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Fourier Transform

Moving into the Frequency Domain

The Frequency domain can be obtained through the
transformation, via Fourier Transform (FT), from

one (Temporal (Time) or Spatial) domain

to the other

Frequency Domain

We do not think in terms of signal or pixel intensities but
rather underlying sinusoidal waveforms of varying frequency,
amplitude and phase.
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Applications of Fourier Transform

Numerous Applications including:

Essential tool for Engineers, Physicists,
Mathematicians and Computer Scientists

Fundamental tool for Digital Signal Processing and
Image Processing

Many types of Frequency Analysis:

Filtering
Noise Removal
Signal/Image Analysis
Simple implementation of Convolution
Audio and Image Effects Processing.
Signal/Image Restoration — e.g.
Deblurring
Signal/Image Compression —- MPEG
(Audio and Video), JPEG use related
techniques.
Many more . . . . . .
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Introducing Frequency Space

1D Audio Example

Lets consider a 1D (e.g. Audio) example to see what the different domains mean:

Consider a complicated sound such as the a chord played on a piano or a guitar.

We can describe this sound in two related ways:

Temporal Domain : Sample the amplitude of the sound many times a second, which
gives an approximation to the sound as a function of time.

Frequency Domain : Analyse the sound in terms of the pitches of the notes, or
frequencies, which make the sound up, recording the amplitude
of each frequency.

Fundamental Frequencies

D[ : 554.40Hz

F : 698.48Hz

A[ : 830.64Hz

C: 1046.56Hz

plus harmonics/partial frequencies ....
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Back to Basics

An 8 Hz Sine Wave

A signal that consists of a sinusoidal wave
at 8 Hz.

8 Hz means that wave is completing
8 cycles in 1 second

The frequency of that wave is 8 Hz.

From the frequency domain we can see
that the composition of our signal is

one peak occurring with a frequency

of 8 Hz — there is only one sine

wave here.

with a magnitude/fraction of

1.0 i.e. it is the whole signal.
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2D Image Example

What do Frequencies in an Image Mean?

Now images are no more complex really:

Brightness along a line can be recorded as a set of values
measured at equally spaced distances apart,

Or equivalently, at a set of spatial frequency values.

Each of these frequency values is a frequency component.

An image is a 2D array of pixel measurements.

We form a 2D grid of spatial frequencies.

A given frequency component now specifies what contribution
is made by data which is changing with specified x and y
direction spatial frequencies.
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Frequency components of an image

What do Frequencies in an Image Mean? (Cont.)

Large values at high frequency components then the data is
changing rapidly on a short distance scale.

e.g. a page of text
However, Noise contributes (very) High Frequencies also

Large low frequency components then the large scale features
of the picture are more important.
e.g. a single fairly simple object which occupies most of the
image.
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Visualising Frequency Domain Transforms

Sinusoidal Decomposition

Any digital signal (function) can be decomposed into purely sinusoidal

components

Sine waves of different size/shape — varying amplitude, frequency and

phase.

When added back together they reconstitute the original signal.

The Fourier transform is the tool that performs such an operation.
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Summing Sine Waves. Example: to give a Square(ish)
Wave

Digital signals are composite signals made up of many sinusoidal
frequencies

A 200Hz digital signal (square(ish) wave) may be a
composed of 200, 600, 1000, etc. sinusoidal signals which
sum to give:
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Summary so far

So What Does All This Mean?

Transforming a signal into the frequency domain allows us

To see what sine waves make up our underlying signal

E.g.
One part sinusoidal wave at 50 Hz and
Second part sinusoidal wave at 200 Hz.
Etc.

More complex signals will give more complex decompositions
but the idea is exactly the same.
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How is this Useful then?

Basic Idea of Filtering in Frequency Space

Filtering now involves attenuating or removing certain
frequencies — easily performed:

Low pass filter —

Ignore high frequency noise components — make zero or a
very low value.
Only store lower frequency components

High Pass Filter — opposite of above

Bandpass Filter — only allow frequencies in a certain
range.
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Visualising the Frequency Domain

Think Graphic Equaliser

An easy way to visualise what is happening is to think of a graphic
equaliser on a stereo system (or some software audio players, e.g.
iTunes).
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So are we ready for the Fourier Transform?

