
Hands On: C Programming and
Unix Application Design:

UNIX System Calls and Subroutines using C

c© A. D. Marshall 1998-2004

ii

Contents

1 C/C++ Program Compilation 1
1.1 Creating, Compiling and Running Your Program 1

1.1.1 Creating the program 1
1.1.2 Compilation . 2
1.1.3 Running the program 3

1.2 The C Compilation Model . 3
1.2.1 The Preprocessor . 3
1.2.2 C Compiler . 5
1.2.3 Assembler . 5
1.2.4 Link Editor . 5
1.2.5 Some Useful Compiler Options 5
1.2.6 Using Libraries . 6
1.2.7 UNIX Library Functions 7
1.2.8 Finding Information about Library Functions 7

1.3 Lint — A C program verifier 8
1.4 Exercises . 9

2 C Basics 11
2.1 History of C . 11
2.2 Characteristics of C . 12
2.3 C Program Structure . 14
2.4 Variables . 16

2.4.1 Defining Global Variables 17
2.4.2 Printing Out and Inputting Variables 19

2.5 Constants . 19
2.6 Arithmetic Operations . 20
2.7 Comparison Operators . 21
2.8 Logical Operators . 22

iii

iv CONTENTS

2.9 Order of Precedence . 22
2.10 Exercises . 24

3 Conditionals 27
3.1 The if statement . 27
3.2 The ? operator . 28
3.3 The switch statement . 29
3.4 Exercises . 31

4 Looping and Iteration 33
4.1 The for statement . 33
4.2 The while statement . 34
4.3 The do-while statement . 36
4.4 break and continue . 37
4.5 Exercises . 37

5 Arrays and Strings 43
5.1 Single and Multi-dimensional Arrays 43
5.2 Strings . 44
5.3 Exercises . 45

6 Functions 47
6.1 void functions . 48
6.2 Functions and Arrays . 48
6.3 Function Prototyping . 49
6.4 Exercises . 51

7 Further Data Types 57
7.1 Structures . 57

7.1.1 Defining New Data Types 58
7.2 Unions . 59
7.3 Coercion or Type-Casting . 61
7.4 Enumerated Types . 62
7.5 Static Variables . 63
7.6 Exercises . 64

8 Pointers 65
8.1 What is a Pointer? . 65
8.2 Pointer and Functions . 69

CONTENTS v

8.3 Pointers and Arrays . 71
8.4 Arrays of Pointers . 73
8.5 Multidimensional arrays and pointers 74
8.6 Static Initialisation of Pointer Arrays 77
8.7 Pointers and Structures . 77
8.8 Common Pointer Pitfalls . 78

8.8.1 Not assigning a pointer to memory address before using it 78
8.8.2 Illegal indirection . 79

8.9 Exercise . 80

9 Dynamic Memory Allocation and Dynamic Structures 81
9.1 Malloc, Sizeof, and Free . 81
9.2 Calloc and Realloc . 83
9.3 Linked Lists . 84
9.4 Full Program: queue.c . 84
9.5 Exercises . 88

10 Advanced Pointer Topics 91
10.1 Pointers to Pointers . 91
10.2 Command line input . 93
10.3 Pointers to a Function . 94
10.4 Exercises . 96

11 Low Level Operators and Bit Fields 99
11.1 Bitwise Operators . 99
11.2 Bit Fields . 101

11.2.1 Bit Fields: Practical Example 102
11.2.2 A note of caution: Portability 104

11.3 Exercises . 104

12 The C Preprocessor 107
12.1 #define . 108
12.2 #undef . 109
12.3 #include . 109
12.4 #if — Conditional inclusion 109
12.5 Preprocessor Compiler Control 110
12.6 Other Preprocessor Commands 111
12.7 Exercises . 112

vi CONTENTS

13 C, UNIX and Standard Libraries 113
13.1 Advantages of using UNIX with C 113
13.2 Using UNIX System Calls and Library Functions 114

14 Integer Functions, Random Number, String Conversion, Search-
ing and Sorting: <stdlib.h> 117
14.1 Arithmetic Functions . 117
14.2 Random Numbers . 119
14.3 String Conversion . 121
14.4 Searching and Sorting . 122
14.5 Exercises . 123

15 Mathematics: <math.h> 125
15.1 Math Functions . 125
15.2 Math Constants . 126

16 Input and Output (I/O):stdio.h 129
16.1 Reporting Errors . 129

16.1.1 perror() . 129
16.1.2 errno . 130
16.1.3 exit() . 130

16.2 Streams . 130
16.2.1 Predefined Streams . 131

16.3 Basic I/O . 132
16.4 Formatted I/O . 133

16.4.1 Printf . 133
16.5 scanf . 135
16.6 Files . 135

16.6.1 Reading and writing files 136
16.7 sprintf and sscanf . 137

16.7.1 Stream Status Enquiries 138
16.8 Low Level I/O . 138
16.9 Exercises . 140

17 String Handling: <string.h> 143
17.1 Basic String Handling Functions 143

17.1.1 String Searching . 145
17.2 Character conversions and testing: ctype.h 147

CONTENTS vii

17.3 Memory Operations: <memory.h> 148
17.4 Exercises . 148

18 File Access and Directory System Calls 151
18.1 Directory handling functions: <unistd.h> 151

18.1.1 Scanning and Sorting Directories:<sys/types.h>,<sys/dir.h>152
18.2 File Manipulation Routines: unistd.h, sys/types.h, sys/stat.h . 155

18.2.1 File Access . 155
18.2.2 File Status . 156
18.2.3 File Manipulation:stdio.h, unistd.h 157
18.2.4 Creating Temporary FIles:<stdio.h> 158

18.3 Exercises . 158

19 Time Functions 161
19.1 Basic time functions . 161
19.2 Example time applications . 162

19.2.1 Example 1: Time (in seconds) to perform some com-
putation . 163

19.2.2 Example 2: Set a random number seed 163
19.3 Exercises . 164

20 Process Control: <stdlib.h>,<unistd.h> 165
20.1 Running UNIX Commands from C 165
20.2 execl() . 166
20.3 fork() . 167
20.4 wait() . 168
20.5 exit() . 168
20.6 Exerises . 172

21 Interprocess Communication (IPC), Pipes 173
21.1 Piping in a C program: <stdio.h> 173
21.2 popen() — Formatted Piping 174
21.3 pipe() — Low level Piping 174
21.4 Exercises . 180

22 IPC:Interrupts and Signals: <signal.h> 181
22.1 Sending Signals — kill(), raise() 182
22.2 Signal Handling — signal() 183

viii CONTENTS

22.3 sig talk.c — complete example program 185
22.4 Other signal functions . 187

23 IPC:Message Queues:<sys/msg.h> 189
23.1 Initialising the Message Queue 191
23.2 IPC Functions, Key Arguments, and Creation Flags: <sys/ipc.h>192
23.3 Controlling message queues 193
23.4 Sending and Receiving Messages 194
23.5 POSIX Messages: <mqueue.h> 196
23.6 Example: Sending messages between two processes 197

23.6.1 message send.c — creating and sending to a simple
message queue . 197

23.6.2 message rec.c — receiving the above message 199
23.7 Some further example message queue programs 201

23.7.1 msgget.c: Simple Program to illustrate msget() . . . 201
23.7.2 msgctl.cSample Program to Illustrate msgctl() . . . 203
23.7.3 msgop.c: Sample Program to Illustrate msgsnd() and

msgrcv() . 207
23.8 Exercises . 212

24 IPC:Semaphores 215
24.1 Initializing a Semaphore Set 216
24.2 Controlling Semaphores . 217
24.3 Semaphore Operations . 219
24.4 POSIX Semaphores: <semaphore.h> 222
24.5 semaphore.c: Illustration of simple semaphore passing 222
24.6 Some further example semaphore programs 228

24.6.1 semget.c: Illustrate the semget() function 228
24.6.2 semctl.c: Illustrate the semctl() function 229
24.6.3 semop() Sample Program to Illustrate semop() 236

24.7 Exercises . 241

25 IPC:Shared Memory 243
25.1 Accessing a Shared Memory Segment 244

25.1.1 Controlling a Shared Memory Segment 245
25.2 Attaching and Detaching a Shared Memory Segment 246
25.3 Example two processes comunicating via shared memory:shm server.c,

shm client.c . 248

CONTENTS ix

25.3.1 shm server.c . 248
25.3.2 shm client.c . 250

25.4 POSIX Shared Memory . 251
25.5 Mapped memory . 251

25.5.1 Address Spaces and Mapping 252
25.5.2 Coherence . 253
25.5.3 Creating and Using Mappings 253
25.5.4 Other Memory Control Functions 254

25.6 Some further example shared memory programs 255
25.6.1 shmget.c:Sample Program to Illustrate shmget() . . . 256
25.6.2 shmctl.c: Sample Program to Illustrate shmctl() . . 258
25.6.3 shmop.c: Sample Program to Illustrate shmat() and

shmdt() . 262
25.7 Exercises . 268

26 IPC:Sockets 269
26.1 Socket Creation and Naming 270
26.2 Connecting Stream Sockets . 271
26.3 Stream Data Transfer and Closing 272
26.4 Datagram sockets . 272
26.5 Socket Options . 273
26.6 Example Socket Programs:socket server.c,socket client . 273

26.6.1 socket server.c . 273
26.6.2 socket client.c . 276

26.7 Exercises . 279

27 Threads: Basic Theory and Libraries 281
27.1 Processes and Threads . 281

27.1.1 Benefits of Threads vs Processes 282
27.1.2 Multithreading vs. Single threading 283
27.1.3 Some Example applications of threads 284

27.2 Thread Levels . 285
27.2.1 User-Level Threads (ULT) 285
27.2.2 Kernel-Level Threads (KLT) 287
27.2.3 Combined ULT/KLT Approaches 287

27.3 Threads libraries . 288
27.4 The POSIX Threads Library:libpthread, <pthread.h> . . . 289

27.4.1 Creating a (Default) Thread 289

x CONTENTS

27.4.2 Wait for Thread Termination 290

27.4.3 A Simple Threads Example 291

27.4.4 Detaching a Thread . 292

27.4.5 Create a Key for Thread-Specific Data 293

27.4.6 Delete the Thread-Specific Data Key 294

27.4.7 Set the Thread-Specific Data Key 294

27.4.8 Get the Thread-Specific Data Key 295

27.4.9 Global and Private Thread-Specific Data Example . . . 296

27.4.10 Getting the Thread Identifiers 298

27.4.11 Comparing Thread IDs 299

27.4.12 Initializing Threads . 299

27.4.13 Yield Thread Execution 299

27.4.14 Set the Thread Priority 300

27.4.15 Get the Thread Priority 300

27.4.16 Send a Signal to a Thread 301

27.4.17 Access the Signal Mask of the Calling Thread 301

27.4.18 Terminate a Thread 302

27.5 Solaris Threads: <thread.h> 303

27.5.1 Unique Solaris Threads Functions 304

27.5.2 Similar Solaris Threads Functions 310

27.6 Compiling a Multithreaded Application 316

27.6.1 Preparing for Compilation 317

27.6.2 Debugging a Multithreaded Program 318

28 Further Threads Programming:Thread Attributes (POSIX)321

28.1 Attributes . 321

28.2 Initializing Thread Attributes 323

28.3 Destroying Thread Attributes 325

28.4 Thread’s Detach State . 325

28.5 Thread’s Set Scope . 327

28.6 Thread Scheduling Policy . 328

28.6.1 Thread Inherited Scheduling Policy 329

28.6.2 Set Scheduling Parameters 330

28.7 Thread Stack Size . 331

28.7.1 Building Your Own Thread Stack 332

CONTENTS xi

29 Further Threads Programming:Synchronization 335
29.1 Mutual Exclusion Locks . 336

29.1.1 Initializing a Mutex Attribute Object 336
29.1.2 Destroying a Mutex Attribute Object 337
29.1.3 The Scope of a Mutex 338
29.1.4 Initializing a Mutex . 339
29.1.5 Locking a Mutex . 340
29.1.6 Destroying a Mutex . 342
29.1.7 Mutex Lock Code Examples 342
29.1.8 Nested Locking with a Singly Linked List 345
29.1.9 Solaris Mutex Locks 346

29.2 Condition Variable Attributes 347
29.2.1 Initializing a Condition Variable Attribute 348
29.2.2 Destoying a Condition Variable Attribute 349
29.2.3 The Scope of a Condition Variable 349
29.2.4 Initializing a Condition Variable 350
29.2.5 Block on a Condition Variable 351
29.2.6 Destroying a Condition Variable State 356
29.2.7 Solaris Condition Variables 357

29.3 Threads and Semaphores . 358
29.3.1 POSIX Semaphores . 358
29.3.2 Basic Solaris Semaphore Functions 358

30 Thread programming examples 359
30.1 Using thr create() and thr join() 359
30.2 Arrays . 365
30.3 Deadlock . 368
30.4 Signal Handler . 370
30.5 Interprocess Synchronization 375
30.6 The Producer / Consumer Problem 378
30.7 A Socket Server . 383
30.8 Using Many Threads . 387
30.9 Real-time Thread Example . 390
30.10POSIX Cancellation . 392
30.11Software Race Condition . 397
30.12Tgrep: Threadeds version of UNIX grep 398
30.13Multithreaded Quicksort . 437

xii CONTENTS

31 Remote Procedure Calls (RPC) 447
31.1 What Is RPC . 447
31.2 How RPC Works . 447
31.3 RPC Application Development 449

31.3.1 Defining the Protocol 450
31.3.2 Defining Client and Server Application Code 450
31.3.3 Compliling and running the application 451

31.4 Overview of Interface Routines 452
31.4.1 Simplified Level Routine Function 452
31.4.2 Top Level Routines . 452

31.5 Intermediate Level Routines 453
31.5.1 Expert Level Routines 453
31.5.2 Bottom Level Routines 453

31.6 The Programmer’s Interface to RPC 454
31.6.1 Simplified Interface . 454
31.6.2 Passing Arbitrary Data Types 459
31.6.3 Developing High Level RPC Applications 462
31.6.4 Sharing the data . 465

31.7 Exercise . 468

32 Protocol Compiling and Lower Level RPC Programming 469
32.1 What is rpcgen . 469
32.2 An rpcgen Tutorial . 470

32.2.1 Converting Local Procedures to Remote Procedures . . 470
32.3 Passing Complex Data Structures 478
32.4 Preprocessing Directives . 485

32.4.1 cpp Directives . 486
32.4.2 Compile-Time Flags 487
32.4.3 Client and Server Templates 487
32.4.4 Example rpcgen compile options/templates 487

32.5 Recommended Reading . 488
32.6 Exercises . 488

33 Writing Larger Programs 491
33.1 Header files . 491
33.2 External variables and functions 495

33.2.1 Scope of externals . 495
33.3 Advantages of Using Several Files 497

CONTENTS xiii

33.4 How to Divide a Program between Several Files 497
33.5 Organisation of Data in each File 498
33.6 The Make Utility . 499
33.7 Make Programming . 500
33.8 Creating a makefile . 501
33.9 Make macros . 503
33.10Running Make . 504

34 Further Reading, Information and References 507
34.1 C References . 507

34.1.1 Basic C and UNIX . 507
34.1.2 Threads and Remote Procedure Calls 508
34.1.3 Internet Resources on C 508

34.2 Motif/X Window Programming 509
34.2.1 Motif/CDE/X Books 509
34.2.2 Motif distribution . 511
34.2.3 WWW and Ftp Access 511
34.2.4 Valuable Information Resources 512

34.3 C++ . 514

A C Compiler Options and the GNU C++ compiler 515
A.1 Common Compiler Options 515
A.2 GCC - The GNU C/C++ Compiler 518

A.2.1 Introduction to GCC 518
A.2.2 Languages compiled by GCC 518
A.2.3 Portability and Optimization 519
A.2.4 GNU CC Distribution Policy 520
A.2.5 Compile C, C++, or Objective C 520
A.2.6 GNU CC Command Options 521

A.3 Extensions to the C Language Family 566

Chapter 1

C/C++ Program Compilation

In this chapter we begin by outlining the basic processes you need to go
through in order to compile your C (or C++) programs. We then proceed
to formally describe the C compilation model and also how C supports ad-
ditional libraries.

1.1 Creating, Compiling and Running Your

Program

The stages of developing your C program are as follows. (See Appendix A
and exercises for more info.)

1.1.1 Creating the program

Create a file containing the complete program, such as the above example.
You can use any ordinary editor with which you are familiar to create the
file. One such editor is textedit available on most UNIX systems.

The filename must by convention end “.c” (full stop, lower case c), e.g.
myprog.c or progtest.c. The contents must obey C syntax. For example, they
might be as in the above example, starting with the line /* Sample

(or a blank line preceding it) and ending with the line } /* end of program

*/ (or a blank line following it).

1

2 CHAPTER 1. C/C++ PROGRAM COMPILATION

1.1.2 Compilation

There are many C compilers around. The cc being the default Sun compiler.
The GNU C compiler gcc is popular and available for many platforms. PC
users may also be familiar with the Borland bcc compiler.

There are also equivalent C++ compilers which are usually denoted by
CC (note upper case CC. For example Sun provides CC and GNU GCC. The
GNU compiler is also denoted by g++

Other (less common) C/C++ compilers exist. All the above compilers
operate in essentially the same manner and share many common command
line options. Below and in Appendix A we list and give example uses many
of the common compiler options. However, the best source of each compiler
is through the online manual pages of your system: e.g. man cc.

For the sake of compactness in the basic discussions of compiler operation
we will simply refer to the cc compiler — other compilers can simply be
substituted in place of cc unless otherwise stated.

To Compile your program simply invoke the command cc. The command
must be followed by the name of the (C) program you wish to compile.
A number of compiler options can be specified also. We will not concern
ourselves with many of these options yet, some useful and often essential
options are introduced below — See Appendix A or online manual help for
further details.

Thus, the basic compilation command is:

cc program.c

where program.c is the name of the file.

If there are obvious errors in your program (such as mistypings, mis-
spelling one of the key words or omitting a semi-colon), the compiler will
detect and report them.

There may, of course, still be logical errors that the compiler cannot
detect. You may be telling the computer to do the wrong operations.

When the compiler has successfully digested your program, the compiled
version, or executable, is left in a file called a.out or if the compiler option
-o is used : the file listed after the -o.

It is more convenient to use a -o and filename in the compilation as in

cc -o program program.c

which puts the compiled program into the file program (or any file you
name following the ”-o” argument) instead of putting it in the file a.out .

1.2. THE C COMPILATION MODEL 3

1.1.3 Running the program

The next stage is to actually run your executable program. To run an exe-
cutable in UNIX, you simply type the name of the file containing it, in this
case program (or a.out)

This executes your program, printing any results to the screen. At this
stage there may be run-time errors, such as division by zero, or it may become
evident that the program has produced incorrect output.

If so, you must return to edit your program source, and recompile it, and
run it again.

1.2 The C Compilation Model

We will briefly highlight key features of the C Compilation model (Fig. 1.1)
here.

1.2.1 The Preprocessor

We will study this part of the compilation process in greater detail later
(Chapter 12. However we need some basic information for some C programs.

The Preprocessor accepts source code as input and is responsible for

• removing comments

• interpreting special preprocessor directives denoted by #.

For example

• #include — includes contents of a named file. Files usually called
header files. e.g

– #include <math.h> — standard library maths file.

– #include <stdio.h> — standard library I/O file

• #define — defines a symbolic name or constant. Macro substitution.

– #define MAX ARRAY SIZE 100

4 CHAPTER 1. C/C++ PROGRAM COMPILATION

Figure 1.1: The C Compilation Model

1.2. THE C COMPILATION MODEL 5

1.2.2 C Compiler

The C compiler translates source to assembly code. The source code is
received from the preprocessor.

1.2.3 Assembler

The assembler creates object code. On a UNIX system you may see files with
a .o suffix (.OBJ on MSDOS) to indicate object code files.

1.2.4 Link Editor

If a source file references library functions or functions defined in other source
files the link editor combines these functions (with main()) to create an
executable file. External Variable references resolved here also. More on this
later (Chapter 33).

1.2.5 Some Useful Compiler Options

Now that we have a basic understanding of the compilation model we can
now introduce some useful and sometimes essential common compiler options.
Again see the online man pages and Appendix A for further information and
additional options.

-c Suppress the linking process and produce a .o file for each source file
listed. Several can be subsequently linked by the cc command, for
example:

cc file1.o file2.o -o executable

-llibrary Link with object libraries. This option must follow the source file
arguments. The object libraries are archived and can be standard, third
party or user created libraries (We discuss this topic briefly below and
also in detail later (Chapter 33). Probably the most commonly used
library is the math library (math.h). You must link in this library
explicitly if you wish to use the maths functions (note do note forget
to #include <math.h> header file), for example:

cc calc.c -o calc -lm

Many other libraries are linked in this fashion (see below)

6 CHAPTER 1. C/C++ PROGRAM COMPILATION

-Ldirectory Add directory to the list of directories containing object-library
routines. The linker always looks for standard and other system li-
braries in /lib and /usr/lib. If you want to link in libraries that you
have created or installed yourself (unless you have certain privileges
and get the libraries installed in /usr/lib) you will have to specify
where you files are stored, for example:

cc prog.c -L/home/myname/mylibs mylib.a

-Ipathname Add pathname to the list of directories in which to search for
#include files with relative filenames (not beginning with slash /).

BY default, The preprocessor first searches for #include files in the di-
rectory containing source file, then in directories named with -I options
(if any), and finally, in /usr/include. So to include header files stored
in /home/myname/myheaders you would do:

cc prog.c -I/home/myname/myheaders

Note: System library header files are stored in a special place (/usr/include)
and are not affected by the -I option. System header files and user
header files are included in a slightly different manner (see Chapters 12
and 33)

-g invoke debugging option. This instructs the compiler to produce addi-
tional symbol table information that is used by a variety of debugging
utilities.

-D define symbols either as identifiers (-Didentifer) or as values (-Dsymbol=value)
in a similar fashion as the #define preprocessor command. For more
details on the use of this argument see Chapter 12.

