Introduction to C+—+

David Marshall

School of Computer Science & Informatics
Cardiff University

CM2204

All Lecture notes, code listings on CM2204 Web page

http://www.cs.cf.ac.uk/Dave/CM2204

C++

Bjarne Stroustrup, around 1986

“C makes it easy to shoot yourself in the foot; C++ makes it
harder, but when you do it blows your whole leg off”

» Designed (in 1979) by Bjarne Stroustrop to add object
oriented features to C
» C designed to be “close to the machine”
» C++ designed to be “close to the problem to be solved”
» Recommended reading — Thinking in C++, 2nd edition,
Volume 1 (and partially Vol. 2), Bruce Eckel
» http://www.mindviewinc.com/Books/downloads.html
» Where possible, I'll use examples from the book
Also see http://www.cs.cf.ac.uk/Dave/CM2204/:

» Course Docs
» Additional C/C++ Notes, Examples

http://www.mindviewinc.com/Books/downloads.html
http://www.cs.cf.ac.uk/Dave/CM2204/

From C to C++

Anything you can do in C++, you can do in C

» C gives you complete control

» C++ starts hiding things by providing higher level concepts
> Everything from C89 can be done in C++
» But there is a C++ way and a C way

So What's different?

C-+-+ adds new features

» Classes, inheritance, member functions

» References
» Templates

> Exceptions

v

Overloading

Recap from Frank: C v C++4 v Java

» Roughly Java: object-oriented with generics
C++: object-oriented with templates
C: procedural
» Object-oriented, procedural, functional, etc. is really a
way of thinking, quite independent of programming language
» Lisp can be OO, Java procedural, C functional. ..
» How best to think about a program?

» Objects communicating with each other
» Sequence of instructions
» Transformations

» C++ supports object-orientation more than C

» Java has deliberate limitations to enforce cross-platform
support and ‘“cleaner” code

Java vs. C/C++ (Cont.)

C++

Full control, you decide what to do and how to do it
» C+4+ trusts that you know what you are doing
» If you do not, you can break everything

“Stick to my rules, and | do some of the hard work for you”

» Less understanding, less efficient, incomplete
(machine details hidden, harder to adjust to specific problem,
some things cannot be done, need for JNI)
» Java prevents you doing some things, hides and checks others
» Maybe simpler, but always limited

Do you need / want the power/control of
C/C++7

C++ Features

Procedural C

Global Functions
File-specific functions
Structs

Pointers (addresses)
Low-level memory access
C Preprocessor

Variables
Arrays
Loops
Conditionals

Classes

- Grouping of related data together

- With associated methods (functions)
‘new’ for object creation

‘delete’ for object destruction
Constructors, Destructors

Operator Overloading

Assignment operators

Conversion operators

Inheritance (sub-classing)

Virtual functions & polymorphism
Access control (private/public/protected)

Function Libraries | | Templates
(Generic classes)

Standard functions

Class Libraries
(+templated cIas&es)

Custom libraries
QIS functions

Non-C features
e.g. References

Standard library
Custom libraries
Platform specific libraries

Java Features

Procedural C Classes
Global Functions - Grouping of related data together
File-specifie-functions- - With associated methods (functions)
Structs ‘new’ for object creation
B e e Constructors,Bestructers
B e Operater Overoading
- Assigrnentoperators
Variables Conversion-operators-(toString()?)
Arrays Inheritance (sub-classing)
Loopgl (ONLY) Virtual functions & polymorphism
Conditionals : ;
Access control (private/public/protected)
FunetionLibraries | | Femplates- Class Libraries
Standard-funetions ‘Generics’ (weaker) | | (Standardised)
Gustemlibraries Collections
OiSfunctions Non-C features Networking
Java Native Interface | | (ONLY) references | | graphics

C+-+ Programming: First steps and beyond

HelloWorld.cpp

#include <iostream>

int main(int argc, charxx argv) {
std :: cout << "Hello_World!" << std ::endl;

return 0;

Simple program but it lead to some issues and
some new C++ concepts

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/HelloWorld.cpp

Namespaces

» When using C, you need to be careful to avoid clashes
between names of identifiers and functions