We have all the Tools....

This lecture, so far, (hopefully) set the context for Frequency decomposition.

Past Maths Lectures:

Odd/Even Functions: sin(−x) = − sin(x), cos(−x) = cos(x)
Complex Numbers: Phasor Form re iφ = r(cosφ+ i sinφ)

Calculus Integration:
∫
ekxdx = ekx

k

Digital Signal Processing:

Basic Waveform Theory. Sine Wave y = A.sin(2π.n.Fw/Fs)
where: A = amplitude, Fw = wave frequency, Fs = sample frequency, n is
the sample index.
Relationship between Amplitude, Frequency and Phase:

Cosine is a Sine wave 90◦ out of phase

Impulse Responses

DSP + Image Proc.: Filters and other processing, Convolution
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Fourier Theory

Introducing The Fourier Transform

The tool which converts a spatial or temporal (real space) description of
audio/image data, for example, into one in terms of its frequency
components is called the Fourier transform

The new version is usually referred to as the Fourier space description of the
data.

We then essentially process the data:

E.g. for filtering basically this means attenuating or setting certain
frequencies to zero

We then need to convert data back (or invert) to real audio/imagery to use
in our applications.

The corresponding inverse transformation which turns a Fourier space

description back into a real space one is called the inverse Fourier transform.
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1D Fourier Transform

1D Case (e.g. Audio Signal)

Considering a continuous function f (x) of a single variable x representing
distance (or time).

The Fourier transform of that function is denoted F (u), where u represents
spatial (or temporal) frequency is defined by:

F (u) =

∫ ∞
−∞

f (x)e−2πixu dx .

Note: In general F (u) will be a complex quantity even though the original data
is purely real.

The meaning of this is that not only is the magnitude of each frequency
present important, but that its phase relationship is too.

Recall Phasors from Complex Number Lectures.

e−2πixu above is a Phasor.
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Inverse Fourier Transform

Inverse 1D Fourier Transform

The inverse Fourier transform for regenerating f (x) from F (u) is
given by

f (x) =

∫ ∞
−∞

F (u)e2πixu du,

which is rather similar to the (forward) Fourier transform

except that the exponential term has the opposite sign.

It is not negative
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Fourier Transform Example

Fourier Transform of a Top Hat Function

Let’s see how we compute a Fourier Transform: consider a
particular function f (x) defined as

f (x) =

{
1 if |x | ≤ 1
0 otherwise,

1

1
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The Sinc Function (1)

We derive the Sinc function
So its Fourier transform is:

F(u) =

∫ ∞
−∞

f (x)e−2πixu dx

=

∫ 1

−1
1× e−2πixu dx

=
−1

2πiu
(e2πiu − e−2πiu)

Now (refer to Complex Numbers Lectures/Maths Formula Sheet Handout)

sin θ =
eiθ − e−iθ

2i
, So:

F(u) =
sin 2πu

πu
.

In this case, F (u) is purely real, which is a consequence of the original data being symmetric in x and −x .

f (x) is an even function.

A graph of F (u) is shown overleaf.

This function is often referred to as the Sinc function. 19 / 66
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The Sinc Function Graph

The Sinc Function

The Fourier transform of a top hat function, the Sinc function:

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

2

u

sin(2 π u)/(π u)
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The 2D Fourier Transform

2D Case (e.g. Image data)

If f (x , y) is a function, for example intensities in an image, its
Fourier transform is given by

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f (x , y)e−2πi(xu+yv) dx dy ,

and the inverse transform, as might be expected, is

f (x , y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v)e2πi(xu+yv) du dv .
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The Discrete Fourier Transform

But All Our Audio and Image data are Digitised!!

