
CM2204: Advanced Programming
Laboratory Worksheet (Week 11)

Prof. D. Marshall

Aims and Objectives

After working through this worksheet you should be familiar with:

• Be able to define new dynamic classes and C++’s (cleaner) use of
pointers

• Be able to compile C++11 programs

• Be able to use C+11’s smart pointers

• Understand the differences in approach between C++ and
Objective-C:

• Be able to write and compile simple classes in Objective-C

• Understand the purpose of categories and explain the difference from
inheritance

None of the work here is part of the assessed coursework for this
module.

• Follow the web links for files highlighted and underscored to get code
listings

• All lecture and lab class code is a available on the CM2204 Web page

• Solutions to the exercises will be released on the CM2204 Web page
after this lab class.

1

http://www.cs.cf.ac.uk/Dave/CM2204
http://www.cs.cf.ac.uk/Dave/CM2204

Smart Pointers & Objective-C

Smart Pointers

1. Reference Counting: Download the template (Template.zip) for a
reference counted String implementation. Complete the code as fol-
lows:

• Add two extra functions to the class

– each should convert the MyString object to upper case, but
∗ one should modify the MyString object itself,
∗ while the other should return a new MyString with the

result.
– Verify that the reference counting works correctly in both cases.

• The example uses the const keyword applied to functions and
arguments.

– What happens if you modify the body of the getChar func-
tion so that it changes the char array (e.g. sets the first char-
acter to something)?

– What happens if you try to modify i within this function?

2. Smart Pointers: Download, compile and run the smart pointer code
mention in the lectures

• SharedPtr.cpp — Shared Pointer Example

• WeakPtr (Zip) (Header.h + WeakPtr.cpp) — Weak Po

Open the source files in a suitable editor and study how the respective
smart pointer are defined, created and used.

• Recall: To compile C+11 code in the the Linux lab:
g++ −std=c++0x

• or adapt the Makefiles supplied with the example code.

• See lecture notes/Makefiles for Mac OS X compilation.

2

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_11/Template.zip
http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_11/C++11/SharedPtr.cpp
http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_11/C++11/WeakPtr.zip
http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_11/C++11/WeakPtr/Header.h
http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_11/C++11/WeakPtr/WeakPtr.cpp

3. Smart Pointers: Using appropriate smart pointers, write some code
that can swap two smart pointers. Hint:

• You could implement this with a function you create yourself
(good practice), or

• Look at the
http://www.cplusplus.com/reference/memory/shared ptr/
reference for a suitable function to achieve the task.

4. (Advanced) Smart Pointers: Create a simple singly linked list struc-
ture using Smart Pointers. You may adapt the vanilla C++ pointer
linked list code: List.cpp

Objective-C

1. Compile and run the HelloWorld.m example from the CM2204
Week 11 Code Web page.

• Modify the code so that it uses NSLog for output instead of printf.

Recall: to compile Objective-C in the Linux lab:

• You must execute the command:

./ usr/share/GNUstep/Makef i les/GNUstep . sh

once to configure your environment.
• Use the command:

gcc −o HelloWorld HelloWorld .m −I ‘ gnustep−conf ig −−v a r i a b l e =
GNUSTEP SYSTEM HEADERS‘ −L ‘ gnustep−conf ig −−v a r i a b l e =
GNUSTEP SYSTEM LIBRARIES ‘ −lgnustep−base −f cons tant−s t r i n g−
c l a s s =NSConstantString −D NATIVE OBJC EXCEPTIONS

for compilation.
• or adapt the Makefiles supplied with the example code.
• See lecture notes/Makefiles for Mac OS X compilation.

2. Write an Objective-C class which represents a circle, with member
variables to store the radius and the value of pi (use 3.1419).

• Add methods to get the value of the radius, set the value of the
radius and calculate the circumference of the circle.

• Write code to test this class.
• Write a category that adds the functionality to calculate the area

of the circle.

3

http://www.cplusplus.com/reference/memory/shared_ptr/
http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_11/C++11/Normal_Pointer_Linked_List/List.cpp
http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_11/objc/HelloWorld.m
http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_11/objc/

Further Practice

1. (Advanced) Smart Pointers: Revisit the Stack exercise from Week 10
Lab Class and create a smart pointer version of a Stack.

4