» C++ solves this problem by providing a mechanism to group
related items into separate namespaces

> iostream library defines functions and objects in the std
namespace, hence we need to prefix them by std::

» This can be cumbersome — we can instead expose all elements
from the namespace:

time.cpp

#include <iostream>
using namespace std;

int main (int argc, char xxargv) {
cout << "Time_is."” << time(0) << endl;
return 0;

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/time.cpp

Stream output

» The iostream library defines an object cout for output to
the console/command line

» Can output different types (similarly to toString from Java)

» Can include various formatting modifiers

Stream?2.cpp (From Thinking in C4++):

#include <iostream>
using namespace std;

int main() { // Specifying formats with manipulators:

cout
cout
cout

cout

cout

<<
<<
<<
<<
<<
<<
<<
<<

"a.number_in._.decimal:."

dec << 15 << endl;

"in_octal:." << oct << 15 << endl;
in_hex:.” << hex << 15 << endl;
"a_floating —point._number:.”
3.14159 << endl;
"non—printing._char_(escape):."
char(27) << endl;

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/Stream2.cpp

Stream input

» The iostream class defines the cin object to get input from
the console/command line

Numconv.cpp (From Thinking in C++):

#include <iostream>
using namespace std;

int main() {
int number;
cout << " Enter_a_decimal_number:.";
cin >> number;
cout << "value_in_octal_=.0"
<< oct << number << endl;
cout << "value_in_hex_=_0x"
<< hex << number << endl;

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/Numconv.cpp

Standard C++ string class

» Character arrays in C are a little cumbersome:

> Fixed size
» Copying & concatenating

» C++ provides a standard string class (similar to Java)

HelloStrings.cpp (From Thinking in C++):

#include <string>
#include <iostream>
using namespace std;

int main() {
string sl, s2; // Empty strings

string s3 = "Hello,_.World.”; // Initialized
string s4("lcam”); // Also initialized
s2 = "Today”"; // Assigning to a string

sl =s3 +"_." + s4; // Combining strings
sl += ".8."; // Appending to a string
cout << sl 4+ s2 4+ """ << endl;

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/HelloStrings.cpp

The vector class

» C+-+ also includes a container that is more flexible than
arrays — vector.

» Similar to the Vector class in Java
» To access element i of a vector a:
> in C++: alil
» cf. in Java: a.get (i)
» Uses templates (similar to generics in Java) to allow
elements of any type to be stored

vector example

IntVector.cpp (From Thinking in C++):

#include <iostream>
#include <vector>
using namespace std;

int main() {
vector<int> v;

for(int i = 0; i < 10; i++4)
v.push_back(i);
for(int i = 0; i < v.size(); i++)

" "

cout << v[i] << " ,.";
cout << endl;

for(int i = 0; i < v.size(); i++)
v[i] = v][i] % 10; // Assignment
for(int i = 0; i < v.size(); i++)

" "o,
'

cout << v[i] <<
cout << endl;

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/Intvector.cpp

C4+ vector Modifiers

Some modifiers:

assign — Assign vector content
push_back — Add element at the end. See IntVector.cpp above.
pop_back — Delete last element
insert — Insert elements
erase — Erase elements
swap — Swap content

clear — Clear content

See text books and
www.cplusplus.com /reference /vector /vector/

for full details.

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/Intvector.cpp
http://www.cplusplus.com/reference/vector/vector/

Pointers & references

» Pointers work in C++ as they do in C
» C++ also adds references, which behave similarly, except:

> References cannot be reassigned, pointers can;

» Pointers can point to NULL, references can't;

» You can perform arithmetic with pointers, but not references;
» A few other more subtle differences.