For further information on general compiler options and the GNU com-
piler refer to Appendix A.

1.2.6 Using Libraries

C is an extremely small language. Many of the functions of other languages
are not included in C. e.g. No built in I/O, string handling or maths func-
tions.

What use is C then?
C provides functionality through a rich set function libraries.

1.2. THE C COMPILATION MODEL 7

As a result most C implementations include standard libraries of functions
for many facilities (I/O etc.). For many practical purposes these may be
regarded as being part of C. But they may vary from machine to machine.
(cf Borland C for a PC to UNIX C).

A programmer can also develop his or her own function libraries and also
include special purpose third party libraries (e.g. NAG, PHIGS).

All libraries (except standard I/O) need to be explicitly linked in with
the -l and, possibly, -L compiler options described above.

1.2.7 UNIX Library Functions

The UNIX system provides a large number of C functions as libraries. Some
of these implement frequently used operations, while others are very spe-
cialised in their application.

Do Not Reinvent Wheels: It is wise for programmers to check whether
a library function is available to perform a task before writing their own
version. This will reduce program development time. The library functions
have been tested, so they are more likely to be correct than any function
which the programmer might write. This will save time when debugging the
program.

Later chapters deal with all important standard library issues and other
common system libraries.

1.2.8 Finding Information about Library Functions

The UNIX manual has an entry for all available functions. Function doc-
umentation is stored in section 3 of the manual, and there are many other
useful system calls in section 2. If you already know the name of the function
you want, you can read the page by typing (to find about sqrt):

man 3 sqrt

If you don’t know the name of the function, a full list is included in the
introductory page for section 3 of the manual. To read this, type

man 3 intro

There are approximately 700 functions described here. This number tends
to increase with each upgrade of the system.

On any manual page, the SYNOPSIS section will include information on
the use of the function. For example:

8 CHAPTER 1. C/C++ PROGRAM COMPILATION

#include <time.h>

char *ctime(time_t *clock)

This means that you must have

#include <time.h>

in your file before you call ctime. And that function ctime takes a pointer
to type time t as an argument, and returns a string (char *). time t will
probably be defined in the same manual page.

The DESCRIPTION section will then give a short description of what
the function does. For example:

ctime() converts a long integer, pointed to by clock, to a

26-character string of the form produced by asctime().

1.3 Lint — A C program verifier

You will soon discover (if you have not already) that the C compiler is pretty
vague in many aspects of checking program correctness, particularly in type
checking. Careful use of prototyping of functions can assist modern C com-
pilers in this task. However, There is still no guarantee that once you have
successfully compiled your program that it will run correctly.

The UNIX utility lint can assist in checking for a multitude of program-
ming errors. Check out the online manual pages (man lint) for complete
details of lint. It is well worth the effort as it can help save many hours
debugging your C code.

To run lint simply enter the command:

lint myprog.c.

Lint is particularly good at checking type checking of variable and func-
tion assignments, efficiency, unused variables and function identifiers, un-
reachable code and possibly memory leaks. There are many useful options
to help control lint (see man lint).

1.4. EXERCISES 9

1.4 Exercises

Exercise 1.1 Enter, compile and run the following program:

main()

{ int i;

printf("\t Number \t\t Square of Number\n\n");

for (i=0; i<=25;++i)

printf("\t %d \t\t\t %d \n",i,i*i);

}

Exercise 1.2 The following program uses the math library. Enter compile
and run it correctly.

#include <math.h>

main()

{ int i;

printf("\t Number \t\t Square Root of Number\n\n");

for (i=0; i<=360; ++i)

printf("\t %d \t\t\t %d \n",i, sqrt((double) i));

}

Exercise 1.3 Look in /lib and /usr/lib and see what libraries are avail-
able.

• Use the man command to get details of library functions

• Explore the libraries to see what each contains by running the command
ar t libfile.

Exercise 1.4 Look in /usr/include and see what header files are available.

10 CHAPTER 1. C/C++ PROGRAM COMPILATION

• Use the more or cat commands to view these text files

• Explore the header files to see what each contains, note the include,
define, type definitions and function prototypes declared in them

Exercise 1.5 Suppose you have a C program whose main function is in
main.c and has other functions in the files input.c and output.c:

• What command(s) would you use on your system to compile and link
this program?

• How would you modify the above commands to link a library called
process1 stored in the standard system library directory?

• How would you modify the above commands to link a library called
process2 stored in your home directory?

• Some header files need to be read and have been found to located in
a header subdirectory of your home directory and also in the current
working directory. How would you modify the compiler commands to
account for this?

Exercise 1.6 Suppose you have a C program composed of several separate
files, and they include one another as shown below:

File Include Files
main.c stdio.h, process1.h

input.c stdio.h, list.h

output.c stdio.h

process1.c stdio.h, process1.h

process2.c stdio.h, list.h

• Which files have to recompiled after you make changes to process1.c?

• Which files have to recompiled after you make changes to process1.h?

• Which files have to recompiled after you make changes to list.h?

Chapter 2

C Basics

Before we embark on a brief tour of C’s basic syntax and structure we offer
a brief history of C and consider the characteristics of the C language.

In the remainder of the Chapter we will look at the basic aspects of C
programs such as C program structure, the declaration of variables, data
types and operators. We will assume knowledge of a high level language,
such as PASCAL.

It is our intention to provide a quick guide through similar C principles
to most high level languages. Here the syntax may be slightly different but
the concepts exactly the same.

C does have a few surprises:

• Many High level languages, like PASCAL, are highly disciplined and
structured.

• However beware — C is much more flexible and free-wheeling. This
freedom gives C much more power that experienced users can employ.
The above example below (mystery.c) illustrates how bad things could
really get.

2.1 History of C

The milestones in C’s development as a language are listed below:

• UNIX developed c. 1969 — DEC PDP-7 Assembly Language

11

12 CHAPTER 2. C BASICS

• BCPL — a user friendly OS providing powerful development tools de-
veloped from BCPL. Assembler tedious long and error prone.

• A new language “B” a second attempt. c. 1970.

• A totally new language “C” a successor to “B”. c. 1971

• By 1973 UNIX OS almost totally written in “C”.

2.2 Characteristics of C

We briefly list some of C’s characteristics that define the language and also
have lead to its popularity as a programming language. Naturally we will be
studying many of these aspects throughout the course.

• Small size

• Extensive use of function calls

• Loose typing — unlike PASCAL

• Structured language

• Low level (BitWise) programming readily available

• Pointer implementation - extensive use of pointers for memory, array,
structures and functions.

C has now become a widely used professional language for various reasons.

• It has high-level constructs.

• It can handle low-level activities.

• It produces efficient programs.

• It can be compiled on a variety of computers.

2.2. CHARACTERISTICS OF C 13

Its main drawback is that it has poor error detection which can make
it off putting to the beginner. However diligence in this matter can pay off
handsomely since having learned the rules of C we can break them. Not
many languages allow this. This if done properly and carefully leads to the
power of C programming.

As an extreme example the following C code (mystery.c) is actually legal
C code.

#include <stdio.h>

main(t,_,a)

char *a;

{return!0<t?t<3?main(-79,-13,a+main(-87,1-_,

main(-86, 0, a+1)+a)):1,t<_?main(t+1, _, a):3,main (-94, -27+t, a

)&&t == 2 ?_<13 ?main (2, _+1, "%s %d %d\n"):9:16:t<0?t<-72?main(_,

t,"@n’+,#’/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+\

,/+#n+,/#;#q#n+,/+k#;*+,/’r :’d*’3,}{w+K w’K:’+}e#’;dq#’l q#’+d’K#!/\

+k#;q#’r}eKK#}w’r}eKK{nl]’/#;#q#n’){)#}w’){){nl]’/+#n’;d}rw’ i;#){n\

l]!/n{n#’; r{#w’r nc{nl]’/#{l,+’K {rw’ iK{;[{nl]’/w#q#\

n’wk nw’ iwk{KK{nl]!/w{%’l##w#’ i; :{nl]’/*{q#’ld;r’}{nlwb!/*de}’c \

;;{nl’-{}rw]’/+,}##’*}#nc,’,#nw]’/+kd’+e}+;\

#’rdq#w! nr’/ ’) }+}{rl#’{n’ ’)# }’+}##(!!/")

:t<-50?_==*a ?putchar(a[31]):main(-65,_,a+1):main((*a == ’/’)+t,_,a\

+1):0<t?main (2, 2 , "%s"):*a==’/’||main(0,main(-61,*a, "!ek;dc \

i@bK’(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);}

It will compile and run and produce meaningful output. Try this program
out. Try to compile and run it yourself.

Clearly nobody ever writes code like or at least should never. This piece
of code actually won an international Obfuscated C Code Contest (see
http://reality.sgi.com/csp/iocc)

The standard for C programs was originally the features set by Brian
Kernighan. In order to make the language more internationally acceptable,
an international standard was developed, ANSI C (American National Stan-
dards Institute).

14 CHAPTER 2. C BASICS

2.3 C Program Structure

A C program basically has the following form:

• Preprocessor Commands

• Type definitions

• Function prototypes — declare function types and variables passed to
function.

• Variables

• Functions

We must have a main() function.

2.3. C PROGRAM STRUCTURE 15

A function has the form:

type function name (parameters)
{

local variables

C Statements

}

If the type definition is omitted C assumes that function returns an in-
teger type. NOTE: This can be a source of problems in a program.

So returning to our first C program:

/* Sample program */

main()

{

printf("I Like C \n");

exit (0);

}

NOTE:

• C requires a semicolon at the end of every statement.

• printf is a standard C function — called from main.

• c\n signifies newline. Formatted output — more later.

• exit() is also a standard function that causes the program to terminate.
Strictly speaking it is not needed here as it is the last line of main() and
the program will terminate anyway.

Let us look at another printing statement: printf(".\n.1\n..2\n...3\n");

The output of this would be:

16 CHAPTER 2. C BASICS

.

.1

..2

...3

2.4 Variables

C has the following simple data types:

C type Size (bytes) Lower bound Upper bound
char 1 — —
unsigned char 1 0 255
short int 2 −32768 +32767
unsigned short int 2 0 65536
(long) int 4 −231 +231 − 1
float 4 −3.2× 10±38 +3.2× 10±38

double 8 −1.7× 10±308 +1.7× 10±308

The Pascal Equivalents are:

C type Pascal equivalent
char char
unsigned char —
short int integer
unsigned short int —
long int longint
float real
double extended

On UNIX systems all ints are long ints unless specified as short int

explicitly.

NOTE: There is NO Boolean type in C — you should use char, int

or (better) unsigned char.

Unsigned can be used with all char and int types.

To declare a variable in C, do:
var type list variables;

e.g. int i,j,k;

2.4. VARIABLES 17

float x,y,z;

char ch;

2.4.1 Defining Global Variables

Global variables are defined above main() in the following way:-

short number,sum;

int bignumber,bigsum;

char letter;

main()

{

}

It is also possible to pre-initialise global variables using the = operator for
assignment.

NOTE: The = operator is the same as := is Pascal.

For example:-

float sum=0.0;

int bigsum=0;

char letter=‘A’;

main()

{

}

This is the same as:-

float sum;

int bigsum;

char letter;

18 CHAPTER 2. C BASICS

main()

{

sum=0.0;

bigsum=0;

letter=‘A’;

}

...but is more efficient.

C also allows multiple assignment statements using =, for example:

a=b=c=d=3;

...which is the same as, but more efficient than:

a=3;

b=3;

c=3;

d=3;

This kind of assignment is only possible if all the variable types in the
statement are the same.

You can define your own types use typedef. This will have greater rel-
evance later in the course when we learn how to create more complex data
structures.

As an example of a simple use let us consider how we may define two new
types real and letter. These new types can then be used in the same way
as the pre-defined C types:

typedef float real;

typedef char letter;

Variables declared:
real sum=0.0;

letter nextletter;

2.5. CONSTANTS 19

2.4.2 Printing Out and Inputting Variables

C uses formatted output. The printf function has a special formatting
character (%) — a character following this defines a certain format for a
variable:

%c — characters
%d — integers
%f — floats

e.g. printf("%c %d %f",ch,i,x);

NOTE: Format statement enclosed in “...”, variables follow after. Make
sure order of format and variable data types match up.

scanf() is the function for inputting values to a data structure: Its format
is similar to printf:

i.e. scanf("%c %d %f",&ch,&i,&x);

NOTE: & before variables. Please accept this for now and remember to
include it. It is to do with pointers which we will meet later (Section 16.4.1).

2.5 Constants

ANSI C allows you to declare constants. When you declare a constant it is
a bit like a variable declaration except the value cannot be changed.

The const keyword is to declare a constant, as shown below:

int const a = 1;

const int a =2;

Note:

• You can declare the const before or after the type. Choose one an
stick to it.

• It is usual to initialise a const with a value as it cannot get a value
any other way.

20 CHAPTER 2. C BASICS

The preprocessor #define is another more flexible (see Preprocessor Chap-
ters) method to define constants in a program.

You frequently see const declaration in function parameters. This says
simply that the function is not going to change the value of the parameter.

The following function definition used concepts we have not met (see
chapters on functions, strings, pointers, and standard libraries) but for com-
pletenes of this section it is is included here:

void strcpy(char *buffer, char const *string)

The second argiment string is a C string that will not be altered by the
string copying standard library function.

2.6 Arithmetic Operations

As well as the standard arithmetic operators (+ − ∗ /) found in most lan-
guages, C provides some more operators. There are some notable differences
with other languages, such as Pascal.

Assignment is = i.e. i = 4; ch = ‘y’;

Increment ++, Decrement −− which are more efficient than their long
hand equivalents, for example:- x++ is faster than x=x+1.

The ++ and −− operators can be either in post-fixed or pre-fixed. With
pre-fixed the value is computed before the expression is evaluated whereas
with post-fixed the value is computed after the expression is evaluated.

In the example below, ++z is pre-fixed and the w−− is post-fixed:

int x,y,w;

main()

{

x=((++z)−(w−−)) % 100;

}

This would be equivalent to:

2.7. COMPARISON OPERATORS 21

int x,y,w;

main()

{

z++;

x=(z−w) % 100;

w−−;

}

The % (modulus) operator only works with integers.

Division / is for both integer and float division. So be careful.

The answer to: x = 3/2 is 1 even if x is declared a float!!

RULE: If both arguments of / are integer then do integer division.

So make sure you do this. The correct (for division) answer to the above
is x = 3.0/2 or x = 3/2.0 or (better) x = 3.0/2.0.

There is also a convenient shorthand way to express computations in C.

It is very common to have expressions like: i = i+ 3 or x = x ∗ (y + 2)

This can written in C (generally) in a shorthand form like this:
expr1 op = expr2

which is equivalent to (but more efficient than):
expr1 = expr1 op expr2

So we can rewrite i = i+ 3 as i+ = 3

and x = x ∗ (y + 2) as x∗ = y + 2.

NOTE: that x∗ = y + 2 means x = x ∗ (y + 2) and NOT x = x ∗ y + 2.

2.7 Comparison Operators

To test for equality is ==

A warning: Beware of using “=” instead of “==”, such as writing
accidentally

22 CHAPTER 2. C BASICS

if (i = j)

This is a perfectly LEGAL C statement (syntactically speaking) which
copies the value in “j” into “i”, and delivers this value, which will then be
interpreted as TRUE if j is non-zero. This is called assignment by value
— a key feature of C.

Not equals is: ! =

Other operators < (less than) , > (grater than), <= (less than or equals),
>= (greater than or equals) are as usual.

2.8 Logical Operators

Logical operators are usually used with conditional statements which we shall
meet in the next Chapter.

The two basic logical operators are:

&& for logical AND, || for logical OR.

Beware & and | have a different meaning for bitwise AND and OR (more
on this later in Chapter 11).

2.9 Order of Precedence

It is necessary to be careful of the meaning of such expressions as a + b *

c

We may want the effect as either

(a + b) ∗ c

or

a + (b ∗ c) All operators have a priority, and high priority operators

are evaluated before lower priority ones. Operators of the same priority are
evaluated from left to right, so that

a - b - c

is evaluated as

(a - b) - c

2.9. ORDER OF PRECEDENCE 23

as you would expect.

From high priority to low priority the order for all C operators (we have
not met all of them yet) is:

() [] − > .
! ∼ − ∗ & sizeof cast + + −−

(these are right->left)
∗ / %
+ −
< <= >= >
== ! =
&
∧
|
&&
||
?: (right->left)
= + = − = (right->left)
, (comma)

Thus
a < 10 && 2 ∗ b < c

is interpreted as (a < 10) && ((2 ∗ b) < c)

and

a =

b =

spokes / spokes per wheel

+ spares;

as

a =

(b =

(spokes / spokes per wheel)

+ spares

);

24 CHAPTER 2. C BASICS

2.10 Exercises

Write C programs to perform the following tasks.

Exercise 2.1 Input two numbers and work out their sum, average and sum
of the squares of the numbers.

Exercise 2.2 Input and output your name, address and age to an appropri-
ate structure.

Exercise 2.3 Write a program that works out the largest and smallest values
from a set of 10 inputted numbers.

Exercise 2.4 Write a program to read a “float” representing a number of
degrees Celsius, and print as a “float” the equivalent temperature in degrees
Fahrenheit. Print your results in a form such as

100.0 degrees Celsius converts to 212.0 degrees Fahrenheit.

Exercise 2.5 Write a program to print several lines (such as your name and
address). You may use either several printf instructions, each with a newline
character in it, or one printf with several newlines in the string.

Exercise 2.6 Write a program to read a positive integer at least equal to 3,
and print out all possible permutations of three positive integers less or equal
to than this value.

Exercise 2.7 Write a program to read a number of units of length (a float)
and print out the area of a circle of that radius. Assume that the value of
pi is 3.14159 (an appropriate declaration will be given you by ceilidh – select
setup).

Your output should take the form: The area of a circle of radius ... units
is units.

If you want to be clever, and have looked ahead in the notes, print the
message Error: Negative values not permitted. if the input value is negative.

Exercise 2.8 Given as input a floating (real) number of centimeters, print
out the equivalent number of feet (integer) and inches (floating, 1 decimal),
with the inches given to an accuracy of one decimal place.

Assume 2.54 centimeters per inch, and 12 inches per foot.
If the input value is 333.3, the output format should be:
333.3 centimeters is 10 feet 11.2 inches.

2.10. EXERCISES 25

Exercise 2.9 Given as input an integer number of seconds, print as output
the equivalent time in hours, minutes and seconds. Recommended output
format is something like

7322 seconds is equivalent to 2 hours 2 minutes 2 seconds.

Exercise 2.10 Write a program to read two integers with the following sig-
nificance.

The first integer value represents a time of day on a 24 hour clock, so
that 1245 represents quarter to one mid-day, for example.

The second integer represents a time duration in a similar way, so that
345 represents three hours and 45 minutes.

This duration is to be added to the first time, and the result printed out
in the same notation, in this case 1630 which is the time 3 hours and 45
minutes after 12.45.

Typical output might be Start time is 1415. Duration is 50. End time is
1505.

There are a few extra marks for spotting.
Start time is 2300. Duration is 200. End time is 100.

26 CHAPTER 2. C BASICS

Chapter 3

Conditionals

This Chapter deals with the various methods that C can control the flow of
logic in a program. Apart from slight syntactic variation they are similar to
other languages.

As we have seen following logical operations exist in C:

==, ! =, ‖, &&.

One other operator is the unitary – it takes only one argument – not !.

These operators are used in conjunction with the following statements.

3.1 The if statement

The if statement has the same function as other languages. It has three
basic forms:

if (expression)
statement

...or:

if (expression)
statement1

else

statement2

27

28 CHAPTER 3. CONDITIONALS

...or:

if (expression)
statement1

else if (expression)
statement2

else

statement3

For example:-

int x,y,w;

main()

{

if (x>0)

{
z=w;

........

}
else

{
z=y;

........

}

}

3.2 The ? operator

The ? (ternary condition) operator is a more efficient form for expressing
simple if statements. It has the following form:

expression1 ? expression2 : expression3

3.3. THE SWITCH STATEMENT 29

It simply states:

if expression1 then expression2 else expression3

For example to assign the maximum of a and b to z:

z = (a>b) ? a : b;

which is the same as:

if (a>b)

z = a;

else

z=b;

3.3 The switch statement

The C switch is similar to Pascal’s case statement and it allows multiple
choice of a selection of items at one level of a conditional where it is a far
neater way of writing multiple if statements:

switch (expression) {
case item1:

statement1;
break;

case item2:

statement2;
break;
...
...

case itemn:

statementn;
break;

default:

statement;
break;

}

30 CHAPTER 3. CONDITIONALS

In each case the value of itemi must be a constant, variables are not
allowed.

The break is needed if you want to terminate the switch after execution
of one choice. Otherwise the next case would get evaluated. Note: This is
unlike most other languages.

We can also have null statements by just including a ; or let the switch
statement fall through by omitting any statements (see e.g. below).

The default case is optional and catches any other cases.

For example:-

switch (letter)

{
case ‘A’:

case ‘E’:

case ‘I’:

case ‘O’:

case ‘U’:

numberofvowels++;

break;

case ‘ ’:

numberofspaces++;

break;

default:

numberofconstants++;

break;

}

In the above example if the value of letter is ‘A’, ‘E’, ‘I’, ‘O’ or ‘U’ then
numberofvowels is incremented.

If the value of letter is ‘ ’ then numberofspaces is incremented.

If none of these is true then the default condition is executed, that is
numberofconstants is incremented.

3.4. EXERCISES 31

3.4 Exercises

Exercise 3.1 Write a program to read two characters, and print their value
when interpreted as a 2-digit hexadecimal number. Accept upper case letters
for values from 10 to 15.

Exercise 3.2 Read an integer value. Assume it is the number of a month
of the year; print out the name of that month.

Exercise 3.3 Given as input three integers representing a date as day, month,
year, print out the number day, month and year for the following day’s date.

