is a scalar so we reference each array element
with

• The $ prefix — to inidcate a scalar value being used

• Use [n] brackets for index to element n.

BIG WARNING:
Array indexing starts from 0 in Perl (like JAVA and C).
So

@array = (1,2,3,4,5,6,7,8);

The index $array[0] refers to 1 and $array[5] refers to 6.

508

!!
""
!
"

Back

Close

Finding Array Length in Perl

Arrays are essentially dynamic lists in Perl:

• The length of an array can change in the program (some useful
dynamic functions next)

• Knowing the the length at any given time is useful:

For example: To loop through array and print/process each array
element

If you assign a scalar to an array name (plus @ prefix) the scalar
gets assigned the length of the array, E.g.:

@array2 = (1,2,3,4,5,6,7,8);

$length = @array2; # length = 8

509

!!
""
!
"

Back

Close

Some Useful Array Functions

push() and pop()

One common use of an array is as a stack.
push() and pop() add or remove an item from the right hand

side of an array.

Example:

push(@mystack,$newvalue);
add new value to stack

$off_value = pop(@mystack);
take last element off array

510

!!
""
!
"

Back

Close

shift() and unshift()

Like push() and pop() except put values on and take values off
the left side of an array.

Example:

shift(@mystack,$newvalue);
add new value to left of array

$off_value = unshift(@mystack);
take last element off left of array

shift() and unshift(), push() and pop() may be used
together to create more fancy data structures such as queues, double
ended queues (deques) and others.

511

!!
""
!
"

Back

Close

reverse()

As one would expect this will reverse the ordering of list.

For example:

@a = (1,2,3);

@b = reverse(@a);

results in b containing (3,2,1).

512

!!
""
!
"

Back

Close

sort()
This is a useful function that sorts an array.

• NOTE: Sorting is done on the string values of each number
alphabetically — Not numerically

For Example:

@x = sort("small","medium","large");

gets @x = ("large","medium","small");

@y = sort(1,,32,16,4,2);

gets @x = (1,16,2,32,4);

513

!!
""
!
"

Back

Close

chop()

How does chop() (and other similar operators) work on arrays?
Just as on a scalar string it removes the last character of every

element from an array, for example:

@x = ("small","medium","large");

chop(@x);

gets @x = ("smal","mediu","larg")

Use pop()unshift() to remove entire array elements.

514

!!
""
!
"

Back

Close

Hashes/Associative Arrays

Hashes or (Previously called) Associative arrays are a very useful
and commonly used feature of Perl.

Hashes basically store tables of information where:

• The lookup is the right hand key (a string) to an associated scalar
value.

• Again Hash scalar elements can be mixed “data types” values —
as with ordinary arrays.

Perl Flashback: We have already been using Associative arrays for
name/value pair input to CGI scripts.

Hashes are denoted by a % prefix.

• When you declare an Hash the key and associated values are
listed in consecutive pairs.

515

!!
""
!
"

Back

Close

Hash Array Example

Lets assume we have the following “secret code” lookup example:

name code
dave 1234
peter 3456

andrew 6789

We would declare a Perl Hash to perform this lookup as follows:

%lookup = ("dave", 1234,
"peter", 3456,
"andrew", 6789);

To reference a particular value you would do, for example:

$lookup{"dave"}

516

!!
""
!
"

Back

Close

Creating New Hash Table Elements

You can create new elements by assignments to new keys.

E.g.

$lookup{"adam"} = 3845;

After this operation a new table item (Hash lookup and value)
will have been created.

You do new assignments to old key lookups also, for example:

change dave’s code
$lookup{"dave"} = 7634;

517

!!
""
!
"

Back

Close

Hash Operators

keys()
The keys(%arrayname) lists all the key names in a specified

Hash.

• The answer is returned as an ordinary index array.

E.g.

@names = keys(%lookup);

values() This operator returns the values of the specified
Hash Table.

E.g.

@codes = keys(%lookup);

518

!!
""
!
"

Back

Close

Deleting Hash Table Entries

delete() deletes an associated key and value by key reference.

E.g.

scrub adam from code list
delete $lookup("adam");

519

!!
""
!
"

Back

Close

Further Perl Programming
Statement Blocks

In Perl statement blocks are enclosed in pairs of curly
brackets {....}:

{

statement_1;
statement_2;
statement_3;

.....

statement_n;
}

520

!!
""
!
"

Back

Close

If Statement

The if statement has a variety of forms.

The simplest is:

if (expression)
{ true_statement_1;

.....
true_statement_n;

}

which means that if expression is evaluated as being true then
execute the block of statements.

In Perl,

• False is regarded as any expression which evaluates to 0 (zero).

• True any expression which is not false (non-zero).