Thus, we need a discrete formulation of the Fourier transform:

Assumes regularly spaced data values, and

Returns the value of the Fourier transform for a set of values
in frequency space which are equally spaced.

This is done quite naturally by replacing the integral by a
summation, to give the discrete Fourier transform or DFT for
short.
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1D Discrete Fourier transform (DFT)

1D Case:
In 1D it is convenient now to assume that x goes up in steps of 1, and that there are
N samples, at values of x from 0 to N − 1.

So the DFT takes the form

F (u) =
1

N

N−1∑
x=0

f (x)e−2πixu/N,

while the inverse DFT is

f (x) =

N−1∑
u=0

F (u)e2πixu/N.

NOTE: Minor changes from the continuous case are a factor of 1/N in the
exponential terms, and also the factor 1/N in front of the forward transform which
does not appear in the inverse transform.
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2D Discrete Fourier transform

2D Case

The 2D DFT works is similar.

So for an N ×M grid in x and y we have

F (u, v) =
1

NM

N−1∑
x=0

M−1∑
y=0

f (x , y)e−2πi(xu/N+yv/M),

and

f (x , y) =
N−1∑
u=0

M−1∑
v=0

F (u, v)e2πi(xu/N+yv/M).
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Balancing the 2D DFT

Most Images are Square

Often N = M, and it is then it is more convenient to redefine
F (u, v) by multiplying it by a factor of N, so that the forward and
inverse transforms are more symmetric:

F (u, v) =
1

N

N−1∑
x=0

N−1∑
y=0

f (x , y)e−2πi(xu+yv)/N,

and

f (x , y) =
1

N

N−1∑
u=0

N−1∑
v=0

F (u, v)e2πi(xu+yv)/N.

25 / 66



Frequency Domain Fourier Transform Discrete Fourier Transform Spectra Properties of Fourier Transforms

Fourier Transforms in MATLAB

fft() and fft2()

MATLAB provides functions for 1D and 2D Discrete Fourier Transforms
(DFT):

fft(X) is the 1D discrete Fourier transform (DFT) of vector X. For
matrices, the FFT operation is applied to each column — NOT
a 2D DFT transform.

fft2(X) returns the 2D Fourier transform of matrix X. If X is a vector, the
result will have the same orientation.

fftn(X) returns the N-D discrete Fourier transform of the N-D array X.

Inverse DFT ifft(), ifft2(), ifftn() perform the inverse DFT.

See appropriate MATLAB help/doc pages for full details.

Plenty of examples to Follow.

See also: MALTAB Docs Image Processing → User’s Guide
→ Transforms → Fourier Transform
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Visualising the Fourier Transform

Visualising the Fourier Transform

Having computed a DFT it might be
useful to visualise its result:

It’s useful to visualise the Fourier
Transform

Standard tools

Easily plotted in MATLAB

0 2 4 6 8 10 12 14 16
−1

0

1

n →

a)

 

 
Cosine signal x(n)

0 2 4 6 8 10 12 14 16
0

0.5

1

k →

b)

 

 
Magnitude spectrum |X(k)|

0 0.5 1 1.5 2 2.5 3 3.5
x 104

0

0.5

1

f in Hz →

c)

 

 
Magnitude spectrum |X(f)|

27 / 66



Frequency Domain Fourier Transform Discrete Fourier Transform Spectra Properties of Fourier Transforms

The Magnitude Spectrum of Fourier Transform

Recall that the Fourier Transform of our real audio/image data is always
complex

Phasors: This is how we encode the phase of the underlying signal’s
Fourier Components.

How can we visualise a complex data array?

Back to Complex Numbers:

Magnitude spectrum Compute the absolute value of the complex data:

|F (k)| =
√

F 2
R(k) + F 2

I (k) for k = 0, 1, . . . ,N − 1

where FR(k) is the real part and FI (k) is the imaginary part of the N sampled
Fourier Transform, F (k).