Typical input: 28 2 1992 Typical output: Date following 28:02:1992 is
29:02:1992

Exercise 3.4 Write a program which reads two integer values. If the first is
less than the second, print the message up. If the second is less than the first,
print the message down If the numbers are equal, print the message equal If
there is an error reading the data, print a message containing the word Error
and perform exit(0);

32 CHAPTER 3. CONDITIONALS

Chapter 4

Looping and Iteration

This chapter will look at C’s mechanisms for controlling looping and iteration.
Even though some of these mechanisms may look familiar and indeed will
operate in standard fashion most of the time. NOTE: some non-standard
features are available.

4.1 The for statement

The C for statement has the following form:

for (expression1; expression2; expression3)

statement;
or {block of statements}

expression1 initialises; expression2 is the terminate test; expression3 is the
modifier (which may be more than just simple increment);

NOTE: C basically treats for statements as while type loops

For example:

int x;

main()

{
for (x=3;x>0;x--)

33

34 CHAPTER 4. LOOPING AND ITERATION

{
printf("x=%d\n",x);
}

}

...outputs:

x=3

x=2

x=1

...to the screen

All the following are legal for statements in C. The practical application
of such statements is not important here, we are just trying to illustrate
peculiar features of C for that may be useful:-

for (x=0;((x>3) && (x<9)); x++)

for (x=0,y=4;((x>3) && (y<9)); x++,y+=2)

for (x=0,y=4,z=4000;z; z/=10)

The second example shows that multiple expressions can be separated a
,.

In the third example the loop will continue to iterate until z becomes 0;

4.2 The while statement

The while statement is similar to those used in other languages although
more can be done with the expression statement — a standard feature of
C.

The while has the form:

while (expression)
statement

4.2. THE WHILE STATEMENT 35

For example:

int x=3;

main()

{ while (x>0)

{ printf("x=%d\n",x);
x--;

}
}

...outputs:

x=3

x=2

x=1

...to the screen.

Because the while loop can accept expressions, not just conditions, the
following are all legal:-

while (x--);

while (x=x+1);

while (x+=5);

Using this type of expression, only when the result of x−−, x=x+1, or
x+ = 5, evaluates to 0 will the while condition fail and the loop be exited.

We can go further still and perform complete operations within the while
expression:

while (i++ < 10);

while ((ch = getchar()) != ‘q’)

putchar(ch);

36 CHAPTER 4. LOOPING AND ITERATION

The first example counts i up to 10.

The second example uses C standard library functions (See Chapter 17)
getchar() – reads a character from the keyboard – and putchar() – writes a
given char to screen. The while loop will proceed to read from the keyboard
and echo characters to the screen until a ’q’ character is read. NOTE: This
type of operation is used a lot in C and not just with character reading!! (See
Exercises).

4.3 The do-while statement

C’s do-while statement has the form:

do

statement;
while (expression);

It is similar to PASCAL’s repeat ... until except do while expression
is true.

For example:

int x=3;

main()

{ do {
printf("x=%d\n",x--);
}

while (x>0);

}

..outputs:-

x=3

x=2

x=1

NOTE: The postfix x-- operator which uses the current value of x while
printing and then decrements x.

4.4. BREAK AND CONTINUE 37

4.4 break and continue

C provides two commands to control how we loop:

• break — exit form loop or switch.

• continue — skip 1 iteration of loop.

Consider the following example where we read in integer values and pro-
cess them according to the following conditions. If the value we have read
is negative, we wish to print an error message and abandon the loop. If the
value read is great than 100, we wish to ignore it and continue to the next
value in the data. If the value is zero, we wish to terminate the loop.

while (scanf("%d", &value) == 1 && value ! = 0) {

if (value < 0) {
printf("Illegal value\n");
break;

/* Abandon the loop */

}

if (value > 100) {
printf("Invalid value\n");
continue;

/* Skip to start loop again */

}

/* Process the value read */

/* guaranteed between 1 and 100 */

....;

....;

} /* end while value ! = 0 */

4.5 Exercises

Exercise 4.1 Write a program to read in 10 numbers and compute the av-
erage, maximum and minimum values.

38 CHAPTER 4. LOOPING AND ITERATION

Exercise 4.2 Write a program to read in numbers until the number -999 is
encountered. The sum of all number read until this point should be printed
out.

Exercise 4.3 Write a program which will read an integer value for a base,
then read a positive integer written to that base and print its value.

Read the second integer a character at a time; skip over any leading non-
valid (i.e. not a digit between zero and “base-1”) characters, then read valid
characters until an invalid one is encountered.

Input Output

========== ======

10 1234 1234

8 77 63 (the value of 77 in base 8, octal)

2 1111 15 (the value of 1111 in base 2, binary)

The base will be less than or equal to 10.

Exercise 4.4 Read in three values representing respectively
a capital sum (integer number of pence),
a rate of interest in percent (float),
and a number of years (integer).
Compute the values of the capital sum with compound interest added over

the given period of years. Each year’s interest is calculated as
interest = capital * interest rate / 100;
and is added to the capital sum by
capital += interest;
Print out money values as pounds (pence / 100.0) accurate to two decimal

places.
Print out a floating value for the value with compound interest for each

year up to the end of the period.
Print output year by year in a form such as:

Original sum 30000.00 at 12.5 percent for 20 years

Year Interest Sum

----+-------+--------

1 3750.00 33750.00

2 4218.75 37968.75

4.5. EXERCISES 39

3 4746.09 42714.84

4 5339.35 48054.19

5 6006.77 54060.96

6 6757.62 60818.58

7 7602.32 68420.90

8 8552.61 76973.51

9 9621.68 86595.19

10 10824.39 97419.58

Exercise 4.5 Read a positive integer value, and compute the following se-
quence: If the number is even, halve it; if it’s odd, multiply by 3 and add 1.
Repeat this process until the value is 1, printing out each value. Finally print
out how many of these operations you performed.

Typical output might be:

Inital value is 9

Next value is 28

Next value is 14

Next value is 7

Next value is 22

Next value is 11

Next value is 34

Next value is 17

Next value is 52

Next value is 26

Next value is 13

Next value is 40

Next value is 20

Next value is 10

Next value is 5

Next value is 16

Next value is 8

Next value is 4

Next value is 2

Final value 1, number of steps 19

If the input value is less than 1, print a message containing the word

Error

40 CHAPTER 4. LOOPING AND ITERATION

and perform an

exit(0);

Exercise 4.6 Write a program to count the vowels and letters in free text
given as standard input. Read text a character at a time until you encounter
end-of-data.

Then print out the number of occurrences of each of the vowels a, e, i, o
and u in the text, the total number of letters, and each of the vowels as an
integer percentage of the letter total.

Suggested output format is:

Numbers of characters:

a 3 ; e 2 ; i 0 ; o 1 ; u 0 ; rest 17

Percentages of total:

a 13%; e 8%; i 0%; o 4%; u 0%; rest 73%

Read characters to end of data using a construct such as

char ch;

while(

(ch = getchar()) >= 0

) {

/* ch is the next character */

}

to read characters one at a time using getchar() until a negative value is
returned.

Exercise 4.7 Read a file of English text, and print it out one word per line,
all punctuation and non-alpha characters being omitted.

For end-of-data, the program loop should read until getchar() delivers a
value ¡= 0. When typing input, end the data by typing the end-of-file char-
acter, usually control-D. When reading from a file, getchar() will deliver a
negative value when it encounters the end of the file.

Typical output might be

Read

a

file

4.5. EXERCISES 41

of

English

text

and

print

it

out

one

etc.

42 CHAPTER 4. LOOPING AND ITERATION

Chapter 5

Arrays and Strings

In principle arrays in C are similar to those found in other languages. As
we shall shortly see arrays are defined slightly differently and there are many
subtle differences due the close link between array and pointers. We will look
more closely at the link between pointer and arrays later in Chapter 8.

5.1 Single and Multi-dimensional Arrays

Let us first look at how we define arrays in C:

int listofnumbers[50];

BEWARE: In C Array subscripts start at 0 and end one less than the
array size. For example, in the above case valid subscripts range from 0 to
49. This is a BIG difference between C and other languages and does require
a bit of practice to get in the right frame of mind.

Elements can be accessed in the following ways:-

thirdnumber=listofnumbers[2];

listofnumbers[5]=100;

Multi-dimensional arrays can be defined as follows:

int tableofnumbers[50][50];

43

44 CHAPTER 5. ARRAYS AND STRINGS

for two dimensions.
For further dimensions simply add more []:

int bigD[50][50][40][30]......[50];

Elements can be accessed in the following ways:

anumber=tableofnumbers[2][3];

tableofnumbers[25][16]=100;

5.2 Strings

In C Strings are defined as arrays of characters. For example, the following
defines a string of 50 characters:

char name[50];

C has no string handling facilities built in and so the following are all illegal:

char firstname[50],lastname[50],fullname[100];

firstname= "Arnold"; /* Illegal */

lastname= "Schwarznegger"; /* Illegal */

fullname= "Mr"+firstname

+lastname; /* Illegal */

However, there is a special library of string handling routines which we
will come across later.

To print a string we use printf with a special %s control character:
printf("%s",name);

NOTE: We just need to give the name of the string.
In order to allow variable length strings the \0 character is used to indicate

the end of a string.
So we if we have a string, char NAME[50]; and we store the “DAVE” in it

its contents will look like:

5.3. EXERCISES 45

5.3 Exercises

Exercise 5.1 Write a C program to read through an array of any type. Write
a C program to scan through this array to find a particular value.

Exercise 5.2 Read ordinary text a character at a time from the program’s
standard input, and print it with each line reversed from left to right. Read
until you encounter end-of-data (see below).

You may wish to test the program by typing

prog5rev | prog5rev

to see if an exact copy of the original input is recreated.
To read characters to end of data, use a loop such as either

char ch;

while(ch = getchar(), ch >= 0) /* ch < 0 indicates end-of-data */

or

char ch;

while(scanf("%c", &ch) == 1) /* one character read */

Exercise 5.3 Write a program to read English text to end-of-data (type
control-D to indicate end of data at a terminal, see below for detecting it),
and print a count of word lengths, i.e. the total number of words of length 1
which occurred, the number of length 2, and so on.

Define a word to be a sequence of alphabetic characters. You should allow
for word lengths up to 25 letters.

Typical output should be like this:

length 1 : 10 occurrences

length 2 : 19 occurrences

length 3 : 127 occurrences

length 4 : 0 occurrences

length 5 : 18 occurrences

....

To read characters to end of data see above question.

46 CHAPTER 5. ARRAYS AND STRINGS

Chapter 6

Functions

C provides functions which are again similar most languages. One difference
is that C regards main() as function. Also unlike some languages, such
as Pascal, C does not have procedures — it uses functions to service both
requirements.

Let us remind ourselves of the form of a function:

returntype fn name(parameterdef1, parameterdef2, · · ·)

{

localvariables

functioncode

}

Let us look at an example to find the average of two integers:

float findaverage(float a, float b)

{ float average;

average=(a+b)/2;

return(average);

}

47

48 CHAPTER 6. FUNCTIONS

We would call the function as follows:

main()

{ float a=5,b=15,result;

result=findaverage(a,b);

printf("average=%f\n",result);
}

Note: The return statement passes the result back to the main program.

6.1 void functions

The void function provide a way of emulating PASCAL type procedures.
If you do not want to return a value you must use the return type void

and miss out the return statement:

void squares()

{ int loop;

for (loop=1;loop<10;loop++);

printf("%d\n",loop*loop);
}

main()

{ squares();

}

NOTE: We must have () even for no parameters unlike some languages.

6.2 Functions and Arrays

Single dimensional arrays can be passed to functions as follows:-

6.3. FUNCTION PROTOTYPING 49

float findaverage(int size,float list[])

{ int i;

float sum=0.0;

for (i=0;i<size;i++)

sum+=list[i];

return(sum/size);

}

Here the declaration float list[] tells C that list is an array of
float. Note we do not specify the dimension of the array when it is a
parameter of a function.

Multi-dimensional arrays can be passed to
functions as follows:

void printtable(int xsize,int ysize,

float table[][5])

{ int x,y;

for (x=0;x<xsize;x++)

{ for (y=0;y<ysize;y++)

printf("\t%f",table[x][y]);
printf("\n");

}
}

Here float table[][5] tells C that table is an array of dimension N×5
of float. Note we must specify the second (and subsequent) dimension of
the array BUT not the first dimension.

6.3 Function Prototyping

Before you use a function C must have knowledge about the type it returns
and the parameter types the function expects.

50 CHAPTER 6. FUNCTIONS

The ANSI standard of C introduced a new (better) way of doing this than
previous versions of C. (Note: All new versions of C now adhere to the ANSI
standard.)

The importance of prototyping is twofold.

• It makes for more structured and therefore easier to read code.

• It allows the C compiler to check the syntax of function calls.

How this is done depends on the scope of the function (See Chapter 33).
Basically if a functions has been defined before it is used (called) then you
are ok to merely use the function.

If NOT then you must declare the function. The declaration simply
states the type the function returns and the type of parameters used by the
function.

It is usual (and therefore good) practice to prototype all functions at the
start of the program, although this is not strictly necessary.

To declare a function prototype simply state the type the function returns,
the function name and in brackets list the type of parameters in the order
they appear in the function definition.

e.g.

int strlen(char []);

This states that a function called strlen returns an integer value and
accepts a single string as a parameter.

NOTE: Functions can be prototyped and variables defined on the same
line of code. This used to be more popular in pre-ANSI C days since functions
are usually prototyped separately at the start of the program. This is still
perfectly legal though: order they appear in the function definition.

e.g.

int length, strlen(char []);

Here length is a variable, strlen the function as before.

6.4. EXERCISES 51

6.4 Exercises

Exercise 6.1 Write a function “replace” which takes a pointer to a string
as a parameter, which replaces all spaces in that string by minus signs, and
delivers the number of spaces it replaced.

Thus

char *cat = "The cat sat";

n = replace(cat);

should set

cat to "The-cat-sat"

and

n to 2.

Exercise 6.2 Write a program which will read in the source of a C program
from its standard input, and print out all the starred items in the follow-
ing statistics for the program (all as integers). (Note the comment on tab
characters at the end of this specification.)

Print out the following values:

Lines:

* The total number of lines

* The total number of blank lines

(Any lines consisting entirely of white space should be

considered as blank lines.)

The percentage of blank lines (100 * blank_lines / lines)

Characters:

* The total number of characters after tab expansion

* The total number of spaces after tab expansion

* The total number of leading spaces after tab expansion

(These are the spaces at the start of a line, before any visible

character; ignore them if there are no visible characters.)

The average number of

characters per line

characters per line ignoring leading spaces

52 CHAPTER 6. FUNCTIONS

leading spaces per line

spaces per line ignoring leading spaces

Comments:

* The total number of comments in the program

* The total number of characters in the comments in the program

excluding the "/*" and "*/" thenselves

The percentage of number of comments to total lines

The percentage of characters in comments to characters

Identifiers:

We are concerned with all the occurrences of "identifiers" in the

program where each part of the text starting with a letter,

and continuing with letter, digits and underscores is considered

to be an identifier, provided that it is not

in a comment,

or in a string,

or within primes.

Note that

"abc\"def"

the internal escaped quote does not close the string.

Also, the representation of the escape character is

’\\’

and of prime is

’\’’

Do not attempt to exclude the fixed words of the language,

treat them as identifiers. Print

* The total number of identifier occurrences.

* The total number of characters in them.

The average identifier length.

Indenting:

* The total number of times either of the following occurs:

a line containing a "}" is more indented than the preceding line

a line is preceded by a line containing a "{" and is less

indented than it.

The "{" and "}" must be ignored if in a comment or string or

primes, or if the other line involved is entirely comment.

6.4. EXERCISES 53

A single count of the sum of both types of error is required.

NOTE: All tab characters (’�’) on input should be interpreted as multiple
spaces using the rule:

"move to the next modulo 8 column"

where the first column is numbered column 0.

col before tab | col after tab

---------------+--------------

0 | 8

1 | 8

7 | 8

8 | 16

9 | 16

15 | 16

16 | 24

To read input a character at a time the skeleton has code incorporated to read
a line at a time for you using

char ch;

ch = getchar();

Which will deliver each character exactly as read. The getline() function
then puts the line just read in the global array of characters linec(), null
terminated, and delivers the length of the line, or a negative value if end of
data has been encountered.

You can then look at the characters just read with (for example)

switch(linec[0]) {

case ’ ’: /* space */

break;

case ’\t’: /* tab character */

break;

case ’\n’: /* newline ... */

break;

....

} /* end switch */

End of data is indicated by scanf NOT delivering the value 1.

Your output should be in the following style:

54 CHAPTER 6. FUNCTIONS

Total lines 126

Total blank lines 3

Total characters 3897

Total spaces 1844

Total leading spaces 1180

Total comments 7

Total chars in comments 234

Total number of identifiers 132

Total length of identifiers 606

Total indenting errors 2

You may gather that the above program (together with the unstarred items)
forms the basis of part of your marking system! Do the easy bits first, and
leave it at that if some aspects worry you. Come back to me if you think my
solution (or the specification) is wrong! That is quite possible!

Exercise 6.3 It’s rates of pay again!

Loop performing the following operation in your program:

Read two integers, representing a rate of pay (pence per hour) and a
number of hours. Print out the total pay, with hours up to 40 being paid at
basic rate, from 40 to 60 at rate-and-a-half, above 60 at double-rate. Print
the pay as pounds to two decimal places.

Terminate the loop when a zero rate is encountered. At the end of the
loop, print out the total pay.

The code for computing the pay from the rate and hours is to be written
as a function.

The recommended output format is something like:

Pay at 200 pence/hr for 38 hours is 76.00 pounds

Pay at 220 pence/hr for 48 hours is 114.40 pounds

Pay at 240 pence/hr for 68 hours is 206.40 pounds

Pay at 260 pence/hr for 48 hours is 135.20 pounds

Pay at 280 pence/hr for 68 hours is 240.80 pounds

Pay at 300 pence/hr for 48 hours is 156.00 pounds

Total pay is 928.80 pounds

6.4. EXERCISES 55

The “program features” checks that explicit values such as 40 and 60 appear
only once, as a #define or initialised variable value. This represents good
programming practice.

56 CHAPTER 6. FUNCTIONS

Chapter 7

Further Data Types

This Chapter discusses how more advanced data types and structures can be
created and used in a C program.

7.1 Structures

Structures in C are similar to records in Pascal. For example:

struct gun

{
char name[50];

int magazinesize;

float calibre;

};

struct gun arnies;

defines a new structure gun and makes arnies an instance of it.

NOTE: that gun is a tag for the structure that serves as shorthand for
future declarations. We now only need to say struct gun and the body of
the structure is implied as we do to make the arnies variable. The tag is
optional.

Variables can also be declared between the } and ; of a struct declaration,
i.e.:

57

58 CHAPTER 7. FURTHER DATA TYPES

struct gun

{
char name[50];

int magazinesize;

float calibre;

} arnies;

struct’s can be pre-initialised at declaration:

struct gun arnies={"Uzi",30,7};

which gives arnie a 7mm. Uzi with 30 rounds of ammunition.
To access a member (or field) of a struct, C provides the . operator.

For example, to give arnie more rounds of ammunition:

arnies.magazineSize=100;

7.1.1 Defining New Data Types

typedef can also be used with structures. The following creates a new type
agun which is of type struct gun and can be initialised as usual:

typedef struct gun

{
char name[50];

int magazinesize;

float calibre;

} agun;

agun arnies={"Uzi",30,7};

Here gun still acts as a tag to the struct and is optional. Indeed since
we have defined a new data type it is not really of much use,

agun is the new data type. arnies is a variable of type agun which is a
structure.

C also allows arrays of structures:

7.2. UNIONS 59

typedef struct gun

{
char name[50];

int magazinesize;

float calibre;

} agun;

agun arniesguns[1000];

This gives arniesguns a 1000 guns. This may be used in the following
way:

arniesguns[50].calibre=100;

gives Arnie’s gun number 50 a calibre of 100mm, and:

itscalibre=arniesguns[0].calibre;

assigns the calibre of Arnie’s first gun to itscalibre.

7.2 Unions

A union is a variable which may hold (at different times) objects of different
sizes and types. C uses the union statement to create unions, for example:

union number

{
short shortnumber;

long longnumber;

double floatnumber;

} anumber

defines a union called number and an instance of it called anumber. number
is a union tag and acts in the same way as a tag for a structure.

Members can be accessed in the following way:

60 CHAPTER 7. FURTHER DATA TYPES

printf("%ld\n",anumber.longnumber);

This clearly displays the value of longnumber.

When the C compiler is allocating memory for unions it will always reserve
enough room for the largest member (in the above example this is 8 bytes
for the double).

In order that the program can keep track of the type of union variable
being used at a given time it is common to have a structure (with union
embedded in it) and a variable which flags the union type:

An example is:

typedef struct

{ int maxpassengers;

} jet;

typedef struct

{ int liftcapacity;

} helicopter;

typedef struct

{ int maxpayload;

} cargoplane;

typedef union

{ jet jetu;

helicopter helicopteru;

cargoplane cargoplaneu;

} aircraft;

typedef struct

{ aircrafttype kind;

int speed;

aircraft description;

} an aircraft;

7.3. COERCION OR TYPE-CASTING 61

This example defines a base union aircraft which may either be jet,
helicopter, or
cargoplane.

In the an aircraft structure there is a kind member which indicates
which structure is being held at the time.

7.3 Coercion or Type-Casting

C is one of the few languages to allow coercion, that is forcing one variable
of one type to be another type. C allows this using the cast operator (). So:

int integernumber;

float floatnumber=9.87;

integernumber=(int)floatnumber;

assigns 9 (the fractional part is thrown away) to integernumber.

And:

int integernumber=10;

float floatnumber;

floatnumber=(float)integernumber;

assigns 10.0 to floatnumber.

Coercion can be used with any of the simple data types including char,
so:

int integernumber;

char letter=’A’;

integernumber=(int)letter;

62 CHAPTER 7. FURTHER DATA TYPES

assigns 65 (the ASCII code for ‘A’) to integernumber.

Some typecasting is done automatically — this is mainly with integer
compatibility.

A good rule to follow is: If in doubt cast.