» See following simple examples

Passing pointer by Address

PassAddress.cpp (From Thinking in C++):

#include <iostream>
using namespace std;

void f(int* p) {

cout << "po=." << p << endl;
cout << "*p.=u" << *p << endl;
*p = 56;
cout << "p=2" << p << endl;

}

int main() {
int x = 47;
cout << "x.=." << x << endl;
cout << "&x.=." << &x << endl;
f(&x);
cout << "x.=." << x << endl;

}

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/PassAddress.cpp

Swapping Two Pointers

swap.cpp:

#include <iostream>
using namespace std;

void swap(int& a, int& b) {
int temp = a;
a=ob;

b = temp;

}

int main() {
int x = 1;
int y = 5;
cout << x << "\t" << y << endl;
swap(x,y);
cout << x << "\t” << y << endl;

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/swap.cpp

Passing pointer by Reference

PassReference.cpp (From Thinking in C++):

#include <iostream>
using namespace std;

void f(int& r) { // Expects a reference

cout << "r=." << r << endl;
cout << "&r_=." << &r << endl;

r 5;

cout << "r=." << r << endl;
}
int main() {

int x = 47,

" "

cout << "x.=." << x << endl;
cout << "&x.—=." << &x << endl;
f(x): // Looks like pass—by—value,
// is actually pass by reference

cout << "x.=." << x << endl;

}

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/PassReference.cpp

(Recap) C structs

Structs in C group data together, e.g.

v

struct Time {
int hour;
int min;
int sec;

}

» Use . to access members of a struct as a object
» Use-> to access members of a struct via a pointer

» Common to define typedef struct XX to avoid tedious
typing of struct XX each time you need the struct.

Simple struct Example

SimpleStruct.cpp

struct Structurel {
char c;

int i;

float f;

double d;

}i

int main() {
struct Structurel s1;

sl.c = 'a’'; // Select an element using a
sl.i = 1;
sl.f = 3.14;

i
f
sl.d = 0.00093;

}

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/SimpleStruct.cpp

Simple typedef struct Example

SimpleStruct2.cpp

typedef struct {
char c;
int i;
float f;
double d;

} Structure2;

int main() {
Structure2 sl;

sl.c = "a’

sl.i = 1;

sl.f = 3.14;
sl.d = 0.00093;

}

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/SimpleStruct2.cpp

Simple typedef struct Pointer Example

SimpleStruct3.cpp

typedef struct Structure3 {
char c;
int i;
float f;
double d;
} Structure3;

int main() {
Structure3 sl;
Structure3* sp = &sl;
sp—>c = 'a’;
sp—>i
sp—>f
sp—>d

1;
3.14
0.00093;

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/SimpleStruct3.cpp

On to C++ Structs: Bank Account Example

» BankAccountCStruct.h & BankAccountCStruct.cpp define a
structure that represents a bank account using a C style struct
» Note:

» We've defined functions to operate on a bank account

» Syntax is a little awkward — every function needs the pointer
to the bank account to be passed as an argument

» Potential for name clashes

» First step to address these problems is to move functions
within the struct — then they cannot clash

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/BankAccountCStruct.h
http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/BankAccountCStruct.cpp

Bank Account Example: C Style Header

BankAccountCStruct.h

#include <string>

typedef struct CBankAccountTag {
float balance; // Account balance
std ::string name; // Account name
} BankAccount;

void initialise (BankAccountx b, std::string name);

void deposit(BankAccountx b, float amount);

void withdraw (BankAccount* b, float amount);

void transfer(BankAccount*x from, BankAccountx to, float
amount) ;

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/BankAccountCStruct.h

Bank Account Example: C Code

BankAccountCStruct.cpp
#include "BankAccountCStruct.h”

void initialise (BankAccountx b, std::string n) {
b—>name = n;
b—>balance = 0;

}

void deposit(BankAccountx b, float amount) {
b—>balance += amount;
}

void withdraw (BankAccountx b, float amount) {
b—>balance —= amount;
}

void transfer(BankAccount*x from, BankAccountx to, float
amount) {
withdraw (from, amount);
deposit(to, amount);

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/BankAccountCStruct.cpp

Bank Account Example: C++ style struct header

BankAccountCppStruct.h

#include <string>

struct BankAccount {
float balance; // Account balance
std ::string name; // Account name

void initialise (std::string name);

void deposit(float amount);

void withdraw(float amount);

void transfer(BankAccount& to, float amount);

b

Note:
» No need for a typedef of the structure.
» No name clashes: e.g. BankAccount: :deposit()