Recall MATLAB: Sp = abs(fft(X,N))/N;

(Normalised form)
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The Phase Spectrum of Fourier Transform

The Phase Spectrum

Phase Spectrum
The Fourier Transform also represent phase, the
phase spectrum is given by:

ϕ = arctan
FI (k)

FR(k)
for k = 0, 1, . . . ,N − 1

Recall MATLAB: phi = angle(fft(X,N))
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Relating a Sample Point to a Frequency Point

When plotting graphs of Fourier Spectra and doing other DFT
processing we may wish to plot the x-axis in Hz (Frequency)
rather than sample point number k = 0, 1, . . . ,N − 1

There is a simple relation between the two:

The sample points go in steps k = 0, 1, . . . ,N − 1

For a given sample point k the frequency relating to this is
given by:

fk = k
fs
N

where fs is the sampling frequency and N the number of
samples.

Thus we have equidistant frequency steps of fs
N ranging

from 0 Hz to N−1
N fs Hz
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MATLAB Fourier Frequency Spectra Example

fourierspectraeg.m

N=16;

x=cos(2*pi*2*(0:1:N-1)/N)';

figure(1)

subplot(3,1,1);

stem(0:N-1,x,'.');
axis([-0.2 N -1.2 1.2]);

legend('Cosine signal x(n)');
ylabel('a)');
xlabel('n \rightarrow');

X=abs(fft(x,N))/N;

subplot(3,1,2);stem(0:N-1,X,'.');
axis([-0.2 N -0.1 1.1]);

legend('Magnitude spectrum |X(k)|');
ylabel('b)');
xlabel('k \rightarrow')

N=1024;

x=cos(2*pi*(2*1024/16)*(0:1:N-1)/N)';

FS=40000;

f=((0:N-1)/N)*FS;

X =abs(fft(x,N))/N;

subplot(3,1,3);plot(f,X);

axis([-0.2*44100/16 max(f) -0.1 1.1]);

legend('Magnitude spectrum |X(f)|');
ylabel('c)');
xlabel('f in Hz \rightarrow')

figure(2)

subplot(3,1,1);

plot(f,20*log10(X./(0.5)));

axis([-0.2*44100/16 max(f) ...

-45 20]);

legend('Magnitude spectrum |X(f)| ...

in dB');
ylabel('|X(f)| in dB \rightarrow');
xlabel('f in Hz \rightarrow')
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MATLAB Fourier Frequency Spectra Example Output

fourierspectraeg.m produces the following:
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Magnitude Spectrum in dB

Note: It is common to plot both spectra magnitude (also
frequency ranges not show here) on a dB/log scale:
(Last Plot in fourierspectraeg.m)

0 0.5 1 1.5 2 2.5 3 3.5
x 104

−40

−20

0

20

f in Hz →

|X
(f)

| i
n 

dB
 →

 

 
Magnitude spectrum |X(f)| in dB

33 / 66

http://www.cs.cf.ac.uk/Dave/CM2208/MATLAB/Fourier_Transform/fourierspectraeg.m


Frequency Domain Fourier Transform Discrete Fourier Transform Spectra Properties of Fourier Transforms

Time-Frequency Representation: Spectrogram

Spectrogram

It is often useful to look at the frequency distribution over a
short-time:

Split signal into N segments

Do a windowed Fourier Transform — Short-Time Fourier
Transform (STFT)

Window needed to reduce leakage effect of doing a shorter
sample SFFT.
Apply a Blackman, Hamming or Hanning Window

MATLAB function does the job: Spectrogram — see help

spectrogram

See also MATLAB’s specgramdemo

34 / 66



Frequency Domain Fourier Transform Discrete Fourier Transform Spectra Properties of Fourier Transforms

MATLAB spectrogram Example

spectrogrameg.m

load('handel')
[N M] = size(y);

figure(1)

spectrogram(y,512,20,1024,Fs);

Produces the following:
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Aphex Twin Spectrogram

Aphex Twin famously1 embedded images in the spectrogram of a
few tracks on his Windowlicker EP. His face on Track 2 “Formula”
or “Equation” (Full title: ∆Mi−1 = −α