Another use is the make sure division behaves as requested: If we have
two integers internumber and anotherint and we want the answer to be a
float then :

e.g.
floatnumber =
(float) internumber / (float) anotherint;

ensures floating point division.

7.4 Enumerated Types

Enumerated types contain a list of constants that can be addressed in integer
values.

We can declare types and variables as follows.

enum days {mon, tues, ..., sun} week;

enum days week1, week2;

NOTE: As with arrays first enumerated name has index value 0. So mon

has value 0, tues 1, and so on.

week1 and week2 are variables.

We can define other values:

enum escapes { bell = ‘\a’,
backspace = ‘\b’, tab = ‘\t’,
newline = ‘\n’, vtab = ‘\v’,
return = ‘\r’};

7.5. STATIC VARIABLES 63

We can also override the 0 start value:

enum months {jan = 1, feb, mar,, dec};

Here it is implied that feb = 2 etc.

7.5 Static Variables

A static variable is local to particular function. However, it is only initialised
once (on the first call to function).

Also the value of the variable on leaving the function remains intact. On
the next call to the function the the static variable has the same value as
on leaving.

To define a static variable simply prefix the variable declaration with
the static keyword. For example:

void stat(); /* prototype fn */

main()

{ int i;

for (i=0;i<5;+ + i)
stat();

}

stat()

{ int auto var = 0;

static int static var = 0;

printf("auto = %d, static = %d \n",
auto var, static var);

++auto var;

++static var;

}

Output is:

64 CHAPTER 7. FURTHER DATA TYPES

auto var = 0, static var= 0

auto var = 0, static var = 1

auto var = 0, static var = 2

auto var = 0, static var = 3

auto var = 0, static var = 4

Clearly the auto var variable is created each time. The static var is
created once and remembers its value.

7.6 Exercises

Exercise 7.1 Write program using enumerated types which when given to-
day’s date will print out tomorrow’s date in the for 31st January, for example.

Exercise 7.2 Write a simple database program that will store a persons de-
tails such as age, date of birth, address etc.

Chapter 8

Pointers

Pointer are a fundamental part of C. If you cannot use pointers properly then
you have basically lost all the power and flexibility that C allows. The secret
to C is in its use of pointers.

C uses pointers a lot. Why?:

• It is the only way to express some computations.

• It produces compact and efficient code.

• It provides a very powerful tool.

C uses pointers explicitly with:

• Arrays,

• Structures,

• Functions.

NOTE: Pointers are perhaps the most difficult part of C to understand.
C’s implementation is slightly different DIFFERENT from other languages.

8.1 What is a Pointer?

A pointer is a variable which contains the address in memory of another
variable. We can have a pointer to any variable type.

65

66 CHAPTER 8. POINTERS

The unary or monadic operator & gives the “address of a variable”.
The indirection or dereference operator * gives the “contents of an object

pointed to by a pointer”.
To declare a pointer to a variable do:
int *pointer;

NOTE: We must associate a pointer to a particular type: You can’t
assign the address of a short int to a long int, for instance.

Consider the effect of the following code:

int x = 1, y = 2;

int *ip;

ip = &x;

y = *ip;

x = ip;

*ip = 3;

It is worth considering what is going on at the machine level in memory
to fully understand how pointer work. Consider Fig. 8.1. Assume for the
sake of this discussion that variable x resides at memory location 100, y at
200 and ip at 1000. Note A pointer is a variable and thus its values need
to be stored somewhere. It is the nature of the pointers value that is new.

Now the assignments x = 1 and y = 2 obviously load these values into
the variables. ip is declared to be a pointer to an integer and is assigned to
the address of x (&x). So ip gets loaded with the value 100.

Next y gets assigned to the contents of ip. In this example ip currently
points to memory location 100 — the location of x. So y gets assigned to the
values of x — which is 1.

We have already seen that C is not too fussy about assigning values of
different type. Thus it is perfectly legal (although not all that common) to
assign the current value of ip to x. The value of ip at this instant is 200.

Finally we can assign a value to the contents of a pointer (∗ip).

8.1. WHAT IS A POINTER? 67

Figure 8.1: Pointer, Variables and Memory

68 CHAPTER 8. POINTERS

IMPORTANT: When a pointer is declared it does not point anywhere.
You must set it to point somewhere before you use it.

So ...

int *ip;

*ip = 100;

will generate an error (program crash!!).
The correct use is:

int *ip;

int x;

ip = &x;

*ip = 100;

We can do integer arithmetic on a pointer:

float *flp, *flq;

*flp = *flp + 10;

++*flp;

(*flp)++;

flq = flp;

NOTE: A pointer to any variable type is an address in memory — which
is an integer address. A pointer is definitely NOT an integer.

The reason we associate a pointer to a data type is so that it knows how
many bytes the data is stored in. When we increment a pointer we increase
the pointer by one “block” memory.

So for a character pointer ++ch ptr adds 1 byte to the address.
For an integer or float ++ip or ++flp adds 4 bytes to the address.

8.2. POINTER AND FUNCTIONS 69

Figure 8.2: Pointer Arithmetic

Consider a float variable (fl) and a pointer to a float (flp) as shown in
Fig. 8.2.

Assume that flp points to fl then if we increment the pointer (++flp)
it moves to the position shown 4 bytes on. If on the other hand we added 2
to the pointer then it moves 2 float positions i.e 8 bytes as shown in the
Figure.

8.2 Pointer and Functions

Let us now examine the close relationship between pointers and C’s other
major parts. We will start with functions.

When C passes arguments to functions it passes them by value.

There are many cases when we may want to alter a passed argument in
the function and receive the new value back once to function has finished.
Other languages do this (e.g. var parameters in PASCAL). C uses point-
ers explicitly to do this. Other languages mask the fact that pointers also
underpin the implementation of this.

The best way to study this is to look at an example where we must be
able to receive changed parameters.

Let us try and write a function to swap variables around?

The usual function call:

swap(a, b) WON’T WORK.

Pointers provide the solution: Pass the address of the variables to the
functions and access address of function.

Thus our function call in our program would look like this:

70 CHAPTER 8. POINTERS

swap(&a, &b)

The Code to swap is fairly straightforward:

void swap(int *px, int *py)

{ int temp;

temp = *px;

/* contents of pointer */

*px = *py;

*py = temp;

}

We can return pointer from functions. A common example is when pass-
ing back structures. e.g.:

typedef struct {float x,y,z;} COORD;

main()

{ COORD p1, *coord fn();

/* declare fn to return ptr of

COORD type */

....

p1 = *coord fn(...);

/* assign contents of address returned */

....

}

COORD *coord fn(...)

{ COORD p;

.....

8.3. POINTERS AND ARRAYS 71

p =;

/* assign structure values */

return &p;

/* return address of p */

}

Here we return a pointer whose contents are immediately unwrapped into
a variable. We must do this straight away as the variable we pointed to was
local to a function that has now finished. This means that the address space
is free and can be overwritten. It will not have been overwritten straight
after the function ha squit though so this is perfectly safe.

8.3 Pointers and Arrays

Pointers and arrays are very closely linked in C.

Hint: think of array elements arranged in consecutive memory locations.

Consider the following:

int a[10], x;

int *pa;

pa = &a[0]; /* pa pointer to address of a[0] */

x = *pa;

/* x = contents of pa (a[0] in this case) */

To get somewhere in the array (Fig. 8.3) using a pointer we could do:

pa + i ≡ a[i]

WARNING: There is no bound checking of arrays and pointers so you
can easily go beyond array memory and overwrite other things.

C however is much more subtle in its link between arrays and pointers.

72 CHAPTER 8. POINTERS

Figure 8.3: Arrays and Pointers

For example we can just type

pa = a;

instead of

pa = &a[0]

and

a[i] can be written as *(a + i).
i.e. &a[i] ≡ a + i.

We also express pointer addressing like this:

pa[i] ≡ *(pa + i).

However pointers and arrays are different:

• A pointer is a variable. We can do
pa = a and pa++.

• An Array is not a variable. a = pa and a++ ARE ILLEGAL.

This stuff is very important. Make sure you understand it. We will see a
lot more of this.

We can now understand how arrays are passed to functions.

When an array is passed to a function what is actually passed is its initial
elements location in memory.

So:

strlen(s) ≡ strlen(&s[0])

This is why we declare the function:

int strlen(char s[]);

8.4. ARRAYS OF POINTERS 73

An equivalent declaration is : int strlen(char *s);

since char s[] ≡ char *s.

strlen() is a standard library function (Chapter 17) that returns the
length of a string. Let’s look at how we may write a function:

int strlen(char *s)

{ char *p = s;

while (*p != ‘\0);
p++;

return p-s;

}

Now lets write a function to copy a string to another string. strcpy() is
a standard library function that does this.

void strcpy(char *s, char *t)

{ while ((*s++ = *t++) != ‘\0);}

This uses pointers and assignment by value.

Very Neat!!

NOTE: Uses of Null statements with while.

8.4 Arrays of Pointers

We can have arrays of pointers since pointers are variables.

Example use:

Sort lines of text of different length.

NOTE: Text can’t be moved or compared in a single operation.

Arrays of Pointers are a data representation that will cope efficiently and
conveniently with variable length text lines.

How can we do this?:

74 CHAPTER 8. POINTERS

• Store lines end-to-end in one big char array (Fig. 8.4). \n will delimit
lines.

• Store pointers in a different array where each pointer points to 1st char
of each new line.

• Compare two lines using strcmp() standard library function.

• If 2 lines are out of order — swap pointer in pointer array (not text).

Figure 8.4: Arrays of Pointers (String Sorting Example)

This eliminates:

• complicated storage management.

• high overheads of moving lines.

8.5 Multidimensional arrays and pointers

We should think of multidimensional arrays in a different way in C:

A 2D array is really a 1D array, each of whose elements is itself an array

8.5. MULTIDIMENSIONAL ARRAYS AND POINTERS 75

Hence

a[n][m] notation.

Array elements are stored row by row.

When we pass a 2D array to a function we must specify the number of
columns — the number of rows is irrelevant.

The reason for this is pointers again. C needs to know how many columns
in order that it can jump from row to row in memory.

Considerint a[5][35] to be passed in a function:

We can do:

f(int a[][35]) {.....}
or even:

f(int (*a)[35]) {.....}
We need parenthesis (*a) since [] have a higher precedence than *

So:

int (*a)[35]; declares a pointer to an array of 35 ints.

int *a[35]; declares an array of 35 pointers to ints.

Now lets look at the (subtle) difference between pointers and arrays.
Strings are a common application of this.

Consider: char *name[10];

char Aname[10][20];

We can legally do name[3][4] and Aname[3][4] in C.
However

• Aname is a true 200 element 2D char array.

• access elements via
20∗row + col + base address
in memory.

• name has 10 pointer elements.

NOTE: If each pointer in name is set to point to a 20 element array then
and only then will 200 chars be set aside (+ 10 elements).

76 CHAPTER 8. POINTERS

Figure 8.5: 2D Arrays and Arrays of Pointers

The advantage of the latter is that each pointer can point to arrays be of
different length.

Consider:

char *name[] = { "no month", "jan",

"feb", ... };
char Aname[][15] = { "no month", "jan",

"feb", ... };

8.6. STATIC INITIALISATION OF POINTER ARRAYS 77

8.6 Static Initialisation of Pointer Arrays

Initialisation of arrays of pointers is an ideal application for

an internal static array.

some fn()

{ static char *months = { "no month",

"jan", "feb",

... };

}

static reserves a private permanent bit of memory.

8.7 Pointers and Structures

These are fairly straight forward and are easily defined. Consider the follow-
ing:

struct COORD {float x,y,z;} pt;
struct COORD *pt ptr;

pt ptr = &pt; /* assigns pointer to pt */

the −> operator lets us access a member of the structure pointed to by
a pointer.i.e.:

pt ptr−>x = 1.0;

pt ptr−>y = pt ptr−>y - 3.0;

Example: Linked Lists

typedef struct { int value;

ELEMENT *next;

} ELEMENT;

78 CHAPTER 8. POINTERS

ELEMENT n1, n2;

n1.next = &n2;

Figure 8.6: Linking Two Nodes

NOTE: We can only declare next as a pointer to ELEMENT. We cannot
have a element of the variable type as this would set up a recursive definition
which is NOT ALLOWED. We are allowed to set a pointer reference since
4 bytes are set aside for any pointer.

The above code links a node n1 to n2 (Fig. 8.6) we will look at this matter
further in the next Chapter.

8.8 Common Pointer Pitfalls

Here we will highlight two common mistakes made with pointers.

8.8.1 Not assigning a pointer to memory address be-
fore using it

int *x;

*x = 100;

we need a physical location say: int y;

x = &y;

*x = 100;

8.8. COMMON POINTER PITFALLS 79

This may be hard to spot. NO COMPILER ERROR. Also x could
some random address at initialisation.

8.8.2 Illegal indirection

Suppose we have a function malloc() which tries to allocate memory dynam-
ically (at run time) and returns a pointer to block of memory requested if suc-
cessful or a NULL pointer
otherwise.

char *malloc() — a standard library function (see later).

Let us have a pointer: char *p;

Consider:

*p = (char *) malloc(100); /* request 100 bytes of memory */

*p = ‘y’;

There is mistake above. What is it?

No * in

*p = (char *) malloc(100);

Malloc returns a pointer. Also p does not point to any address.

The correct code should be:

p = (char *) malloc(100);

If code rectified one problem is if no memory is available and p is NULL.
Therefore we can’t do: *p = ‘y’;.

A good C program would check for this:

p = (char *) malloc(100);

if (p == NULL)

{ printf("Error: Out of Memory \n");
exit(1);

}
*p = ‘y’;

80 CHAPTER 8. POINTERS

8.9 Exercise

Exercise 8.1 Write a C program to read through an array of any type using
pointers. Write a C program to scan through this array to find a particular
value.

Exercise 8.2 Write a program to find the number of times that a given
word(i.e. a short string) occurs in a sentence (i.e. a long string!).

Read data from standard input. The first line is a single word, which
is followed by general text on the second line. Read both up to a newline
character, and insert a terminating null before processing.

Typical output should be:

The word is "the".

The sentence is "the cat sat on the mat".

The word occurs 2 times.

Exercise 8.3 Write a program that takes three variable (a, b, b) in as sep-
arate parameters and rotates the values stored so that value a goes to be, b,
to c and c to a.

Chapter 9

Dynamic Memory Allocation
and Dynamic Structures

Dynamic allocation is a pretty unique feature to C (amongst high level lan-
guages). It enables us to create data types and structures of any size and
length to suit our programs need within the program.

We will look at two common applications of this:

• dynamic arrays

• dynamic data structure e.g. linked lists

9.1 Malloc, Sizeof, and Free

The Function malloc is most commonly used to attempt to “grab” a con-
tinuous portion of memory. It is defined by:

void *malloc(size t number of bytes)

That is to say it returns a pointer of type void * that is the start in
memory of the reserved portion of size number of bytes. If memory cannot
be allocated a NULL pointer is returned.

Since a void * is returned the C standard states that this pointer can
be converted to any type. The size t argument type is defined in stdlib.h

and is an unsigned type.
So:

81

82CHAPTER 9. DYNAMICMEMORYALLOCATION ANDDYNAMIC STRUCTURES

char *cp;

cp = malloc(100);

attempts to get 100 bytes and assigns the start address to cp.
Also it is usual to use the sizeof() function to specify the number of

bytes:

int *ip;

ip = (int *) malloc(100*sizeof(int));

Some C compilers may require to cast the type of conversion. The (int

*) means coercion to an integer pointer. Coercion to the correct pointer
type is very important to ensure pointer arithmetic is performed correctly.
I personally use it as a means of ensuring that I am totally correct in my
coding and use cast all the time.

It is good practice to use sizeof() even if you know the actual size you
want — it makes for device independent (portable) code.

sizeof can be used to find the size of any data type, variable or structure.
Simply supply one of these as an argument to the function.

SO:

int i;

struct COORD {float x,y,z};
typedef struct COORD PT;

sizeof(int), sizeof(i),

sizeof(struct COORD) and
sizeof(PT) are all ACCEPTABLE

In the above we can use the link between pointers and arrays to treat the
reserved memory like an array. i.e we can do things like:

ip[0] = 100;

or

9.2. CALLOC AND REALLOC 83

for(i=0;i<100;++i) scanf("%d",ip++);

When you have finished using a portion of memory you should always
free() it. This allows the memory freed to be aavailable again, possibly for
further malloc() calls

The function free() takes a pointer as an argument and frees the memory
to which the pointer refers.

9.2 Calloc and Realloc

There are two additional memory allocation functions, Calloc() and Realloc().
Their prototypes are given below:

void *calloc(size_t num_elements, size_t element_size};

void *realloc(void *ptr, size_t new_size);

Malloc does not initialise memory (to zero) in any way. If you wish to
initialise memory then use calloc. Calloc there is slightly more computa-
tionally expensive but, occasionally, more convenient than malloc. Also note
the different syntax between calloc and malloc in that calloc takes the
number of desired elements, num elements, and element size, element size,
as two individual arguments.

Thus to assign 100 integer elements that are all initially zero you would
do:

int *ip;

ip = (int *) calloc(100, sizeof(int));

Realloc is a function which attempts to change the size of a previous
allocated block of memory. The new size can be larger or smaller. If the
block is made larger then the old contents remain unchanged and memory is
added to the end of the block. If the size is made smaller then the remaining
contents are unchanged.

If the original block size cannot be resized then realloc will attempt to
assign a new block of memory and will copy the old block contents. Note a
new pointer (of different value) will consequently be returned. You must use

84CHAPTER 9. DYNAMICMEMORYALLOCATION ANDDYNAMIC STRUCTURES

this new value. If new memory cannot be reallocated then realloc returns
NULL.

Thus to change the size of memory allocated to the *ip pointer above to
an array block of 50 integers instead of 100, simply do:

ip = (int *) calloc(ip, 50);

9.3 Linked Lists

Let us now return to our linked list example:

typedef struct { int value;

ELEMENT *next;

} ELEMENT;

We can now try to grow the list dynamically:

link = (ELEMENT *) malloc(sizeof(ELEMENT));

This will allocate memory for a new link.

If we want to deassign memory from a pointer use the free() function:

free(link)

See Example programs (queue.c) below and try exercises for further prac-
tice.

9.4 Full Program: queue.c

A queue is basically a special case of a linked list where one data element
joins the list at the left end and leaves in a ordered fashion at the other end.

The full listing for queue.c is as follows:

/* */

/* queue.c */

/* Demo of dynamic data structures in C */

9.4. FULL PROGRAM: QUEUE.C 85

#include <stdio.h>

#define FALSE 0

#define NULL 0

typedef struct {

int dataitem;

struct listelement *link;

} listelement;

void Menu (int *choice);

listelement * AddItem (listelement * listpointer, int data);

listelement * RemoveItem (listelement * listpointer);

void PrintQueue (listelement * listpointer);

void ClearQueue (listelement * listpointer);

main () {

listelement listmember, *listpointer;

int data,

choice;

listpointer = NULL;

do {

Menu (&choice);

switch (choice) {

case 1:

printf ("Enter data item value to add ");

scanf ("%d", &data);

listpointer = AddItem (listpointer, data);

break;

case 2:

if (listpointer == NULL)

printf ("Queue empty!\n");

else

listpointer = RemoveItem (listpointer);

break;

case 3:

PrintQueue (listpointer);

86CHAPTER 9. DYNAMICMEMORYALLOCATION ANDDYNAMIC STRUCTURES

break;

case 4:

break;

default:

printf ("Invalid menu choice - try again\n");

break;

}

} while (choice != 4);

ClearQueue (listpointer);

} /* main */

void Menu (int *choice) {

char local;

printf ("\nEnter\t1 to add item,\n\t2 to remove item\n\

\t3 to print queue\n\t4 to quit\n");

do {

local = getchar ();

if ((isdigit (local) == FALSE) && (local != ’\n’)) {

printf ("\nyou must enter an integer.\n");

printf ("Enter 1 to add, 2 to remove, 3 to print, 4 to quit\n");

}

} while (isdigit ((unsigned char) local) == FALSE);

*choice = (int) local - ’0’;

}

listelement * AddItem (listelement * listpointer, int data) {

listelement * lp = listpointer;

if (listpointer != NULL) {

while (listpointer -> link != NULL)

listpointer = listpointer -> link;

listpointer -> link = (struct listelement *) malloc (sizeof (listelement));

listpointer = listpointer -> link;

9.4. FULL PROGRAM: QUEUE.C 87

listpointer -> link = NULL;

listpointer -> dataitem = data;

return lp;

}

else {

listpointer = (struct listelement *) malloc (sizeof (listelement));

listpointer -> link = NULL;

listpointer -> dataitem = data;

return listpointer;

}

}

listelement * RemoveItem (listelement * listpointer) {

listelement * tempp;

printf ("Element removed is %d\n", listpointer -> dataitem);

tempp = listpointer -> link;

free (listpointer);

return tempp;

}

void PrintQueue (listelement * listpointer) {

if (listpointer == NULL)

printf ("queue is empty!\n");

else

while (listpointer != NULL) {

printf ("%d\t", listpointer -> dataitem);

listpointer = listpointer -> link;

}

printf ("\n");

}

void ClearQueue (listelement * listpointer) {

while (listpointer != NULL) {

listpointer = RemoveItem (listpointer);

}

88CHAPTER 9. DYNAMICMEMORYALLOCATION ANDDYNAMIC STRUCTURES

}

9.5 Exercises

Exercise 9.1 Write a program that reads a number that says how many
integer numbers are to be stored in an array, creates an array to fit the exact
size of the data and then reads in that many numbers into the array.

Exercise 9.2 Write a program to implement the linked list as described in
the notes above.

Exercise 9.3 Write a program to sort a sequence of numbers using a binary
tree (Using Pointers). A binary tree is a tree structure with only two (pos-
sible) branches from each node (Fig. 9.1). Each branch then represents a
false or true decision. To sort numbers simply assign the left branch to take
numbers less than the node number and the right branch any other number
(greater than or equal to). To obtain a sorted list simply search the tree in a
depth first fashion.