521

!!
""
!
"

Back

Close

If/Then/Else Statement

An elsemay be added to provide a block of statements to be executed
upon a false evaluation of the expression:

if (expression)
{ true_statement_1;

.....
true_statement_n;

}
else

{ false_statement_1;
.....
false_statement_n;

}

Curly braces are required for each block even if only one statement
is present.

522

!!
""
!
"

Back

Close

If/Then/Else Example

For example:

$age = ; # whatever ??
if ($age < 18)

{ print "You cannot Vote or have a beer, yet.\n";
}

else
{ print "Go and Vote and then have a beer.\n";
}

523

!!
""
!
"

Back

Close

Unless Statement

There is an unless statement in Perl which can be regarded as the
negative of if — unless states:

• If the control expression is not true, do

For example:

$age = ; # whatever ??
unless ($age < 18)

{ print "Go and Vote and then have a beer.\n";
}

unless can have an else, too.

524

!!
""
!
"

Back

Close

Multiple Else Ifs — the elsif Statement

If you have more than one branch then the elsif can be added to
the if.

• You cannot have an else if in Perl

• You must use elsif.

• Last conditional probably a lone else

525

!!
""
!
"

Back

Close

elsif Statement Example

For Example:

$age = ; # whatever ??
if ($age < 16)

{
print "Hi, Junior\n";

}
elsif ($age < 17)
{

print You can ????\n";
}

elsif ($age < 18)
{

print You can learn to drive\n";
}

else
{ print "Go and Vote and then have a beer.\n";
}

Note: The last else.

526

!!
""
!
"

Back

Close

Comparison operators for numbers and strings

Perl has different operators for comparing numbers and strings:
• Frequently used in If/Unless/Elsif conditional expressions
• Used in other computations also

They are defined as follows:
Comparison Numeric String

Equal == eq
Not Equal != ne
Less than < lt

Greater than > gt
Less than or equal <= le

Greater than or equal <= ge

Note: Different operators for Numeric and String comparison
• Even though scalar variables can be of either type in a program
• Need to take care when performing comparison in some Perl

programs

527

!!
""
!
"

Back

Close

Logical operators

In controlling the logic of a conditional expression logical operators
are frequently required.

In Perl,

• The logical AND operator is && and

• The logical OR is ||

528

!!
""
!
"

Back

Close

Useful Example: Checking If A Valid Number Exists
in a Variable

For example to check if a valid number exists in a variable $var
you could do:

if (($var ne "0") && ($var == 0))
{ # $var is NOT a number
}

else
{ # $var is a NUMBER
}

529

!!
""
!
"

Back

Close

How Example does this work?

• Recall: Perl evaluates any string to 0 if it is not a number:

• If $var is a regular number (or a string with leading digits),
but not 0, then the string test ($var ne "0") is FALSE as is the
numeric test ($var == 0).

• If $var is a regular string (with no leading digits), but not “0”,
then the string test ($var ne "0") is FALSE but the numeric test
($var == 0) is TRUE (since any string with nor leading digits is
zero numerically).

But the complete ANDed expression is still FALSE

• The only problem we have is if $var is 0 (number) or ”0” (Single
Character) — Perl regards these are identical in a variable.
Here we need the ($var ne "0") test which evaluates FALSE
in this case and therefore makes the ANDed expression FALSE

530

!!
""
!
"

Back

Close

The for statement

Just like in Java and C we have loops.
The simplest is the for loop.

• Actually behaves like JAVA/C’s statement

The format of the for statement is:

for (initialise_expr; test_expr; increment_expr)
{

statement(s);
}

For example:

for ($i = 1; $i <= 10; ++$i)
{ # count to 10

print "$i\n";
}

531

!!
""
!
"

Back

Close

The while statement

The while statement is as follows:

while (expression)
{ # while expression is true execute this block

statement(s);
}

For example:

i = 1;
while ($i <= 10)

{ # count to 10
print "$i\n";
++$i;

}

532

!!
""
!
"

Back

Close

The until statement

The until statement says do while expression is false as declared
is as follows:

until (expression)
{ # until expression is false execute this block

statement(s);
}

For example:

i = 1;
until ($i > 10)

{ # count to 10
print "$i\n";
++$i;

}

533

!!
""
!
"

Back

Close

The foreach statement

The foreach statement iterates through items in a list:

• No counterpart in JAVA or C.

• Similar Unix Shell commands exist.

The statement has the following format:

foreach $i (@some_list)
{ # $i takes on each list item value in turn

statement(s);
}

534

!!
""
!
"

Back

Close

A foreach Example

For example:

@a = (1, 2, 3, 4, 5);
foreach $i (reverse @a)

{ # reverse is a functiion that flips the list
print $i;

}

• Note: We use reverse to return a flipped list in the foreach
list.