∑N
n=1 Di [n][

∑
σ∈C [i ] Fji [n − 1] + Fexti [n − 1]]!!:

1See here for web link to other examples of embedded image Spectrograms
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Matlab Code to show the Aphex Twin Spectrogram

Previous slide use the free and excellent Sonic Visualiser

We of course know how to display the image in MATLAB:
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Matlab Code to show the Aphex Twin Spectrogram

Aphex Spectrogram.m

aphex = audioread('FormulaSnippet.wav');

mono = (aphex(:,1) + aphex(:,2))/2;

spectrogram(mono,1024,120,2048,'power','yaxis');
set(gca,'YScale','log');
colormap('winter');
xlabel('Time')
ylabel('Frequency (Log Scale)')

Note: we change the display of the spectrogram to a log scale,
which looks better.

Audio clip here: FormulaSnippet.wav
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So what does my face sound like?

Let’s embed my face in spectrogram:

It sounds like this:

0 5 10 15
x 104
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0

0.5

1

Daphex
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Image to Sound Conversion

Daphex.m

figure(1);

imshow(imread('Dave_Frame0001.jpg'));

dave_im2snd = im2sound('Dave_Frame0001', 'jpg', 44100, 40,6000,0.00002, 10);

sound(dave_im2snd,44100);

figure(2);

spectrogram(dave_im2snd,1024,120,2048,'power','yaxis');
set(gca,'YScale','log');

colormap('winter');

shg;

Image used here: Dave Frame0001.jpg
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Image to Sound Conversion2

im2sound.m (Usage)

function [final_sound] = im2sound(filename, ext, f_sample, f_low, ...

f_high, amp_mod, sample_t)

%INPUTS:

%'filename' - Name of the image to be encoded (not including extension

%ext' - Extension of the image (not including "." at the beginning).

%'f_sample' - Sampling frequency (Hz)

%'f_low' - Lowest frequency (Hz) (e.g. 40)

%'f_high' - Highest frequency (Hz) (e.g. 6000)

%'amp_mod' - Multiplication factor for the amplitude. Decrease until

%image is clear. Too high and the waveform clips. Too low and the image

%is very dark (e.g. 0.00002)

%'sample_t' - Duration of the sample in seconds. Longer samples have

%better quality (e.g. 10)

%OUTPUTS:

%'final_sound' - the final sound containing the image. This is

%automatically saved to a .wav file with the original image filename

2Original Code from MATLAB Central
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Image to Sound Conversion

im2sound.m (Code)

function [final_sound] = im2sound(filename, ext, f_sample, f_low, ...

f_high, amp_mod, sample_t)

........

%INITIALISING VARIABLES:

%The waveform at each time point. This is reset at the beginning of each

%time point

temp_sound = 0;

%The final waveform

final_sound = 0;

%MAIN BODY

%Loading the sample image and calculating the image size

raw_im = imread(strcat(filename,'.',ext));
size_raw_im = size(raw_im);

%Making a frequency table for the height of the image. Each row of the

%image is assigned a particular frequency from the corresponding row of

%this table. The frequencies are linearly distributed between the highest and

%lowest user-definied frequencies. "f_step" is the increment between each

%adjacent frequency

f_step = (f_high - f_low)/size_raw_im(1,1);

f_table = (f_high:-f_step:f_low);
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Image to Sound Conversion

im2sound.m (Code)
%The final sound will dwell on each column of the image for a specific

%time. This time is defined by "t_start" and "t_end". It depends on how

%long the user determined the sound-clip should be and how wide (how many

%columns) the image is.

t_step = (sample_t/size_raw_im(1,2));

%Initial values for the start and end times. These will be increased at

%the end of each loop iteration (when the script moves onto the next column

%of the image).

t_start = 0;

t_end = t_step;

%The loop which generates the sound file. At each iteration it generates a

%segment of the final sound file, which is temporarily saved to

%"temp_sound". This segment is built up of frequencies from that

%particular column of the image.

for j = 1:size_raw_im(1,2)