Your program should: Create a binary tree structure. Create routines for
loading the tree appropriately. Read in integer numbers terminated by a zero.
Sort numbers into numeric ascending order. Print out the resulting ordered
values, printing ten numbers per line as far as possible.

Typical output should be

The sorted values are:

2 4 6 6 7 9 10 11 11 11

15 16 17 18 20 20 21 21 23 24

27 28 29 30

9.5. EXERCISES 89

Figure 9.1: Example of a binary tree sort

90CHAPTER 9. DYNAMICMEMORYALLOCATION ANDDYNAMIC STRUCTURES

Chapter 10

Advanced Pointer Topics

We have introduced many applications and techniques that use pointers. We
have introduced some advanced pointer issues already. This chapter brings
together some topics we have briefly mentioned and others to complete our
study C pointers.

In this chapter we will:

• Examine pointers to pointers in more detail.

• See how pointers are used in command line input in C.

• Study pointers to functions

10.1 Pointers to Pointers

We introduced the concept of a pointer to a pointer previously. You can have
a pointer to a pointer of any type.

Consider the following:

char ch; /* a character */

char *pch; /* a pointer to a character */

char **ppch; /* a pointer to a pointer to a character */

We can visualise this in Figure 10.1. Here we can see that **ppch refers to
memory address of *pch which refers to the memory address of the variable
ch. But what does this mean in practice?

91

92 CHAPTER 10. ADVANCED POINTER TOPICS

Figure 10.1: Pointers to pointers

Recall that char * refers to a (NULL terminated string. So one com-
mon and convenient notion is to declare a pointer to a pointer to a string
(Figure 10.2)

Figure 10.2: Pointer to String

Taking this one stage further we can have several strings being pointed
to by the pointer (Figure 10.3)

Figure 10.3: Pointer to Several Strings

We can refer to individual strings by ppch[0], ppch[1], Thus
this is identical to declaring char *ppch[].

One common occurrence of this type is in C command line argument
input which we now consider.

10.2. COMMAND LINE INPUT 93

10.2 Command line input

C lets read arguments from the command line which can then be used in our
programs.

We can type arguments after the program name when we run the program.

We have seen this with the compiler for example

c89 -o prog prog.c

c89 is the program, -o prog prog.c the arguments.

In order to be able to use such arguments in our code we must define
them as follows:

main(int argc, char **argv)

So our main function now has its own arguments. These are the only
arguments main accepts.

• argc is the number of arguments typed — including the program name.

• argv is an array of strings holding each command line argument —
including the program name in the first array element.

A simple program example:

#include<stdio.h>

main (int argc, char **argv)

{ /* program to print arguments

from command line */

int i;

printf("argc = %d\n\n",argc);
for (i=0;i<argc;++i)

printf("argv[%d]: %s\n",
i, argv[i]);

}

94 CHAPTER 10. ADVANCED POINTER TOPICS

Assume it is compiled to run it as args.

So if we type:

args f1 "f2" f3 4 stop!

The output would be:

argc = 6

argv[0] = args

argv[1] = f1

argv[2] = f2

argv[3] = f3

argv[4] = 4

argv[5] = stop!

NOTE: • argv[0] is program name.
• argc counts program name
• Embedded “ ” are ignored.
Blank spaces delimit end of arguments.
Put blanks in “ ” if needed.

10.3 Pointers to a Function

Pointer to a function are perhaps on of the more confusing uses of pointers in
C. Pointers to functions are not as common as other pointer uses. However,
one common use is in a passing pointers to a function as a parameter in
a function call. (Yes this is getting confusing, hold on to your hats for a
moment).

This is especially useful when alternative functions maybe used to per-
form similar tasks on data. You can pass the data and the function to be
used to some control function for instance. As we will see shortly the C stan-
dard library provided some basic sorting (qsort) and searching (bsearch)
functions for free. You can easily embed your own functions.

To declare a pointer to a function do:

int (*pf) ();

10.3. POINTERS TO A FUNCTION 95

This simply declares a pointer *pf to function that returns and int. No
actual function is pointed to yet.

If we have a function int f() then we may simply (!!) write:

pf = &f;

For compiler prototyping to fully work it is better to have full function
prototypes for the function and the pointer to a function:

int f(int);

int (*pf) (int) = &f;

Now f() returns an int and takes one int as a parameter.
You can do things like:

ans = f(5);

ans = pf(5);

which are equivalent.
The qsort standard library function is very useful function that is de-

signed to sort an array by a key value of any type into ascending order, as
long as the elements of the array are of fixed type.

qsort is prototyped in (stdlib.h):

void qsort(void *base, size_t num_elements, size_t element_size,

int (*compare)(void const *, void const *));

The argument base points to the array to be sorted, num elements indi-
cates how long the array is, element size is the size in bytes of each array
element and the final argument compare is a pointer to a function.

qsort calls the compare function which is user defined to compare the
data when sorting. Note that qsort maintains it’s data type independence
by giving the comparison responsibility to the user. The compare function
must return certain (integer) values according to the comparison result:

less than zero : if first value is less than the second value

zero : if first value is equal to the second value

greater than zero : if first value is greater than the second value

96 CHAPTER 10. ADVANCED POINTER TOPICS

Some quite complicated data structures can be sorted in this manner.
For example, to sort the following structure by integer key:

typedef struct {

int key;

struct other_data;

} Record;

We can write a compare function, record compare:

int record_compare(void const *a, void const *a)

{ return (((Record *)a)->key - ((Record *)b)->key);

}

Assuming that we have an array of array length Records suitably filled
with date we can call qsort like this:

qsort(array, arraylength, sizeof(Record), record_compare);

Further examples of standard library and system calls that use pointers
to functions may be found in Chapters 14.4 and 18.1.

10.4 Exercises

Exercise 10.1 Write a program last that prints the last n lines of its text
input. By default n should be 5, but your program should allow an optional
argument so that

last -n

prints out the last n lines, where n is any integer. Your program should
make the best use of available storage. (Input of text could be by reading a
file specified from the command or reading a file from standard input)

Exercise 10.2 Write a program that sorts a list of integers in ascending
order. However if a -r flag is present on the command line your program
should sort the list in descending order. (You may use any sorting routine
you wish)

10.4. EXERCISES 97

Exercise 10.3 Write a program that reads the following structure and sorts
the data by keyword using qsort

typedef struct {

char keyword[10];

int other_data;

} Record;

Exercise 10.4 An insertion sort is performed by adding values to an array
one by one. The first value is simply stored at the beginning of the array.
Each subsequent value is added by finding its ordered position in the array,
moving data as needed to accommodate the value and inserting the value in
this position.

Write a function called insort that performs this task and behaves in the
same manner as qsort, i.e it can sort an array by a key value of any type
and it has similar prototyping.

98 CHAPTER 10. ADVANCED POINTER TOPICS

Chapter 11

Low Level Operators and Bit
Fields

We have seen how pointers give us control over low level memory operations.

Many programs (e.g. systems type applications) must actually operate
at a low level where individual bytes must be operated on.

NOTE: The combination of pointers and bit-level operators makes C
useful for many low level applications and can almost replace assembly code.
(Only about 10 % of UNIX is assembly code the rest is C!!.)

11.1 Bitwise Operators

The bitwise operators of C a summarised in the following table:

& AND
| OR
∧ XOR
∼ One’s Compliment

0→ 1
1→ 0

<< Left shift
>> Right Shift

Table 11.1: Bitwise operators

99

100 CHAPTER 11. LOW LEVEL OPERATORS AND BIT FIELDS

DO NOT confuse & with &&: & is bitwise AND, && logical AND.
Similarly for | and ||.

∼ is a unary operator — it only operates on one argument to right of the
operator.

The shift operators perform appropriate shift by operator on the right to
the operator on the left. The right operator must be positive. The vacated
bits are filled with zero (i.e. There is NO wrap around).

For example: x << 2 shifts the bits in x by 2 places to the left.

So:

if x = 00000010 (binary) or 2 (decimal)

then:

x >>= 2⇒ x = 00000000 or 0 (decimal)

Also: if x = 00000010 (binary) or 2 (decimal)

x <<= 2⇒ x = 00001000 or 8 (decimal)

Therefore a shift left is equivalent to a multiplication by 2.

Similarly a shift right is equal to division by 2

NOTE: Shifting is much faster than actual multiplication (*) or division
(/) by 2. So if you want fast multiplications or division by 2 use shifts.

To illustrate many points of bitwise operators let us write a function,
Bitcount, that counts bits set to 1 in an 8 bit number (unsigned char)
passed as an argument to the function.

int bitcount(unsigned char x)

{ int count;

for (count=0; x != 0; x>>= 1)
if (x & 01)

count++;

return count;

}

11.2. BIT FIELDS 101

This function illustrates many C program points:

• for loop not used for simple counting operation

• x>>= 1⇒ x = x >> 1

• for loop will repeatedly shift right x until x becomes 0

• use expression evaluation of x & 01 to control if

• x & 01 masks of 1st bit of x if this is 1 then count++

11.2 Bit Fields

Bit Fields allow the packing of data in a structure. This is especially useful
when memory or data storage is at a premium. Typical examples:

• Packing several objects into a machine word. e.g. 1 bit flags can be
compacted — Symbol tables in compilers.

• Reading external file formats — non-standard file formats could be
read in. E.g. 9 bit integers.

C lets us do this in a structure definition by putting :bit length after the
variable. i.e.

struct packed struct {
unsigned int f1:1;

unsigned int f2:1;

unsigned int f3:1;

unsigned int f4:1;

unsigned int type:4;

unsigned int funny int:9;

} pack;

Here the packed struct contains 6 members: Four 1 bit flags f1..f3, a
4 bit type and a 9 bit funny int.

102 CHAPTER 11. LOW LEVEL OPERATORS AND BIT FIELDS

C automatically packs the above bit fields as compactly as possible, pro-
vided that the maximum length of the field is less than or equal to the integer
word length of the computer. If this is not the case then some compilers may
allow memory overlap for the fields whilst other would store the next field in
the next word (see comments on bit fiels portability below).

Access members as usual via:

pack.type = 7;

NOTE:

• Only n lower bits will be assigned to an n bit number. So type cannot
take values larger than 15 (4 bits long).

• Bit fields are always converted to integer type for computation.

• You are allowed to mix “normal” types with bit fields.

• The unsigned definition is important - ensures that no bits are used
as a ± flag.

11.2.1 Bit Fields: Practical Example

Frequently device controllers (e.g. disk drives) and the operating system need
to communicate at a low level. Device controllers contain several registers
which may be packed together in one integer (Figure 11.1).

We could define this register easily with bit fields:

struct DISK_REGISTER {

unsigned ready:1;

unsigned error_occured:1;

unsigned disk_spinning:1;

unsigned write_protect:1;

unsigned head_loaded:1;

unsigned error_code:8;

unsigned track:9;

unsigned sector:5;

unsigned command:5;

};

11.2. BIT FIELDS 103

Figure 11.1: Example Disk Controller Register

To access values stored at a particular memory address, DISK REGISTER MEMORY

we can assign a pointer of the above structure to access the memory via:

struct DISK_REGISTER *disk_reg = (struct DISK_REGISTER *) DISK_REGISTER_MEMORY;

The disk driver code to access this is now relatively straightforward:

/* Define sector and track to start read */

disk_reg->sector = new_sector;

disk_reg->track = new_track;

disk_reg->command = READ;

/* wait until operation done, ready will be true */

while (! disk_reg->ready) ;

/* check for errors */

if (disk_reg->error_occured)

{ /* interrogate disk_reg->error_code for error type */

switch (disk_reg->error_code)

104 CHAPTER 11. LOW LEVEL OPERATORS AND BIT FIELDS

......

}

11.2.2 A note of caution: Portability

Bit fields are a convenient way to express many difficult operations. However,
bit fields do suffer from a lack of portability between platforms:

• integers may be signed or unsigned

• Many compilers limit the maximum number of bits in the bit field to
the size of an integer which may be either 16-bit or 32-bit varieties.

• Some bit field members are stored left to right others are stored right
to left in memory.

• If bit fields too large, next bit field may be stored consecutively in
memory (overlapping the boundary between memory locations) or in
the next word of memory.

If portability of code is a premium you can use bit shifting and masking
to achieve the same results but not as easy to express or read. For example:

unsigned int *disk_reg = (unsigned int *) DISK_REGISTER_MEMORY;

/* see if disk error occured */

disk_error_occured = (disk_reg & 0x40000000) >> 31;

11.3 Exercises

Exercise 11.1 Write a function that prints out an 8-bit (unsigned char)
number in binary format.

Exercise 11.2 Write a function setbits(x,p,n,y) that returns x with the n
bits that begin at position p set to the rightmost n bits of an unsigned char
variable y (leaving other bits unchanged).

11.3. EXERCISES 105

E.g. if x = 10101010 (170 decimal) and y = 10100111 (167 decimal) and
n = 3 and p = 6 say then you need to strip off 3 bits of y (111) and put them
in x at position 10xxx010 to get answer 10111010.

Your answer should print out the result in binary form (see Exercise 11.1
although input can be in decimal form.

Your output should be like this:

x = 10101010 (binary)

y = 10100111 (binary)

setbits n = 3, p = 6 gives x = 10111010 (binary)

Exercise 11.3 Write a function that inverts the bits of an unsigned char x
and stores answer in y.

Your answer should print out the result in binary form (see Exercise 11.1
although input can be in decimal form.

Your output should be like this:

x = 10101010 (binary)

x inverted = 01010101 (binary)

Exercise 11.4 Write a function that rotates (NOT shifts) to the right by
n bit positions the bits of an unsigned char x.ie no bits are lost in this process.

Your answer should print out the result in binary form (see Exercise 11.1
although input can be in decimal form.

Your output should be like this:

x = 10100111 (binary)

x rotated by 3 = 11110100 (binary)

Note: All the functions developed should be as concise as possible

106 CHAPTER 11. LOW LEVEL OPERATORS AND BIT FIELDS

Chapter 12

The C Preprocessor

Recall that preprocessing is the first step in the C program compilation stage
— this feature is unique to C compilers.

The preprocessor more or less provides its own language which can be a
very powerful tool to the programmer. Recall that all preprocessor directives
or commands begin with a #.

Use of the preprocessor is advantageous since it makes:

• programs easier to develop,

• easier to read,

• easier to modify

• C code more transportable between different machine architectures.

The preprocessor also lets us customise the language. For example to
replace { ... } block statements delimiters by PASCAL like begin ... end

we can do:

#define begin {
#define end }

During compilation all occurrences of begin and end get replaced by
corresponding { or } and so the subsequent C compilation stage does not
know any difference!!!.

Lets look at #define in more detail

107

108 CHAPTER 12. THE C PREPROCESSOR

12.1 #define

Use this to define constants or any macro substitution. Use as follows:

#define <macro> <replacement name>

For Example

#define FALSE 0

#define TRUE !FALSE

We can also define small “functions” using #define. For example max.
of two variables:

#define max(A,B) ((A) > (B) ? (A):(B))

? is the ternary operator in C.

Note: that this does not define a proper function max.

All it means that wherever we place max(C†,D†) the text gets replaced
by the appropriate definition. [† = any variable names – not necessarily C
and D]

So if in our C code we typed something like:

x = max(q+r,s+t);

after preprocessing, if we were able to look at the code it would appear
like this:

x = ((q+r) > (r+s) ? (q+r) : (s+t));

Other examples of #define could be:

#define Deg to Rad(X) (X*M PI/180.0)

/* converts degrees to radians, M PI is the value
of pi and is defined in math.h library */

#define LEFT SHIFT 8 <<8

12.2. #UNDEF 109

NOTE: The last macro LEFT SHIFT 8 is only
valid so long as replacement context is valid i.e.
x = y LEFT SHIFT 8.

12.2 #undef

This commands undefined a macro. A macro must be undefined before being
redefined to a different value.

12.3 #include

This directive includes a file into code.

It has two possible forms:

#include <file>

or

#include "file"

<file> tells the compiler to look where system include files are held.
Usually UNIX systems store files in \usr\include\ directory.

"file" looks for a file in the current directory (where program was run
from)

Included files usually contain C prototypes and declarations from header
files and not (algorithmic) C code (SEE next Chapter for reasons)

12.4 #if — Conditional inclusion

#if evaluates a constant integer expression. You always need a #endif to
delimit end of statement.

We can have else etc. as well by using #else and #elif — else if.

Another common use of #if is with:

110 CHAPTER 12. THE C PREPROCESSOR

#ifdef — if defined and

#ifndef — if not defined

These are useful for checking if macros are set — perhaps from different
program modules and header files.

For example, to set integer size for a portable C program between TurboC
(on MSDOS) and Unix (or other) Operating systems. Recall that TurboC
uses 16 bits/integer and UNIX 32 bits/integer.

Assume that if TurboC is running a macro TURBOC will be defined. So we
just need to check for this:

#ifdef TURBOC

#define INT SIZE 16

#else

#define INT SIZE 32

#endif

As another example if running program on MSDOS machine we want to
include file msdos.h otherwise a default.h file. A macro SYSTEM is set (by
OS) to type of system so check for this:

#if SYSTEM == MSDOS

#include <msdos.h>

#else

#include "default.h"

#endif

12.5 Preprocessor Compiler Control

You can use the cc compiler to control what values are set or defined from
the command line. This gives some flexibility in setting customised values
and has some other useful functions. The -D compiler option is used. For
example:

cc -DLINELENGTH=80 prog.c -o prog

12.6. OTHER PREPROCESSOR COMMANDS 111

has the same effect as:
#define LINELENGTH 80

Note that any #define or #undef within the program (prog.c above)
override command line settings.

You can also set a symbol without a value, for example:
cc -DDEBUG prog.c -o prog

Here the value is assumed to be 1.
The setting of such flags is useful, especially for debugging. You can put

commands like:

#ifdef DEBUG

print("Debugging: Program Version 1\");

#else

print("Program Version 1 (Production)\");

#endif

Also since preprocessor command can be written anywhere in a C program
you can filter out variables etc for printing etc. when debugging:

x = y *3;

#ifdef DEBUG

print("Debugging: Variables (x,y) = \",x,y);

#endif

The -E command line is worth mentioning just for academic reasons. It
is not that practical a command. The -E command will force the compiler
to stop after the preprocessing stage and output the current state of your
program. Apart from being debugging aid for preprocessor commands and
also as a useful initial learning tool (try this option out with some of the
examples above) it is not that commonly used.

12.6 Other Preprocessor Commands

There are few other preprocessor directives available:

#error text of error message — generates an appropriate compiler error
message. e.g

112 CHAPTER 12. THE C PREPROCESSOR

#ifdef OS MSDOS

#include <msdos.h>

#elifdef OS UNIX

#include "default.h"

#else

#error Wrong OS!!

#endif

line number "string" — informs the preprocessor that the number is
the next number of line of input. "string" is optional and names the
next line of input. This is most often used with programs that translate
other languages to C. For example, error messages produced by the C
compiler can reference the file name and line numbers of the original
source files instead of the intermediate C (translated) source files.

12.7 Exercises

Exercise 12.1 Define a preprocessor macro swap(t, x, y) that will swap
two arguments x and y of a given type t.

Exercise 12.2 Define a preprocessor macro to select:

• the least significant bit from an unsigned char

• the nth (assuming least significant is 0) bit from an unsigned char.

Chapter 13

C, UNIX and Standard
Libraries

There is a very close link between C and most operating systems that run
our C programs. Almost the whole of the UNIX operating system is written
in C. This Chapter will look at how C and UNIX interface together. 1

We have to use UNIX to maintain our file space, edit, compile and run
programs etc..

However UNIX is much more useful than this:

13.1 Advantages of using UNIX with C

• Portability — UNIX, or a variety of UNIX, is available on many
machines. Programs written in standard UNIX and C should run on
any of them with little difficulty.

• Multiuser / Multitasking — many programs can share a machines
processing power.

• File handling — hierarchical file system with many file handling rou-
tines.

1Even though we deal with UNIX and C nearly all the forthcoming discussions are
applicable to MSDOS and other operating systems

113

114 CHAPTER 13. C, UNIX AND STANDARD LIBRARIES

• Shell Programming — UNIX provides a powerful command inter-
preter that
understands over 200 commands and can also run UNIX and user-
defined programs.

• Pipe — where the output of one program can be made the input of
another. This can done from command line or within a C program.

• UNIX utilities — there over 200 utilities that let you accomplish
many routines without writing new programs. e.g. make, grep, diff,
awk, more

• System calls — UNIX has about 60 system calls that are at the heart
of the operating system or the kernel of UNIX. The calls are actually
written in C. All of them can be accessed from C programs. Basic I/0,
system clock access are examples. The function open() is an example
of a system call.

• Library functions — additions to the operating system.

13.2 Using UNIX System Calls and Library

Functions

To use system calls and library functions in a C program we simply call the
appropriate C function.

Examples of standard library functions we have met include the higher
level I/O functions — fprintf(), malloc() ...

Aritmetic operators, random number generators — random(), srandom(),

lrand48(), drand48() etc. and basic C types to string conversion are
memebers of the stdlib.h standard library.

All math functions such as sin(), cos(), sqrt() are standard math
library (math.h) functions and others follow in a similar fashion.

For most system calls and library functions we have to include an appro-
priate header file. e.g. stdio.h, math.h

To use a function, ensure that you have made the required #includes in
your C file. Then the function can be called as though you had defined it
yourself.

13.2. USING UNIX SYSTEM CALLS AND LIBRARY FUNCTIONS 115

It is important to ensure that your arguments have the expected types,
otherwise the function will probably produce strange results. lint is quite
good at checking such things.

Some libraries require extra options before the compiler can support their
use. For example, to compile a program including functions from the math.h

library the command might be
cc mathprog.c -o mathprog -lm

The final -lm is an instruction to link the maths library with the program.
The manual page for each function will usually inform you if any special
compiler flags are required.

Information on nearly all system calls and library functions is available in
manual pages. These are available on line: Simply type man function name.

e.g. man drand48

would give information about this random number generator.
Over the coming chapters we will be investigating in detail many aspects

of the C Standard Library and also other UNIX libraries.