» No need to pass pointer for BankAccount

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/BankAccountCppStruct.h

Bank Account Example: C++ style struct: implementation

BankAccountCppStruct.cpp

#include "BankAccountCppStruct.h”

void BankAccount::initialise(std::string n) {
this—>name = n; // Can refer to members via this pointer

balance = 0; // ... or implicitly

}

void BankAccount::deposit(float amount) {
balance += amount;

}

void BankAccount::withdraw(float amount) {
balance —= amount;

}

void BankAccount:: transfer(BankAccount& to, float amount) {
withdraw (amount) ;
to.deposit (amount);

}

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/BankAccountCppStruct.cpp

» Scope resolution operator ::
(e.g. BankAccount::initialise(std::string n)

Scope resolution operator

Used to qualify hidden names so that you can still use them. You
can use the unary scope operator if a namespace scope or global
scope name is hidden by an explicit declaration of the same name
in a block or class

» this keyword denoting the addres/pointer of the current
object (instance of struct BankAccount)
e.g. this->name

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/BankAccountCppStruct.cpp

Bank Account Example: C++ style struct usage

BACStructTest.cpp

#include "BankAccountCppStruct.h”
#include <iostream>
using namespace std;

int main() {
BankAccount a, b;
a.initialise (" Stuart”);
b.initialise ("Bob”);
a.deposit(5000);
cout << a.name << 7.7 <L

o

.balance << endl;

cout << b.name << "." << b.balance << endl;
b.deposit(50000);

cout << a.name << "_." << a.balance << endl;
cout << b.name << "." << b.balance << endl;
b.transfer(a, 40000);

cout << a.name << "." << a.balance << endl;

cout << b.name << "." << b.balance << endl;

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/BACStructTest.cpp
http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/BACStructTest.cpp

Implementation hiding

> |deally we would like to control access to the members of the
struct

» E.g. suppose our bank account has a member variable,
transactionCount, to count the number of transactions:

void BankAccount::deposit(float amount) {
balance += amount;
transactionCount++;}

We want to prevent client code bypassing this:

a.balance += 5000;

» By default, everything in a struct is available to be accessed
by anyone

C4+ access control

» C++ defines three keywords to restrict access public,
private and protected

>

>

public denotes that the member is available to all other code
private denotes that the member is only available within the
struct

» protected relates to inheritance — later in module
» friend access is also possible — not covered in CM2204, but

similar idea to package access in Java

Adding access control

> We easily could make the data members in our BankAccount
struct private to prevent access.

» Instead, we should define it as a class, using the class
keyword (which is only in C++) instead of struct
» Only one difference between class and struct:
» Default access in struct is public
» Default access in class is private
» Best practice to (generally) only use struct as used in C,
use class for anything else in C++

Functions in C++: overloading and inline

» In C++ (but not C), functions are identified by their name
and the types of their parameters (similar to Java):

int multiply(int a, int b) { return a * b; }
double multiply(double a, double b) { return a * b; }

» Compiler finds matching function (converting types if
necessary) — see overload.cpp
> Be careful!

» Inline functions act as normal functions, but without the
overhead of a function call:

inline int multiply(int a, int b) { return a * b; }

» Useful for small, fast functions
» Only advice — the compiler may ignore the instruction

Simple Function Overload Example:

overload.cpp

#include <iostream>
using namespace std;

int multiply(int a, int b) {
cout << "In_multiply(int.a,-int.b)” << endl;
return a *x b;

}

double multiply (double a, double b) {

cout << "In_multiply (double_a,_double_b)” << endl;
return a * b;

}

int main() {
cout << multiply (5, 4) << endl;
double x = 0.5;
double y = 2.0;
cout << multiply (x, y) << endl;
cout << multiply (0.5f, 2.0f) << endl;

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/overload.cpp
http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/overload.cpp

On to the Lab Class:

After this handout & the following lab, you should:

>

>

>

Be able to use input/output streams in C++;
Understand the purpose of namespaces in C++;
Be able to read and write text files in C4++;

Be familiar with the string and vector classes and their C
equivalents;

Understand the terms operator overloading and references.

Understand the difference between structs in C and structs
and classes C++;

Be able to implement a simple class with member functions in
C++;
Use public and private to hide implementation;

Understand the terms function overloading and inline
functions.