%Initialising the variable (the sound for each frequency (row) is added

%to the existing sound)

temp_sound = 0;

%Setting the time in matrix format

t = t_start:1/f_sample:(t_end);
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Image to Sound Conversion

im2sound.m (Code)
%For each iteration of this loop, the script goes down the current

%column of the image and generates a waveform of the frequency

%specified in "f_table". The amplitude of the waveform is determined

%by the pixel intensity. This generated waveform is added to all the

%previously generated waveforms in that particular column

for i = size_raw_im(1,1):-1:1

temp_sound = temp_sound+ sin(2*pi*t*f_table(i))*...

double(raw_im(i,j))*amp_mod;

end

%At the end of each column the segment of sound generated is added to

%the end of the existing sound file ("final_sound").

final_sound = cat(2,final_sound,temp_sound);

%The temporary sound is cleared ready for the start of the next column

clear temp_sound

%Moving to the next time frame

t_start = t_start + t_step;

t_end = t_end + t_step;

end

%This saves "final_sound" to the '.wav' file of the same name as the input

%file

wavwrite(final_sound, f_sample, strcat(filename, '.wav'));
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Properties of Fourier Transforms

Here are just a few of the other properties of Fourier transforms
which are useful when reasoning, or computing, with Fourier
transforms:

Linear Operator

Shifting

Scaling

Rotation

Zeroth component

Convolution Theorem (see next section applications)

45 / 66



Frequency Domain Fourier Transform Discrete Fourier Transform Spectra Properties of Fourier Transforms

Fourier Transform: Linear Operator

The Fourier transform is a linear operator. This means that

Theorem

If f (x) and g(x) are two functions with Fourier transforms F (u)
and G (u), then the Fourier transform of af (x) + bg(x) where a
and b are constants is simply aF (u) + bG (u).
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Linear Operator Simple Example

Image 1 Image 2

Image 3
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Linear Operator Simple Example

Image 1 + Image 2 Spectra
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Linear Operator Simple Example

Fourier Transform Linear Operator Demo: FFT Linear.m

% Create a white box on a black background image

M= 256; N = 256;

image1 = zeros(M,N);

box = ones(64,64);

%box at centre

image1(97:160,97:160) = box;

figure(1)

imshow(image1)

title('Image 1');

% Create another white box on a black background image

M= 256; N = 256;

image2 = zeros(M,N);

box = ones(32,32);

%box at centre

image2(37:68,37:68) = box;

figure(2)

imshow(image2)

title('Image 2');
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Linear Operator Simple Example

Fourier Transform Linear Operator Demo: FFT Linear.m

% Make composite image

image3 = image1 + image2;

figure(3)

imshow(image3)

title('Image 3');

% Compute Fourier Transforms.

imft1 = fft2(double(image1));

imft2 = fft2(double(image2));

imft3 = fft2(double(image3));

figure(4)

imagesc(abs(imft1 + imft2))

title('Image 1 + Image 2 Spectra');

figure(5)

imagesc(abs(imft3))

title('imft3 Spectra');

figure(6)

imagesc(abs(imft1 + imft2 - imft3))

title('Difference (Image 1 + Image 2) - imft3 Spectra');

figure(7)

imshow(ifft2(imft1 + imft2));

title('Inverse FT of imft1 + imft2');
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Fourier Transform: Shifting

Shifting the real space data through a fixed distance has the effect
that

Theorem

If f (x) is a function with Fourier transform F (u), then the Fourier
transform of f (x − x0) is given by e−2πix0uF (u).

Note: that the exponential term here has unit magnitude for
all values of u.