116 CHAPTER 13. C, UNIX AND STANDARD LIBRARIES

Chapter 14

Integer Functions, Random
Number, String Conversion,
Searching and Sorting:
<stdlib.h>

To use all functions in this library you must:
#include <stdlib.h>

There are three basic categories of functions:

• Arithmetic

• Random Numbers

• String Conversion

The use of all the functions is relatively straightforward. We only consider
them briefly in turn in this Chapter.

14.1 Arithmetic Functions

There are 4 basic integer functions:

int abs(int number);

long int labs(long int number);

117

118CHAPTER 14. INTEGER FUNCTIONS, RANDOMNUMBER, STRING CONVERSION, SEARCHING AND SORTING:<STDLIB.H>

div_t div(int numerator,int denominator);

ldiv_t ldiv(long int numerator, long int denominator);

Essentially there are two functions with integer and long integer compat-
ibility.

abs functions return the absolute value of its number arguments. For exam-
ple, abs(2) returns 2 as does abs(-2).

div takes two arguments, numerator and denominator and produces a quo-
tient and a remainder of the integer division. The div t structure is
defined (in stdlib.h) as follows:

typedef struct {

int quot; /* quotient */

int rem; /* remainder */

} div_t;

(ldiv t is similarly defined).

Thus:

#include <stdlib.h>

....

int num = 8, den = 3;

div_t ans;

ans = div(num,den);

printf("Answer:\n\t Quotient = %d\n\t Remainder = %d\n", \

ans.quot,ans.rem);

Produces the following output:

Answer:

Quotient = 2

Remainder = 2

14.2. RANDOM NUMBERS 119

14.2 Random Numbers

Random numbers are useful in programs that need to simulate random
events, such as games, simulations and experimentations. In practice no
functions produce truly random data — they produce pseudo-random num-
bers. These are computed form a given formula (different generators use
different formulae) and the number sequences they produce are repeatable.
A seed is usually set from which the sequence is generated. Therefore is you
set the same seed all the time the same set will be be computed.

One common technique to introduce further randomness into a random
number generator is to use the time of the day to set the seed, as this will
always be changing. (We will study the standard library time functions later
in Chapter 19).

There are many (pseudo) random number functions in the standard li-
brary. They all operate on the same basic idea but generate different num-
ber sequences (based on different generator functions) over different number
ranges.

The simplest set of functions is:

int rand(void);

void srand(unsigned int seed);

rand() returns successive pseudo-random numbers in the range from 0
to (215)-1.

srand() is used to set the seed. A simple example of using the time of
the day to initiate a seed is via the call:

srand((unsigned int) time(NULL));

The following program card.c illustrates the use of these functions to
simulate a pack of cards being shuffled:

/*

** Use random numbers to shuffle the "cards" in the deck. The second

** argument indicates the number of cards. The first time this

** function is called, srand is called to initialize the random

** number generator.

*/

#include <stdlib.h>

120CHAPTER 14. INTEGER FUNCTIONS, RANDOMNUMBER, STRING CONVERSION, SEARCHING AND SORTING:<STDLIB.H>

#include <time.h>

#define TRUE 1

#define FALSE 0

void shuffle(int *deck, int n_cards)

{

int i;

static int first_time = TRUE;

/*

** Seed the random number generator with the current time

** of day if we haven’t done so yet.

*/

if(first_time){

first_time = FALSE;

srand((unsigned int)time(NULL));

}

/*

** "Shuffle" by interchanging random pairs of cards.

*/

for(i = n_cards - 1; i > 0; i -= 1){

int where;

int temp;

where = rand() % i;

temp = deck[where];

deck[where] = deck[i];

deck[i] = temp;

}

}

There are several other random number generators available in the stan-
dard library:

double drand48(void);

double erand48(unsigned short xsubi[3]);

long lrand48(void);

14.3. STRING CONVERSION 121

long nrand48(unsigned short xsubi[3]);

long mrand48(void);

long jrand48(unsigned short xsubi[3]);

void srand48(long seed);

unsigned short *seed48(unsigned short seed[3]);

void lcong48(unsigned short param[7]);

This family of functions generates uniformly distributed pseudo-random
numbers.

Functions drand48() and erand48() return non-negative double-precision
floating-point values uniformly distributed over the interval [0.0, 1.0).

Functions lrand48() and nrand48() return non-negative long integers uni-
formly distributed over the interval [0, 2**31).

Functions mrand48() and jrand48() return signed long integers uniformly
distributed over the interval [-2**31, 2**31).

Functions srand48(), seed48(), and lcong48() set the seeds for drand48(),
lrand48(), or mrand48() and one of these should be called first.

Further examples of using these functions is given is Chapter 19.

14.3 String Conversion

There are a few functions that exist to convert strings to integer, long integer
and float values. They are:

double atof(char *string) — Convert string to floating point value.
int atoi(char *string) — Convert string to an integer value
int atol(char *string) — Convert string to a long integer value.
double strtod(char *string, char *endptr) — Convert string to a float-
ing point value.
long strtol(char *string, char *endptr, int radix) — Convert string
to a long integer using a given radix.
unsigned long strtoul(char *string, char *endptr, int radix) —
Convert string to unsigned long.

Most of these are fairly straightforward to use. For example:

char *str1 = "100";

char *str2 = "55.444";

char *str3 = " 1234";

char *str4 = "123four";

122CHAPTER 14. INTEGER FUNCTIONS, RANDOMNUMBER, STRING CONVERSION, SEARCHING AND SORTING:<STDLIB.H>

char *str5 = "invalid123";

int i;

float f;

i = atoi(str1); /* i = 100 */

f = atof(str2); /* f = 55.44 */

i = atoi(str3); /* i = 1234 */

i = atoi(str4); /* i = 123 */

i = atoi(str5); /* i = 0 */

Note:

• Leading blank characters are skipped.

• Trailing illegal characters are ignored.

• If conversion cannot be made zero is returned and errno (See Chap-
ter 16) is set with the value ERANGE.

14.4 Searching and Sorting

The stdlib.h provides 2 useful functions to perform general searching and
sorting of data on any type. In fact we have already introduced the qsort()

function in Chapter 10.3. For completeness we list the prototype again here
but refer the reader to the previous Chapter for an example.

The qsort standard library function is very useful function that is de-
signed to sort an array by a key value of any type into ascending order, as
long as the elements of the array are of fixed type.

qsort is prototyped (in stdlib.h):

void qsort(void *base, size_t num_elements, size_t element_size,

int (*compare)(void const *, void const *));

Similarly, there is a binary search function, bsearch() which is proto-
typed (in stdlib.h) as:

void *bsearch(const void *key, const void *base, size_t nel,

size_t size, int (*compare)(const void *, const void *));

14.5. EXERCISES 123

Using the same Record structure and record compare function as the
qsort() example (in Chapter 10.3):

typedef struct {

int key;

struct other_data;

} Record;

int record_compare(void const *a, void const *a)

{ return (((Record *)a)->key - ((Record *)b)->key);

}

Also, Assuming that we have an array of array length Records suitably
filled with date we can call bsearch() like this:

Record key;

Record *ans;

key.key = 3; /* index value to be searched for */

ans = bsearch(&key, array, arraylength, sizeof(Record), record_compare);

The function bsearch() return a pointer to the field whose key filed is
filled with the matched value of NULL if no match found.

Note that the type of the key argument must be the same as the array
elements (Record above), even though only the key.key element is required
to be set.

14.5 Exercises

Exercise 14.1 Write a program that simulates throwing a six sided die

Exercise 14.2 Write a program that simulates the UK National lottery by
selecting six different whole numbers in the range 1 – 49.

Exercise 14.3 Write a program that read a number from command line in-
put and generates a random floating point number in the range 0 – the input
number.

124CHAPTER 14. INTEGER FUNCTIONS, RANDOMNUMBER, STRING CONVERSION, SEARCHING AND SORTING:<STDLIB.H>

Chapter 15

Mathematics: <math.h>

Mathematics is relatively straightforward library to use again. You must
#include <math.h> and must remember to link in the math library at
compilation:

cc mathprog.c -o mathprog -lm

A common source of error is in forgetting to include the <math.h> file
(and yes experienced programmers make this error also). Unfortunately the
C compiler does not help much. Consider:

double x;

x = sqrt(63.9);

Having not seen the prototype for sqrt the compiler (by default) assumes
that the function returns an int and converts the value to a double with
meaningless results.

15.1 Math Functions

Below we list some common math functions. Apart from the note above they
should be easy to use and we have already used some in previous examples.
We give no further examples here:

double acos(double x) — Compute arc cosine of x.
double asin(double x) — Compute arc sine of x.
double atan(double x) — Compute arc tangent of x.
double atan2(double y, double x) — Compute arc tangent of y/x, using
the signs of both arguments to determine the quadrant of the return value.

125

126 CHAPTER 15. MATHEMATICS: <MATH.H>

double ceil(double x) — Get smallest integral value that exceeds x.
double cos(double x) — Compute cosine of angle in radians.
double cosh(double x) — Compute the hyperbolic cosine of x.
div_t div(int number, int denom) — Divide one integer by another.
double exp(double x — Compute exponential of x
double fabs (double x) — Compute absolute value of x.
double floor(double x) — Get largest integral value less than x.
double fmod(double x, double y) — Divide x by y with integral quotient
and return remainder.
double frexp(double x, int *expptr) — Breaks down x into mantissa
and exponent of no.
labs(long n) — Find absolute value of long integer n.
double ldexp(double x, int exp) — Reconstructs x out of mantissa and
exponent of two.
ldiv_t ldiv(long number, long denom) — Divide one long integer by an-
other.
double log(double x) — Compute log(x).
double log10 (double x) — Compute log to the base 10 of x.
double modf(double x, double *intptr) — Breaks x into fractional and
integer parts.
double pow (double x, double y) — Compute x raised to the power y.
double sin(double x) — Compute sine of angle in radians.
double sinh(double x) – Compute the hyperbolic sine of x.

double sqrt(double x) — Compute the square root of x.
void srand(unsigned seed) — Set a new seed for the random number gen-
erator (rand).
double tan(double x) — Compute tangent of angle in radians.
double tanh(double x) — Compute the hyperbolic tangent of x.

15.2 Math Constants

The math.h library defines many (often neglected) constants. It is always
advisable to use these definitions:

HUGE — The maximum value of a single-precision floating-point number.

M E — The base of natural logarithms (e).

15.2. MATH CONSTANTS 127

M LOG2E — The base-2 logarithm of e.

M LOG10E – The base-10 logarithm of e.

M LN2 — The natural logarithm of 2.

M LN10 — The natural logarithm of 10.

M PI — π.

M PI 2 — π/2.

M PI 4 — π/4.

M 1 PI — 1/π.

M 2 PI — 2/π.

M 2 SQRTPI — 2/
√
π.

M SQRT2 — The positive square root of 2.

M SQRT1 2 — The positive square root of 1/2.

MAXFLOAT — The maximum value of a non-infinite single- precision floating
point number.

HUGE VAL — positive infinity.

There are also a number a machine dependent values defined in #include <value.h>

— see man value or list value.h for further details.

128 CHAPTER 15. MATHEMATICS: <MATH.H>

Chapter 16

Input and Output
(I/O):stdio.h

This chapter will look at many forms of I/O. We have briefly mentioned some
forms before will look at these in much more detail here.

Your programs will need to include the standard I/O header file so do:

#include <stdio.h>

16.1 Reporting Errors

Many times it is useful to report errors in a C program. The standard
library perror() is an easy to use and convenient function. It is used in
conjunction with errno and frequently on encountering an error you may
wish to terminate your program early. Whilst not strictly part of the stdio.h
library we introduce the concept of errno and the function exit() here. We
will meet these concepts in other parts of the Standard Library also.

16.1.1 perror()

The function perror() is prototyped by:
void perror(const char *message);

perror() produces a message (on standard error output — see Section 16.2.1),
describing the last error encountered, returned to errno (see below) during a
call to a system or library function. The argument string message is printed

129

130 CHAPTER 16. INPUT AND OUTPUT (I/O):STDIO.H

first, then a colon and a blank, then the message and a newline. If message
is a NULL pointer or points to a null string, the colon is not printed.

16.1.2 errno

errno is a special system variable that is set if a system call cannot perform
its set task. It is defined in #include <errno.h>.

To use errno in a C program it must be declared via:

extern int errno;

It can be manually reset within a C program (although this is uncommon
practice) otherwise it simply retains its last value returned by a system call
or library function.

16.1.3 exit()

The function exit() is prototyped in #include <stdlib> by:
void exit(int status)

Exit simply terminates the execution of a program and returns the exit
status value to the operating system. The status value is used to indicate
if the program has terminated properly:

• it exist with a EXIT SUCCESS value on successful termination

• it exist with a EXIT FAILURE value on unsuccessful termination.

On encountering an error you may frequently call an exit(EXIT FAILURE)

to terminate an errant program.

16.2 Streams

Streams are a portable way of reading and writing data. They provide a
flexible and efficient means of I/O.

A Stream is a file or a physical device (e.g. printer or monitor) which is
manipulated with a pointer to the stream.

There exists an internal C data structure, FILE, which represents all
streams and is defined in stdio.h. We simply need to refer to the FILE

structure in C programs when performing I/O with streams.

16.2. STREAMS 131

Figure 16.1: Stream I/O Model

We just need to declare a variable or pointer of this type in our programs.

We do not need to know any more specifics about this definition.

We must open a stream before doing any I/O,

then access it

and then close it.

Stream I/O is BUFFERED: That is to say a fixed “chunk” is read from
or written to a file via some temporary storage area (the buffer). This is
illustrated in Fig. 16.1. NOTE the file pointer actually points to this buffer.

This leads to efficient I/O but beware: data written to a buffer does not
appear in a file (or device) until the buffer is flushed or written out. (\n does
this). Any abnormal exit of code can cause problems.

16.2.1 Predefined Streams

UNIX defines 3 predefined streams (in stdio.h):

132 CHAPTER 16. INPUT AND OUTPUT (I/O):STDIO.H

stdin, stdout, stderr

They all use text a the method of I/O.

stdin and stdout can be used with files, programs, I/O devices such as
keyboard, console, etc.. stderr always goes to the console or screen.

The console is the default for stdout and stderr. The keyboard is the
default for stdin.

Predefined stream are automatically open.

Redirection

This how we override the UNIX default predefined I/O defaults.

This is not part of C but operating system dependent. We will do redi-
rection from the command line.

> — redirect stdout to a file.

So if we have a program, out, that usually prints to the screen then

out > file1

will send the output to a file, file1.

< — redirect stdin from a file to a program.

So if we are expecting input from the keyboard for a program, in we can
read similar input from a file

in < file2.

| — pipe: puts stdout from one program to stdin of another

prog1 | prog2

e.g. Sent output (usually to console) of a program direct to printer:

out | lpr

16.3 Basic I/O

There are a couple of function that provide basic I/O facilities.

16.4. FORMATTED I/O 133

probably the most common are: getchar() and putchar(). They are
defined and used as follows:

• int getchar(void) — reads a char from stdin

• int putchar(char ch) — writes a char to stdout, returns character
written.

int ch;

ch = getchar();

(void) putchar((char) ch);

Related Functions:

int getc(FILE *stream),

int putc(char ch,FILE *stream)

16.4 Formatted I/O

We have seen examples of how C uses formatted I/O already. Let’s look at
this in more detail.

16.4.1 Printf

The function is defined as follows:

int printf(char *format, arg list ...) —
prints to stdout the list of arguments according specified format string.
Returns number of characters printed.

The format string has 2 types of object:

• ordinary characters — these are copied to output.

• conversion specifications — denoted by % and listed in Table 16.1.

Between % and format char we can put:

134 CHAPTER 16. INPUT AND OUTPUT (I/O):STDIO.H

Format Spec (%) Type Result
c char single character

i,d int decimal number
o int octal number

x,X int hexadecimal number
lower/uppercase notation

u int unsigned int
s char * print string

terminated by \0
f double/float format -m.ddd...

e,E ” Scientific Format
-1.23e002

g,G ” e or f whichever
is most compact

% − print % character

Table 16.1: Printf/scanf format characters

- (minus sign) — left justify.

integer number — field width.

m.d — m = field width, d = precision of number of digits after decimal
point or number of chars from a string.

So:

printf("%-2.3f\n",17.23478);

The output on the screen is:

17.235

and:

16.5. SCANF 135

printf("VAT=17.5%%\n");

...outputs:

VAT=17.5%

16.5 scanf

This function is defined as follows:

int scanf(char *format, args....) — reads from stdin and puts
input in address of variables specified in args list. Returns number of chars
read.

Format control string similar to printf

Note: The ADDRESS of variable or a pointer to one is required by scanf.

scanf("%d",&i);

We can just give the name of an array or string to scanf since this corre-
sponds to the start address of the array/string.

char string[80];

scanf("%s",string);

16.6 Files

Files are the most common form of a stream.

The first thing we must do is open a file. The function fopen() does this:

FILE *fopen(char *name, char *mode)

fopen returns a pointer to a FILE. The name string is the name of the file
on disc that we wish to access. The mode string controls our type of access.
If a file cannot be accessed for any reason a NULL pointer is returned.

136 CHAPTER 16. INPUT AND OUTPUT (I/O):STDIO.H

Modes include: “r” — read,
“w” — write and
“a” — append.

To open a file we must have a stream (file pointer) that points to a FILE

structure.

So to open a file, called myfile.dat for reading we would do:

FILE *stream, *fopen();

/* declare a stream and prototype fopen */

stream = fopen("myfile.dat","r");

it is good practice to to check file is opened

if ((stream = fopen("myfile.dat",

"r")) == NULL)

{ printf("Can’t open %s\n",
"myfile.dat");

exit(1);

}
......

16.6.1 Reading and writing files

The functions fprintf and fscanf a commonly used to access files.

int fprintf(FILE *stream, char *format, args..)

int fscanf(FILE *stream, char *format, args..)

These are similar to printf and scanf except that data is read from the
stream that must have been opened with fopen().

16.7. SPRINTF AND SSCANF 137

The stream pointer is automatically incremented with ALL file read/write
functions. We do not have to worry about doing this.

char *string[80]

FILE *stream, *fopen();

if ((stream = fopen(...)) != NULL)

fscanf(stream,"%s", string);

Other functions for files:

int getc(FILE *stream), int fgetc(FILE *stream)

int putc(char ch, FILE *s), int fputc(char ch, FILE *s)

These are like getchar, putchar.

getc is defined as preprocessor MACRO in stdio.h. fgetc is a C library
function. Both achieve the same result!!

fflush(FILE *stream) — flushes a stream.
fclose(FILE *stream) — closes a stream.

We can access predefined streams with fprintf etc.

fprintf(stderr,"Cannot Compute!!\n");
fscanf(stdin,"%s",string);

16.7 sprintf and sscanf

These are like fprintf and fscanf except they read/write to a string.

int sprintf(char *string, char *format, args..)

int sscanf(char *string, char *format, args..)

For Example:

float full tank = 47.0; /* litres */
float miles = 300;
char miles per litre[80];

138 CHAPTER 16. INPUT AND OUTPUT (I/O):STDIO.H

sprintf(miles per litre,”Miles per litre
= %2.3f”, miles/full tank);

16.7.1 Stream Status Enquiries

There are a few useful stream enquiry functions, prototyped as follows:

int feof(FILE *stream);

int ferror(FILE *stream);

void clearerr(FILE *stream);

int fileno(FILE *stream);

Their use is relatively simple:

feof() — returns true if the stream is currently at the end of the file. So
to read a stream,fp, line by line you could do:

while (!feof(fp))

fscanf(fp,"%s",line);

ferror() — reports on the error state of the stream and returns true if an
error has occurred.

clearerr() — resets the error indication for a given stream.

fileno() — returns the integer file descriptor associated with the named
stream.

16.8 Low Level I/O

This form of I/O is UNBUFFERED — each read/write request results in
accessing disk (or device) directly to fetch/put a specific number of bytes.

There are no formatting facilities — we are dealing with bytes of infor-
mation.

This means we are now using binary (and not text) files.

16.8. LOW LEVEL I/O 139

Instead of file pointers we use low level file handle or file descriptors

which give a unique integer number to identify each file.

To Open a file use:

int open(char *filename, int flag, int perms) — this returns
a file descriptor or -1 for a fail.

The flag controls file access and has the following predefined in fcntl.h:

O APPEND, O CREAT, O EXCL, O RDONLY, O RDWR, O WRONLY + others
see online man pages or reference manuals.

perms — best set to 0 for most of our applications.

The function:

creat(char *filename, int perms)

can also be used to create a file.

int close(int handle) — close a file

int read(int handle, char *buffer,

unsigned length)

int write(int handle, char *buffer, unsigned length)

are used to read/write a specific number of bytes from/to a file (handle)
stored or to be put in the memory location specified by buffer.

The sizeof() function is commonly used to specify the length.

read and write return the number of bytes read/written or -1 if they fail.

/* program to read a list of floats from a binary file */
/* first byte of file is an integer saying how many */
/* floats in file. Floats follow after it, File name got from */
/* command line */

#include<stdio.h>
#include<fcntl.h>

float bigbuff[1000];

140 CHAPTER 16. INPUT AND OUTPUT (I/O):STDIO.H

main(int argc, char **argv)

{ int fd;
int bytes read;
int file length;

if ((fd = open(argv[1],O RDONLY)) = -1)
{ /* error file not open */....

perror(”Datafile”);
exit(1);
}

if ((bytes read = read(fd,&file length,
sizeof(int))) == -1)
{ /* error reading file */...

exit(1);
}

if (file length > 999) {/* file too big */}
if ((bytes read = read(fd,bigbuff,

file length*sizeof(float))) == -1)
{ /* error reading open */...

exit(1);
}

}

16.9 Exercises

Exercise 16.1 Write a program to copy one named file into another named
file. The two file names are given as the first two arguments to the program.

Copy the file a block (512 bytes) at a time.

Check: that the program has two arguments

or print "Program need two arguments"

that the first name file is readable

or print "Cannot open file for reading"

that the second file is writable

or print "Cannot open file for writing"

16.9. EXERCISES 141

Exercise 16.2 Write a program last that prints the last n lines of a text
file, by n and the file name should be specified form command line input. By
default n should be 5, but your program should allow an optional argument
so that

last -n file.txt

prints out the last n lines, where n is any integer. Your program should
make the best use of available storage.

Exercise 16.3 Write a program to compare two files and print out the lines
where they differ. Hint: look up appropriate string and file handling library
routines. This should not be a very long program.

142 CHAPTER 16. INPUT AND OUTPUT (I/O):STDIO.H

Chapter 17

String Handling: <string.h>

Recall from our discussion of arrays (Chapter 5) that strings are defined as
an array of characters or a pointer to a portion of memory containing ASCII
characters. A string in C is a sequence of zero or more characters followed
by a NULL (\0) character:

It is important to preserve the NULL terminating character as it is how
C defines and manages variable length strings. All the C standard library
functions require this for successful operation.

In general, apart from some length-restricted functions (strncat(), strncmp,()

and strncpy()), unless you create strings by hand you should not encounter
any such problems, . You should use the many useful string handling func-
tions and not really need to get your hands dirty dismantling and assembling
strings.

17.1 Basic String Handling Functions

All the string handling functions are prototyped in:
#include <string.h>

The common functions are described below:
char *stpcpy (char *dest,const char *src) — Copy one string into
another.

143

144 CHAPTER 17. STRING HANDLING: <STRING.H>

int strcmp(char *string1,const char *string2) – Compare string1 and
string2 to determine alphabetic order.
char *strcpy(char *string1,const char *string2) — Copy string2
to stringl.
char *strerror(int errnum) — Get error message corresponding to spec-
ified error number.
int strlen(const char *string) — Determine the length of a string.
char *strncat(char *string1, char *string2, size_t n) — Append
n characters from string2 to stringl.
int strncmp(char *string1, char *string2, size_t n) — Compare
first n characters of two strings.
char *strncpy(char *string1,const char *string2, size_t n) — Copy
first n characters of string2 to stringl .
int strcasecmp(const char *s1, const char *s2) — case insensitive ver-
sion of strcmp().
int strncasecmp(const char *s1, const char *s2, int n) — case in-
sensitive version of strncmp().

The use of most of the functions is straightforward, for example:

char *str1 = "HELLO";

char str2[10];

int length;

length = strlen("HELLO"); /* length = 5 */

(void) strcpy(str2,str1);

Note that both strcat() and strcpy() both return a copy of their first
argument which is the destination array. Note the order of the arguments
is destination array followed by source array which is sometimes easy to get
the wrong around when programming.

The strcmp() function lexically compares the two input strings and re-
turns:

Less than zero — if string1 is lexically less than string2

Zero — if string1 and string2 are lexically equal

Greater than zero — if string1 is lexically greater than string2

17.1. BASIC STRING HANDLING FUNCTIONS 145

This can also confuse beginners and experience programmers forget this
too.

The strncat(), strncmp,() and strncpy() copy functions are string
restricted version of their more general counterparts. They perform a similar
task but only up to the first n characters. Note the the NULL terminated
requirement may get violated when using these functions, for example:

char *str1 = "HELLO";

char *str2 = "Goodbye";

int length = 2;

(void) strncpy(str2,str1, length); /* str2 = "HE" */

In general, with this form of strncpy() str2 is may NOT be NULL
TERMINATED!! — BEWARE

17.1.1 String Searching

The library also provides several string searching functions:
char *strchr(const char *string, int c) — Find first occurrence

of character c in string.
char *strrchr(const char *string, int c) — Find last occurrence of
character c in string.
char *strstr(const char *s1, const char *s2) — locates the first oc-
currence of the string s2 in string s1.
char *strpbrk(const char *s1, const char *s2) — returns a pointer
to the first occurrence in string s1 of any character from string s2, or a null
pointer if no character from s2 exists in s1

size_t strspn(const char *s1, const char *s2) — returns the num-
ber of characters at the begining of s1 that match s2.
size_t strcspn(const char *s1, const char *s2) — returns the num-
ber of characters at the begining of s1 that do not match s2.
char *strtok(char *s1, const char *s2) — break the string pointed to
by s1 into a sequence of tokens, each of which is delimited by one or more
characters from the string pointed to by s2.
char *strtok_r(char *s1, const char *s2, char **lasts) — has the
same functionality as strtok() except that a pointer to a string placeholder
lasts must be supplied by the caller.

146 CHAPTER 17. STRING HANDLING: <STRING.H>

strchr() and strrchr() are the simplest to use, for example:

char *str1 = "Hello";

char *ans;

ans = strchr(str1,’l’);

After this execution, ans points to the location str1 + 2

strpbrk() is a more general function that searches for the first occurrence
of any of a group of characters, for example:

char *str1 = "Hello";

char *ans;

ans = strpbrk(str1,’aeiou’);

Here, ans points to the location str1 + 1, the location of the first e.
strstr() returns a pointer to the specified search string or a null pointer

if the string is not found. If s2 points to a string with zero length (that is,
the string “”), the function returns s1. For example,

char *str1 = "Hello";

char *ans;

ans = strstr(str1,’lo’);

will yield ans = str + 3.
strtok() is a little more complicated in operation. If the first argument is

not NULL then the function finds the position of any of the second argument
characters. However, the position is remembered and any subsequent calls
to strtok() will start from this position if on these subsequent calls the first
argument is NULL. For example, If we wish to break up the string str1 at
each space and print each token on a new line we could do:

char *str1 = "Hello Big Boy";

char *t1;

for (t1 = strtok(str1," ");

17.2. CHARACTER CONVERSIONS AND TESTING: CTYPE.H 147

t1 != NULL;

t1 = strtok(NULL, " "))

printf("%s\n",t1);

Here we use the for loop in a non-standard counting fashion:

• The initialisation calls strtok() loads the function with the string
str1

• We terminate when t1 is NULL

• We keep assigning tokens of str1 to t1 until termination by calling
strtok() with a NULL first argument.

17.2 Character conversions and testing: ctype.h

We conclude this chapter with a related library #include <ctype.h> which
contains many useful functions to convert and test single characters. The
common functions are prototypes as follows:

Character testing:
int isalnum(int c) — True if c is alphanumeric.

int isalpha(int c) — True if c is a letter.
int isascii(int c) — True if c is ASCII .
int iscntrl(int c) — True if c is a control character.
int isdigit(int c) — True if c is a decimal digit
int isgraph(int c) — True if c is a graphical character.
int islower(int c) — True if c is a lowercase letter
int isprint(int c) — True if c is a printable character
int ispunct (int c) — True if c is a punctuation character.
int isspace(int c) — True if c is a space character.
int isupper(int c) — True if c is an uppercase letter.
int isxdigit(int c) — True if c is a hexadecimal digit

Character Conversion:
int toascii(int c) — Convert c to ASCII .

tolower(int c) — Convert c to lowercase.
int toupper(int c) — Convert c to uppercase.

The use of these functions is straightforward and we do not give examples
here.

148 CHAPTER 17. STRING HANDLING: <STRING.H>

17.3 Memory Operations: <memory.h>

Although not strictly string functions the functions are prototyped in #include <string.h>:
void *memchr (void *s, int c, size_t n) — Search for a character

in a buffer .
int memcmp (void *s1, void *s2, size_t n) — Compare two buffers.
void *memcpy (void *dest, void *src, size_t n) — Copy one buffer
into another .
void *memmove (void *dest, void *src, size_t n) — Move a num-
ber of bytes from one buffer lo another.
void *memset (void *s, int c, size_t n) — Set all bytes of a buffer to
a given character.

Their use is fairly straightforward and not dissimilar to comparable string
operations (except the exact length (n) of the operations must be specified
as there is no natural termination here).

Note that in all case to bytes of memory are copied. The sizeof()

function comes in handy again here, for example:

char src[SIZE],dest[SIZE];

int isrc[SIZE],idest[SIZE];

/* Copy chars (bytes) ok */

memcpy(dest,src, SIZE);

/* Copy arrays of ints */

memcpy(idest,isrc, SIZE*sizeof(int));

memmove() behaves in exactly the same way as memcpy() except that the
source and destination locations may overlap.

memcmp() is similar to strcmp() except here unsigned bytes are compared
and returns less than zero if s1 is less than s2 etc.

17.4 Exercises

Exercise 17.1 Write a function similar to �strlen that can handle untermi-
nated strings. Hint: you will need to know and pass in the length of the
string.

17.4. EXERCISES 149

Exercise 17.2 Write a function that returns true if an input string is a
palindrome of each other. A palindrome is a word that reads the same back-
wards as it does forwards e.g ABBA.

Exercise 17.3 Suggest a possible implementation of the strtok() function:

1. using other string handling functions.

2. from first pointer principles

How is the storage of the tokenised string achieved?

Exercise 17.4 Write a function that converts all characters of an input
string to upper case characters.

Exercise 17.5 Write a program that will reverse the contents stored in mem-
ory in bytes. That is to say if we have n bytes in memory byte n becomes
byte 0, byte n− 1 becomes byte 1 etc.

150 CHAPTER 17. STRING HANDLING: <STRING.H>

Chapter 18

File Access and Directory
System Calls

There are many UNIX utilities that allow us to manipulate directories and
files. cd, ls, rm, cp, mkdir etc. are examples we have (hopefully) already
met.

We will now see how to achieve similar tasks from within a C program.

18.1 Directory handling functions: <unistd.h>

This basically involves calling appropriate functions to traverse a directory
hierarchy or inquire about a directories contents.

int chdir(char ∗path) — changes directory to specified path string.

Example: C emulation of UNIX’s cd command:

#include<stdio.h>
#include<unistd.h>

main(int argc,char ∗∗argv)
{
if (argc < 2)

{ printf("Usage: %s

<pathname> \n",argv[0]);
exit(1);

151

152 CHAPTER 18. FILE ACCESS AND DIRECTORY SYSTEM CALLS

}
if (chdir(argv[1]) ! = 0)

{ printf("Error in chdir\n");
exit(1);

}
}

char ∗getwd(char ∗path) — get the full pathname of the current work-
ing directory. path is a pointer to a string where the pathname will be re-
turned. getwd returns a pointer to the string or NULL if an error occurs.

18.1.1 Scanning and Sorting Directories:<sys/types.h>,<sys/dir.h>

Two useful functions (On BSD platforms and NOT in multi-threaded appli-
cation) are available

scandir(char ∗dirname, struct direct ∗∗namelist, int (*select)(),

int (∗compar)()) — reads the directory dirname and builds an array of
pointers to directory entries or -1 for an error. namelist is a pointer to an
array of structure pointers.

(*select))() is a pointer to a function which is called with a pointer
to a directory entry (defined in <sys/types> and should return a non zero
value if the directory entry should be included in the array. If this pointer is
NULL, then all the directory entries will be included.

The last argument is a pointer to a routine which is passed to qsort (see
man qsort) — a built in function which sorts the completed array. If this
pointer is NULL, the array is not sorted.

alphasort(struct direct ∗∗d1, ∗∗d2) — alphasort() is a built in rou-
tine which will sort the array alphabetically.

Example - a simple C version of UNIX ls utility

#include <sys/types.h>
#include <sys/dir.h>
#include <sys/param.h>

18.1. DIRECTORY HANDLING FUNCTIONS: <UNISTD.H> 153

#include <stdio.h>

#define FALSE 0

#define TRUE !FALSE

extern int alphasort();

char pathname[MAXPATHLEN];

main() { int count,i;

struct direct ∗∗files;
int file select();

if (getwd(pathname) == NULL)

{ printf("Error getting path\n");
exit(0);

}
printf("Current Working Directory = %s\n",pathname);
count =

scandir(pathname, &files, file select, alphasort);

/* If no files found, make a non-selectable menu item */

if (count <= 0)

{ printf("No files in this directory\n");
exit(0);

}
printf("Number of files = %d\n’’,count);
for (i=1;i<count+1;++i)

printf("%s ",files[i-1]− >d name);

printf("\n"); /* flush buffer */

}

int file select(struct direct *entry)

{if ((strcmp(entry− >d name, ".") == 0) ||

(strcmp(entry− >d name, "..") == 0))

154 CHAPTER 18. FILE ACCESS AND DIRECTORY SYSTEM CALLS

return (FALSE);

else

return (TRUE);

}

scandir returns the current directory (.) and the directory above this
(..) as well as all files so we need to check for these and return FALSE so that
they are not included in our list.

Note: scandir and alphasort have definitions in sys/types.h and
sys/dir.h.
MAXPATHLEN and getwd definitions in sys/param.h

We can go further than this and search for specific files: Let’s write a
modified
file select() that only scans for files with a .c, .o or .h suffix:

int file select(struct direct *entry)

{char *ptr;

char *rindex(char *s, char c);

if ((strcmp(entry− >d name, ".") == 0) ||

(strcmp(entry− >d name, "..") == 0))

return (FALSE);

/* Check for filename extensions */

ptr = rindex(entry− >d name, ’.’)

if ((ptr != NULL) &&

((strcmp(ptr, ".c") == 0)

|| (strcmp(ptr, ".h") == 0)

|| (strcmp(ptr, ".o") == 0)))

return (TRUE);

else

return(FALSE);

}

NOTE: rindex() is a string handling function that returns a pointer to
the last occurrence of character c in string s, or a NULL pointer if c does

18.2. FILEMANIPULATION ROUTINES: UNISTD.H, SYS/TYPES.H, SYS/STAT.H155

not occur in the string. (index() is similar function but assigns a pointer to
1st occurrence.)

The function struct direct *readdir(char *dir) also exists in<sys/dir.h>¿
to return a given directory dir listing.

18.2 File Manipulation Routines: unistd.h,

sys/types.h, sys/stat.h

There are many system calls that can applied directly to files stored in a
directory.

18.2.1 File Access

int access(char *path, int mode) — determine accessibility of file.

path points to a path name naming a file. access() checks the named
file for accessibility according to mode, defined in #include <unistd.h>:

R OK – test for read permission

W OK – test for write permission

X OK – test for execute or search permission

F OK – test whether the directories leading to the file can be searched and
the file exists.

access() returns: 0 on success, -1 on failure and sets errno to indicate
the error. See man pages for list of errors.

errno

errno is a special system variable that is set if a system call cannot perform
its set task.

To use errno in a C program it must be declared via:

extern int errno;

It can be manually reset within a C program other wise it simply retains
its last value.

156 CHAPTER 18. FILE ACCESS AND DIRECTORY SYSTEM CALLS

int chmod(char *path, int mode) change the mode of access of a file.
specified by path to the given mode.

chmod() returns 0 on success, -1 on failure and sets errno to indicate the
error. Errors are defined in #include <sys/stat.h>

The access mode of a file can be set using predefined macros in sys/stat.h

— see man pages — or by setting the mode in a a 3 digit octal number.

The rightmost digit specifies owner privileges, middle group privileges
and the leftmost other users privileges.

For each octal digit think of it a 3 bit binary number. Leftmost bit =
read access (on/off) middle is write, right is executable.

So 4 (octal 100) = read only, 2 (010) = write, 6 (110) = read and write,
1 (001) = execute.

so for access mode 600 gives user read and write access others no access.
666 gives everybody read/write access.

NOTE: a UNIX command chmod also exists

18.2.2 File Status

Two useful functions exist to inquire about the files current status. You can
find out how large the file is (st size) when it was created (st ctime) etc.
(see stat structure definition below. The two functions are prototyped in
<sys/stat.h>

int stat(char *path, struct stat *buf),

int fstat(int fd, struct

stat *buf)

stat() obtains information about the file named by path. Read, write or
execute permission of the named file is not required, but all directories listed
in the path name leading to the file must be searchable.

fstat() obtains the same information about an open file referenced by
the argument descriptor, such as would be obtained by an open call (Low
level I/O).

stat(), and fstat() return 0 on success, -1 on failure and sets errno

to indicate the error. Errors are again defined in #include <sys/stat.h>

18.2. FILEMANIPULATION ROUTINES: UNISTD.H, SYS/TYPES.H, SYS/STAT.H157

buf is a pointer to a stat structure into which information is placed con-
cerning the file. A stat structure is define in #include <sys/types.h>, as
follows

struct stat {

mode_t st_mode; /* File mode (type, perms) */

ino_t st_ino; /* Inode number */

dev_t st_dev; /* ID of device containing */

/* a directory entry for this file */

dev_t st_rdev; /* ID of device */

/* This entry is defined only for */

/* char special or block special files */

nlink_t st_nlink; /* Number of links */

uid_t st_uid; /* User ID of the file’s owner */

gid_t st_gid; /* Group ID of the file’s group */

off_t st_size; /* File size in bytes */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last data modification */

time_t st_ctime; /* Time of last file status change */

/* Times measured in seconds since */

/* 00:00:00 UTC, Jan. 1, 1970 */

long st_blksize; /* Preferred I/O block size */

blkcnt_t st_blocks; /* Number of 512 byte blocks allocated*/

}

18.2.3 File Manipulation:stdio.h, unistd.h

There are few functions that exist to delete and rename files. Probably the
most common way is to use the stdio.h functions:

int remove(const char *path);

int rename(const char *old, const char *new);

Two system calls (defined in unistd.h) which are actually used by remove()

and rename() also exist but are probably harder to remember unless you are
familiar with UNIX.

int unlink(cons char *path) — removes the directory entry named
by path

158 CHAPTER 18. FILE ACCESS AND DIRECTORY SYSTEM CALLS

unlink() returns 0 on success, -1 on failure and sets errno to indicate
the error. Errors listed in #include <sys/stat.h>

A similar function link(const char *path1, const char *path2) cre-
ates a linking from an existing directory entry path1 to a new entry path2

18.2.4 Creating Temporary FIles:<stdio.h>

Programs often need to create files just for the life of the program. Two
convenient functions (plus some variants) exist to assist in this task. Man-
agement (deletion of files etc) is taken care of by the Operating System.

The function FILE *tmpfile(void) creates a temporary file and opens
a corresponding stream. The file will automatically be deleted when all
references to the file are closed.

The function char *tmpnam(char *s) generate file names that can safely
be used for a temporary file. Variant functions char *tmpnam r(char *s)

and char *tempnam(const char *dir, const char *pfx) also exist
NOTE: There are a few more file manipulation routines not listed here

see man pages.

18.3 Exercises

Exercise 18.1 Write a C program to emulate the ls -l UNIX command
that prints all files in a current directory and lists access privileges etc. DO
NOT simply exec ls -l from the program.

Exercise 18.2 Write a program to print the lines of a file which contain a
word given as the program argument (a simple version of grep UNIX utility).

Exercise 18.3 Write a program to list the files given as arguments, stopping
every 20 lines until a key is hit.(a simple version of more UNIX utility)

Exercise 18.4 Write a program that will list all files in a current directory
and all files in subsequent sub directories.

Exercise 18.5 Write a program that will only list subdirectories in alpha-
betical order.

18.3. EXERCISES 159

Exercise 18.6 Write a program that shows the user all his/her C source pro-
grams and then prompts interactively as to whether others should be granted
read permission; if affirmative such permission should be granted.

Exercise 18.7 Write a program that gives the user the opportunity to re-
move any or all of the files in a current working directory. The name of the
file should appear followed by a prompt as to whether it should be removed.

160 CHAPTER 18. FILE ACCESS AND DIRECTORY SYSTEM CALLS

Chapter 19

Time Functions

In this chapter we will look at how we can access the clock time with UNIX
system calls.

There are many more time functions than we consider here - see man

pages and standard library function listings for full details. In this chapter
we concentrate on applications of timing functions in C

Uses of time functions include:

• telling the time.

• timing programs and functions.

• setting number seeds.

19.1 Basic time functions

Some of thge basic time functions are prototypes as follows:
time t time(time t *tloc) — returns the time since 00:00:00 GMT,

Jan. 1, 1970, measured in seconds.

If tloc is not NULL, the return value is also stored in the location to
which tloc points.

time() returns the value of time on success.

On failure, it returns (time t) -1. time t is typedefed to a long (int) in
<sys/types.h> and <sys/time.h> header files.

161

162 CHAPTER 19. TIME FUNCTIONS

int ftime(struct timeb *tp) — fills in a structure pointed to by tp,
as defined in <sys/timeb.h>:

struct timeb

{ time t time;

unsigned short millitm;

short timezone;

short dstflag;

};

The structure contains the time since the epoch in seconds, up to 1000
milliseconds of more precise interval, the local time zone (measured in min-
utes of time westward from Greenwich), and a flag that, if nonzero, indicates
that Day light Saving time applies locally during the appropriate part of the
year.

On success, ftime() returns no useful value. On failure, it returns -1.

Two other functions defined etc. in #include <time.h>

char *ctime(time t *clock),
char *asctime(struct tm *tm)

ctime() converts a long integer, pointed to by clock, to a 26-character
string of the form produced by asctime(). It first breaks down clock to a
tm structure by calling localtime(), and then calls asctime() to convert
that tm structure to a string.

asctime() converts a time value contained in a tm structure to a 26-
character string of the form:

Sun Sep 16 01:03:52 1973

asctime() returns a pointer to the string.

19.2 Example time applications

we mentioned above three possible uses of time functions (there are many
more) but these are very common.

19.2. EXAMPLE TIME APPLICATIONS 163

19.2.1 Example 1: Time (in seconds) to perform some
computation

This is a simple program that illustrates that calling the time function at
distinct moments and noting the different times is a simple method of timing
fragments of code:

/* timer.c */

#include <stdio.h>
#include <sys/types.h>
#include <time.h>

main()

{ int i;

time t t1,t2;

(void) time(&t1);

for (i=1;i<=300;++i)

printf("%d %d %d\n",i, i*i, i*i*i);

(void) time(&t2);

printf("\n Time to do 300 squares and

cubes= %d seconds\n", (int) t2-t1);

}

19.2.2 Example 2: Set a random number seed

We have seen a similar example previously, this time we use the lrand48()

function to generate of number sequence:

/* random.c */

#include <stdio.h>
#include <sys/types.h>
#include <time.h>

main()

164 CHAPTER 19. TIME FUNCTIONS

{ int i;

time t t1;

(void) time(&t1);

srand48((long) t1);

/* use time in seconds to set seed */

printf("5 random numbers

(Seed = %d):\n",(int) t1);

for (i=0;i<5;++i)

printf("%d ", lrand48());

printf("\n\n"); /* flush print buffer */

}

lrand48() returns non-negative long integers uniformly distributed over
the interval (0, 2**31).