Thus, the magnitude of the resulting Fourier transform is left
unchanged, although the relative sizes of the real and
imaginary parts are altered.
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Shifting Operator Simple Example

Image 1 Image 2

FT of Image 1 (imft1)
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Shifting Operator Simple Example
Inverse FT of imft3 Image 2

Both Images are the same.
FT of imft3 (imft1 shifted in Fourier Space
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53 / 66



Frequency Domain Fourier Transform Discrete Fourier Transform Spectra Properties of Fourier Transforms

Shifting Operator Simple Example

Fourier Transform Shifting Operator Demo: FFT Shift.m

% Define Initial box

x0 = 97;

y0 = 97;

xwidth = 64;

ywidth = 64 ;

% Create a white box on a black background image

M= 256; N = 256;

image1 = zeros(M,N);

box = ones(xwidth,ywidth);

%box at centre

image1(x0:x0+xwidth-1,y0:y0+ywidth-1) = box;

figure(1)

imshow(image1)

title('Image 1');

% Define shift

dx= 40;

dy= 0;

% Shift Image 1

image2 = zeros(M,N);

image2(x0+dx:x0+dx+xwidth-1,y0+dy:y0+dy+ywidth-1) = box;

figure(2)

imshow(image2)

title('Image 2');
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Shifting Operator Simple Example

Fourier Transform Shifting Operator Demo: FFT Shift.m

% Compute Fourier Transfoms.

imft1 = fft2(double(image1));

imft2 = fft2(double(image2));

figure(3)

imagesc(abs(fftshift(imft1)));

title('FT of Image 1 (imft1)');

figure(4)

imagesc(abs(fftshift(imft3)));

title('FT of Image 2 (imft2)');

% Define shift in frequency domain

[yF,xF] = meshgrid(-M/2:M/2-1,-N/2:N/2-1);

% Perform the shift

imft3=imft1.*exp(-1i*2*pi.*(xF*dx+yF*dy)/256);

figure(5)

imagesc(abs(fftshift(imft3)));

title('FT of imft3 (imft1 shifted in Fourier Space');

figure(6)

imshow(ifft2(imft3));

title('Inverse FT of imft3');

figure(7)

imshow(ifft2(imft3)-image2);

title('Residual of IFT of imft3 and image2'); 55 / 66
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Fourier Transform: Scaling

If we scale the spacing of the real space data in distance, we have
that

Theorem

If f (x) is a function with Fourier transform F (u), then the Fourier
transform of f (ax) where a is a real constant is given by 1

|a|F (ua ).

In other words:

if we spread out the data in real space, the data is
compressed into more compact region of Fourier space.

This is intuitive — if we double the spacing of a grid
pattern, its spatial frequency is halved.

Note that the magnitude of the Fourier representation is
also affected.
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Scaling Operator Simple Example
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Scaling Operator Simple Example

Fourier Transform Scaling Operator Demo: FFT Scale.m

% Define Initial box

xwidth = 40;

ywidth = 40;

% Create a white box on a black background image

M= 256; N = 256;

x0 = M/2 - xwidth/2;

y0 = N/2 - ywidth/2;

image1 = zeros(M,N);

box = ones(xwidth,ywidth);

%box at centre

image1(x0:x0+xwidth-1,y0:y0+ywidth-1) = box;

% Define scale

scalex = 0.5;

scaley = 0.5;

% Image 2 = Scaled Image 1

image2 = zeros(M,N);

[px,qx] = rat(scalex);

[py,qy] = rat(scaley);
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Scaling Operator Simple Example

Fourier Transform Scaling Operator Demo: FFT Scale.m

in_image2 = resample(resample(double(image1),px,qx)',py,qy)';

xrange = int16(M/2-M*scalex/2:M/2+M*scalex/2-1);

yrange = int16(N/2-N*scaley/2:N/2+N*scaley/2-1);

image2(xrange,yrange)= in_image2;

figure(1)

imshow(image1);

title('Image 1');

figure(2)

imshow(image2);

title('Image 2');

% Compute Fourier Transfoms.

imft1 = fft2(double(image1));

imft2 = fft2(double(image2));

figure(3)

imagesc(abs(fftshift(imft1)))

title('Fourier Transform of Image 1 (imft1)');

figure(4)

imagesc(abs(fftshift(imft2)))

title('Fourier Transform of Image 2 (imft2)');
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2D Fourier Transform: Rotation

One useful property in two dimensions is that:

if we rotate the real space data, its Fourier transform is
rotated by the same angle, or more exactly

Theorem

If f (x , y) is a function with Fourier transform F (u, v), on
expressing these functions in terms of polar coordinates r , θ, ρ, φ
where x = r cos θ, y = r sin θ, u = ρ cosφ, v = ρ sinφ so that
f (x , y) and F (u, v) become f (r , θ) and F (ρ, φ) respectively, the
Fourier transform of f (r , θ + ω) where ω is a constant is given by
F (ρ, φ+ ω).

Basically this means the two-dimensional Fourier transform
is an intrinsic property of the data which is independent of
our choice of axis directions.
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Rotation Operator Simple Example
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Fourier Transform of Image 1 (imft1)
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Rotation Operator Simple Example

Fourier Transform Rotate Operator Demo: FFT Rotate.m

% Define Initial box

xwidth = 64;

ywidth = 32;

% Create a white box on a black background image

M= 256; N = 256;

image1 = zeros(M,N);

x0 = M/2 - xwidth/2;

y0 = N/2 - ywidth/2;

box = ones(xwidth,ywidth);

%box at centre

image1(x0:x0+xwidth-1,y0:y0+ywidth-1) = box;

% Define Rotation in degrees

rot = 45;

image2 = imrotate(image1, rot,'bilinear','crop');

figure(1); imshow(image1);

title('Image 1');

figure(2); imshow(image2);

title('Image 2');

% Compute Fourier Transfoms.

imft1 = fftshift(fft2(double(image1)));

imft2 = fftshift(fft2(double(image2)));

figure(3); imagesc(abs(imft1))

title('Fourier Transform of

Image 1 (imft1)');

figure(4); imagesc(abs(imft2))

title('Fourier Transform of I

mage 2 (imft2)');
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Fourier Transform: Zeroth Component

A final property is that the zeroth component of the Fourier
space representation is just the average data value (apart from
a factor of 1/N, in two dimensions – assuming balanced FT)).
This is illustrated below for the two-dimensional DFT case:

F (u, v) =
1

N

N−1∑
x=0

N−1∑
y=0

f (x , y)e−2πi(xu+yv)/N , (1)

so

F (0, 0) =
1

N

N−1∑
x=0

N−1∑
y=0

f (x , y) = Nf (x , y). (2)
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Simple Zeroth Component Example

Illustration of zeroth element, F(1) (1D) or F(1,1) (2D), being the
mean of the data plus a factor N: FFT zeroth.m

% 1D Example

y = 1:100

yft = fft(y);

yft(1)/100 % Zeroth Element of y

mean(y) % Mean of Data

% 2D Example

im = imread('cameraman.tif');

[N M] = size(im);

imft = fft2(im);

imft(1,1)/(N*M) % Zeroth Element of imft

mean(mean(im)) % Mean of Data

FT is not balanced in MATLAB
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Corollary: Shifting the Fourier Transform, fftshift()

Centring the Frequency of a Fourier Transform

Most computations of FFT represent the frequency from 0 — N − 1
samples (similarly in 2D, 3D etc.) with corresponding frequencies
ordered accordingly — the 0 frequency is not really the centre.

We frequently like to visualise the FFT as the centre of the
spectrum.

In 1D (Audio/Vector): swaps the left and right halves of the
vector

Similarly in 2D (Image/Matrix) we swap the first quadrant with the
third and the second quadrant with the fourth:

This is possible due the invariant shift property of the Fourier
Transform.
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The fftshift() MATLAB Command

help fftshift()

Y = fftshift(X) rearranges the outputs of fft, fft2, and

fftn by moving the zero-frequency component to the

center of the array.
It is useful for visualising a Fourier transform with

the zero-frequency component in the middle of the

spectrum.

For vectors, fftshift(X) swaps the left and right halves

of X.

For matrices, fftshift(X) swaps the first quadrant with

the third and the second quadrant with the fourth.
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