A similar function drand48() returns double precision numbers in the
range [0.0,1.0).

srand48() sets the seed for these random number generators. It is impor-
tant to have different seeds when we call the functions otherwise the same set
of pseudo-random numbers will generated. time() always provides a unique
seed.

19.3 Exercises

Exercise 19.1 Write a C program that times a fragment of code in millisec-
onds.

Exercise 19.2 Write a C program to produce a series of floating point ran-
dom numbers in the ranges (a) 0.0 - 1.0 (b) 0.0 - n where n is any floating
point value. The seed should be set so that a unique sequence is guaranteed.

Chapter 20

Process Control:
<stdlib.h>,<unistd.h>

A process is basically a single running program. It may be a “system” pro-
gram (e.g login, update, csh) or program initiated by the user (textedit,
dbxtool or a user written one).

When UNIX runs a process it gives each process a unique number – a
process ID, pid.

The UNIX command ps will list all current processes running on your
machine and will list the pid.

The C function int getpid() will return the pid of process that called
this function.

A program usually runs as a single process. However later we will see how
we can make programs run as several separate communicating processes.

20.1 Running UNIX Commands from C

We can run commands from a C program just as if they were from the UNIX
command line by using the system() function. NOTE: this can save us a
lot of time and hassle as we can run other (proven) programs, scripts etc. to
do set tasks.

int system(char *string) — where string can be the name of a unix
utility, an executable shell script or a user program. System returns the exit

165

166 CHAPTER 20. PROCESS CONTROL: <STDLIB.H>,<UNISTD.H>

status of the shell. System is prototyped in <stdlib.h>

Example: Call ls from a program

main()

{ printf("Files in Directory are:\n");
system("ls -l");

}

system is a call that is made up of 3 other system calls: execl(), wait()

and fork() (which are prototyed in <unistd>)

20.2 execl()

execl has 5 other related functions — see man pages.
execl stands for execute and leave which means that a process will get

executed and then terminated by execl.
It is defined by:

execl(char *path, char *arg0,...,char *argn, 0);

The last parameter must always be 0. It is a NULL terminator. Since
the argument list is variable we must have some way of telling C when it is
to end. The NULL terminator does this job.

where path points to the name of a file holding a command that is to be
executed, argo points to a string that is the same as path (or at least its last
component.

arg1 ... argn are pointers to arguments for the command and 0 simply
marks the end of the (variable) list of arguments.

So our above example could look like this also:

main()

{ printf("Files in Directory are:\n");
execl(‘/bin/ls’’,"ls", "-l",0);

}

20.3. FORK() 167

20.3 fork()

int fork() turns a single process into 2 identical processes, known as the
parent and the child. On success, fork() returns 0 to the child process and
returns the process ID of the child process to the parent process. On failure,
fork() returns -1 to the parent process, sets errno to indicate the error, and
no child process is created.

NOTE: The child process will have its own unique PID.

The following program illustrates a simple use of fork, where two copies
are made and run together (multitasking)

main()

{ int return value;

printf("Forking process\n");
fork();

printf("The process id is %d

and return value is %d\",
getpid(), return value);

execl("/bin/ls/","ls","-l",0);

printf("This line is not printed\n");
}

The Output of this would be:

Forking process

The process id is 6753 and return value is 0

The process id is 6754 and return value is 0

two lists of files in current directory

NOTE: The processes have unique ID’s which will be different at each
run.

It also impossible to tell in advance which process will get to CPU’s time
— so one run may differ from the next.

168 CHAPTER 20. PROCESS CONTROL: <STDLIB.H>,<UNISTD.H>

When we spawn 2 processes we can easily detect (in each process) whether
it is the child or parent since fork returns 0 to the child. We can trap any
errors if fork returns a -1. i.e.:

int pid; /* process identifier */

pid = fork();

if (pid < 0)

{ printf("Cannot fork!!\n");
exit(1);

}
if (pid == 0)

{ /* Child process */ }
else

{ /* Parent process pid is child’s pid */

.... }

20.4 wait()

int wait (int *status location) — will force a parent process to wait
for a child process to stop or terminate. wait() return the pid of the child or
-1 for an error. The exit status of the child is returned to status location.

20.5 exit()

void exit(int status) — terminates the process which calls this function
and returns the exit status value. Both UNIX and C (forked) programs can
read the status value.

By convention, a status of 0 means normal termination any other value
indicates an error or unusual occurrence. Many standard library calls have
errors defined in the sys/stat.h header file. We can easily derive our own
conventions.

A complete example of forking program is originally titled fork.c:

20.5. EXIT() 169

/* fork.c - example of a fork in a program */

/* The program asks for UNIX commands to be typed and inputted to a string*/

/* The string is then "parsed" by locating blanks etc. */

/* Each command and sorresponding arguments are put in a args array */

/* execvp is called to execute these commands in child process */

/* spawned by fork() */

/* cc -o fork fork.c */

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

main()

{

char buf[1024];

char *args[64];

for (;;) {

/*

* Prompt for and read a command.

*/

printf("Command: ");

if (gets(buf) == NULL) {

printf("\n");

exit(0);

}

/*

* Split the string into arguments.

*/

parse(buf, args);

/*

* Execute the command.

*/

execute(args);

170 CHAPTER 20. PROCESS CONTROL: <STDLIB.H>,<UNISTD.H>

}

}

/*

* parse--split the command in buf into

* individual arguments.

*/

parse(buf, args)

char *buf;

char **args;

{

while (*buf != NULL) {

/*

* Strip whitespace. Use nulls, so

* that the previous argument is terminated

* automatically.

*/

while ((*buf == ’ ’) || (*buf == ’\t’))

*buf++ = NULL;

/*

* Save the argument.

*/

*args++ = buf;

/*

* Skip over the argument.

*/

while ((*buf != NULL) && (*buf != ’ ’) && (*buf != ’\t’))

buf++;

}

*args = NULL;

}

/*

* execute--spawn a child process and execute

* the program.

20.5. EXIT() 171

*/

execute(args)

char **args;

{

int pid, status;

/*

* Get a child process.

*/

if ((pid = fork()) < 0) {

perror("fork");

exit(1);

/* NOTE: perror() produces a short error message on the standard

error describing the last error encountered during a call to

a system or library function.

*/

}

/*

* The child executes the code inside the if.

*/

if (pid == 0) {

execvp(*args, args);

perror(*args);

exit(1);

/* NOTE: The execv() vnd execvp versions of execl() are useful when the

number of arguments is unknown in advance;

The arguments to execv() and execvp() are the name

of the file to be executed and a vector of strings contain-

ing the arguments. The last argument string must be fol-

lowed by a 0 pointer.

execlp() and execvp() are called with the same arguments as

execl() and execv(), but duplicate the shell’s actions in

searching for an executable file in a list of directories.

The directory list is obtained from the environment.

172 CHAPTER 20. PROCESS CONTROL: <STDLIB.H>,<UNISTD.H>

*/

}

/*

* The parent executes the wait.

*/

while (wait(&status) != pid)

/* empty */ ;

}

20.6 Exerises

Exercise 20.1 Use popen() to pipe the rwho (UNIX command) output into
more (UNIX command) in a C program.

Chapter 21

Interprocess Communication
(IPC), Pipes

We have now began to see how multiple processes may be running on a ma-
chine and maybe be controlled (spawned by fork() by one of our programs.

In numerous applications there is clearly a need for these processes to
communicate with each exchanging data or control information. There are
a few methods which can accomplish this task. We will consider:

• Pipes

• Signals

• Message Queues

• Semaphores

• Shared Memory

• Sockets

In this chapter, we will study the piping of two processes. We will study
the others in turn in subsequent chapters.

21.1 Piping in a C program: <stdio.h>

Piping is a process where the output one process is made the input of another.
We have seen examples of this from the UNIX command line using |.

173

174 CHAPTER 21. INTERPROCESS COMMUNICATION (IPC), PIPES

We will now see how we do this from C programs.

We will have two (or more) forked processes and will communicate be-
tween them.

We must first open a pipe

UNIX allows two ways of opening a pipe.

21.2 popen() — Formatted Piping

FILE *popen(char *command, char *type) — opens a pipe for I/O where
the command is the process that will be connected to the calling process thus
creating the pipe. The type is either “r” – for reading, or “w” for writing.

popen() returns is a stream pointer or NULL for any errors.

A pipe opened by popen() should always be closed by pclose(FILE

*stream).

We use fprintf() and fscanf() to communicate with the pipe’s stream.

21.3 pipe() — Low level Piping

int pipe(int fd[2]) — creates a pipe and returns two file descriptors,
fd[0], fd[1]. fd[0] is opened for reading, fd[1] for writing.

pipe() returns 0 on success, -1 on failure and sets errno accordingly.

The standard programming model is that after the pipe has been set up,
two (or more) cooperative processes will be created by a fork and data will
be passed using read() and write().

Pipes opened with pipe() should be closed with close(int fd).

Example: Parent writes to a child

int pdes[2];

pipe(pdes);

if (fork() == 0)

{ /* child */

21.3. PIPE() — LOW LEVEL PIPING 175

close(pdes[1]); /* not required */

read(pdes[0]); /* read from parent */

.....

}
else

{ close(pdes[0]); /* not required */

write(pdes[1]); /* write to child */

.....

}

An futher example of piping in a C program is plot.c and subroutines
and it performs as follows:

• The program has two modules plot.c (main) and plotter.c.

• The program relies on you having installed the freely gnuplot graph
drawing program in the directory /usr/local/bin/ (in the listing be-
low at least) — this path could easily be changed.

• The program plot.c calls gnuplot

• Two Data Stream is generated from Plot

– y = sin(x)

– y = sin(1/x)

• 2 Pipes created — 1 per Data Stream.

• ˚Gnuplot produces “live” drawing of output.

The code listing for plot.c is:

/* plot.c - example of unix pipe. Calls gnuplot graph drawing package to draw

graphs from within a C program. Info is piped to gnuplot */

/* Creates 2 pipes one will draw graphs of y=0.5 and y = random 0-1.0 */

/* the other graphs of y = sin (1/x) and y = sin x */

/* Also user a plotter.c module */

/* compile: cc -o plot plot.c plotter.c */

176 CHAPTER 21. INTERPROCESS COMMUNICATION (IPC), PIPES

#include "externals.h"

#include <signal.h>

#define DEG_TO_RAD(x) (x*180/M_PI)

double drand48();

void quit();

FILE *fp1, *fp2, *fp3, *fp4, *fopen();

main()

{ float i;

float y1,y2,y3,y4;

/* open files which will store plot data */

if (((fp1 = fopen("plot11.dat","w")) == NULL) ||

((fp2 = fopen("plot12.dat","w")) == NULL) ||

((fp3 = fopen("plot21.dat","w")) == NULL) ||

((fp4 = fopen("plot22.dat","w")) == NULL))

{ printf("Error can’t open one or more data files\n");

exit(1);

}

signal(SIGINT,quit); /* trap ctrl-c call quit fn */

StartPlot();

y1 = 0.5;

srand48(1); /* set seed */

for (i=0;;i+=0.01) /* increment i forever use ctrl-c to quit prog */

{ y2 = (float) drand48();

if (i == 0.0)

y3 = 0.0;

else

y3 = sin(DEG_TO_RAD(1.0/i));

y4 = sin(DEG_TO_RAD(i));

/* load files */

fprintf(fp1,"%f %f\n",i,y1);

21.3. PIPE() — LOW LEVEL PIPING 177

fprintf(fp2,"%f %f\n",i,y2);

fprintf(fp3,"%f %f\n",i,y3);

fprintf(fp4,"%f %f\n",i,y4);

/* make sure buffers flushed so that gnuplot */

/* reads up to data file */

fflush(fp1);

fflush(fp2);

fflush(fp3);

fflush(fp4);

/* plot graph */

PlotOne();

usleep(250); /* sleep for short time */

}

}

void quit()

{ printf("\nctrl-c caught:\n Shutting down pipes\n");

StopPlot();

printf("closing data files\n");

fclose(fp1);

fclose(fp2);

fclose(fp3);

fclose(fp4);

printf("deleting data files\n");

RemoveDat();

}

The plotter.c module is as follows:

/* plotter.c module */

/* contains routines to plot a data file produced by another program */

/* 2d data plotted in this version */

/**/

178 CHAPTER 21. INTERPROCESS COMMUNICATION (IPC), PIPES

#include "externals.h"

static FILE *plot1,

*plot2,

*ashell;

static char *startplot1 = "plot [] [0:1.1]’plot11.dat’ with lines,

’plot12.dat’ with lines\n";

static char *startplot2 = "plot ’plot21.dat’ with lines,

’plot22.dat’ with lines\n";

static char *replot = "replot\n";

static char *command1= "/usr/local/bin/gnuplot> dump1";

static char *command2= "/usr/local/bin/gnuplot> dump2";

static char *deletefiles = "rm plot11.dat plot12.dat plot21.dat plot22.dat";

static char *set_term = "set terminal x11\n";

void

StartPlot(void)

{ plot1 = popen(command1, "w");

fprintf(plot1, "%s", set_term);

fflush(plot1);

if (plot1 == NULL)

exit(2);

plot2 = popen(command2, "w");

fprintf(plot2, "%s", set_term);

fflush(plot2);

if (plot2 == NULL)

exit(2);

}

void

RemoveDat(void)

{ ashell = popen(deletefiles, "w");

exit(0);

}

21.3. PIPE() — LOW LEVEL PIPING 179

void

StopPlot(void)

{ pclose(plot1);

pclose(plot2);

}

void

PlotOne(void)

{ fprintf(plot1, "%s", startplot1);

fflush(plot1);

fprintf(plot2, "%s", startplot2);

fflush(plot2);

}

void

RePlot(void)

{ fprintf(plot1, "%s", replot);

fflush(plot1);

}

The header file externals.h contains the following:

/* externals.h */

#ifndef EXTERNALS

#define EXTERNALS

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/* prototypes */

void StartPlot(void);

void RemoveDat(void);

void StopPlot(void);

void PlotOne(void);

180 CHAPTER 21. INTERPROCESS COMMUNICATION (IPC), PIPES

void RePlot(void);

#endif

21.4 Exercises

Exercise 21.1 Setup a two-way pipe between parent and child processes in
a C program. i.e. both can send and receive signals.

Chapter 22

IPC:Interrupts and Signals:
<signal.h>

In this section will look at ways in which two processes can communicate.
When a process terminates abnormally it usually tries to send a signal in-
dicating what went wrong. C programs (and UNIX) can trap these for di-
agnostics. Also user specified communication can take place in this way.

Signals are software generated interrupts that are sent to a process when
a event happens. Signals can be synchronously generated by an error in an
application, such as SIGFPE and SIGSEGV, but most signals are asynchronous.
Signals can be posted to a process when the system detects a software event,
such as a user entering an interrupt or stop or a kill request from another
process. Signals can also be come directly from the OS kernel when a hard-
ware event such as a bus error or an illegal instruction is encountered. The
system defines a set of signals that can be posted to a process. Signal deliv-
ery is analogous to hardware interrupts in that a signal can be blocked from
being delivered in the future. Most signals cause termination of the receiving
process if no action is taken by the process in response to the signal. Some
signals stop the receiving process and other signals can be ignored. Each
signal has a default action which is one of the following:

• The signal is discarded after being received

• The process is terminated after the signal is received

• A core file is written, then the process is terminated

181

182 CHAPTER 22. IPC:INTERRUPTS AND SIGNALS: <SIGNAL.H>

• Stop the process after the signal is received

Each signal defined by the system falls into one of five classes:

• Hardware conditions

• Software conditions

• Input/output notification

• Process control

• Resource control

Macros are defined in <signal.h> header file for common signals.

These include:
SIGHUP 1 /* hangup */ SIGINT 2 /* interrupt */
SIGQUIT 3 /* quit */ SIGILL 4 /* illegal instruction */
SIGABRT 6 /* used by abort */ SIGKILL 9 /* hard kill */
SIGALRM 14 /* alarm clock */
SIGCONT 19 /* continue a stopped process */
SIGCHLD 20 /* to parent on child stop or exit */

Signals can be numbered from 0 to 31.

22.1 Sending Signals — kill(), raise()

There are two common functions used to send signals
int kill(int pid, int signal) – a system call that send a signal to

a process, pid. If pid is greater than zero, the signal is sent to the process
whose process ID is equal to pid. If pid is 0, the signal is sent to all processes,
except system processes.

kill() returns 0 for a successful call, -1 otherwise and sets errno accord-
ingly.

int raise(int sig) sends the signal sig to the executing program. raise()
actually uses kill() to send the signal to the executing program:

kill(getpid(), sig);

22.2. SIGNAL HANDLING — SIGNAL() 183

There is also a UNIX command called kill that can be used to send signals
from the command line – see man pages.

NOTE: that unless caught or ignored, the kill signal terminates the
process. Therefore protection is built into the system.

Only processes with certain access privileges can be killed off.

Basic rule: only processes that have the same user can send/receive mes-
sages.

The SIGKILL signal cannot be caught or ignored and will always terminate
a process.

For examplekill(getpid(),SIGINT); would send the interrupt signal to
the id of the calling process.

This would have a similar effect to exit() command. Also ctrl-c typed
from the command sends a SIGINT to the process currently being.

unsigned int alarm(unsigned int seconds) — sends the signal SIGALRM
to the invoking process after seconds seconds.

22.2 Signal Handling — signal()

An application program can specify a function called a signal handler to be
invoked when a specific signal is received. When a signal handler is invoked
on receipt of a signal, it is said to catch the signal. A process can deal with
a signal in one of the following ways:

• The process can let the default action happen

• The process can block the signal (some signals cannot be ignored)

• the process can catch the signal with a handler.

Signal handlers usually execute on the current stack of the process. This lets
the signal handler return to the point that execution was interrupted in the
process. This can be changed on a per-signal basis so that a signal handler
executes on a special stack. If a process must resume in a different context
than the interrupted one, it must restore the previous context itself

Receiving signals is straighforward with the function:

184 CHAPTER 22. IPC:INTERRUPTS AND SIGNALS: <SIGNAL.H>

int (*signal(int sig, void (*func)()))() — that is to say the func-
tion signal() will call the func functions if the process receives a signal sig.
Signal returns a pointer to function func if successful or it returns an error
to errno and -1 otherwise.

func() can have three values:

SIG DFL — a pointer to a system default function SID DFL(), which will
terminate the process upon receipt of sig.

SIG IGN — a pointer to system ignore function SIG IGN() which will disre-
gard the sig action (UNLESS it is SIGKILL).

A function address — a user specified function.

SIG DFL and SIG IGN are defined in signal.h (standard library) header
file.

Thus to ignore a ctrl-c command from the command line. we could do:

signal(SIGINT, SIG IGN);

TO reset system so that SIGINT causes a termination at any place in our
program, we would do:

signal(SIGINT, SIG DFL);

So lets write a program to trap a ctrl-c but not quit on this signal. We
have a function sigproc() that is executed when we trap a ctrl-c. We will
also set another function to quit the program if it traps the SIGQUIT signal
so we can terminate our program:

#include <stdio.h>

void sigproc(void);

void quitproc(void);

main()

{ signal(SIGINT, sigproc);

signal(SIGQUIT, quitproc);

22.3. SIG TALK.C — COMPLETE EXAMPLE PROGRAM 185

printf("ctrl-c disabled use ctrl-\\ to quit \n");
for(;;); /* infinite loop */ }

void sigproc()

{ signal(SIGINT, sigproc); /* */

/* NOTE some versions of UNIX will reset signal to default

after each call. So for portability reset signal each time */

printf("you have pressed ctrl-c \n");
}

void quitproc()

{ printf("ctrl-\\ pressed to quit\n");
exit(0); /* normal exit status */

}

22.3 sig talk.c — complete example pro-

gram

Let us now write a program that communicates between child and parent
processes using kill() and signal().

fork() creates the child process from the parent. The pid can be checked
to decide whether it is the child (== 0) or the parent (pid = child process
id).

The parent can then send messages to child using the pid and kill().

The child picks up these signals with signal() and calls appropriate
functions.

An example of communicating process using signals is sig talk.c:

/* sig_talk.c --- Example of how 2 processes can talk */

/* to each other using kill() and signal() */

/* We will fork() 2 process and let the parent send a few */

/* signals to it‘s child */

186 CHAPTER 22. IPC:INTERRUPTS AND SIGNALS: <SIGNAL.H>

/* cc sig_talk.c -o sig_talk */

#include <stdio.h>

#include <signal.h>

void sighup(); /* routines child will call upon sigtrap */

void sigint();

void sigquit();

main()

{ int pid;

/* get child process */

if ((pid = fork()) < 0) {

perror("fork");

exit(1);

}

if (pid == 0)

{ /* child */

signal(SIGHUP,sighup); /* set function calls */

signal(SIGINT,sigint);

signal(SIGQUIT, sigquit);

for(;;); /* loop for ever */

}

else /* parent */

{ /* pid hold id of child */

printf("\nPARENT: sending SIGHUP\n\n");

kill(pid,SIGHUP);

sleep(3); /* pause for 3 secs */

printf("\nPARENT: sending SIGINT\n\n");

kill(pid,SIGINT);

sleep(3); /* pause for 3 secs */

printf("\nPARENT: sending SIGQUIT\n\n");

kill(pid,SIGQUIT);

sleep(3);

22.4. OTHER SIGNAL FUNCTIONS 187

}

}

void sighup()

{ signal(SIGHUP,sighup); /* reset signal */

printf("CHILD: I have received a SIGHUP\n");

}

void sigint()

{ signal(SIGINT,sigint); /* reset signal */

printf("CHILD: I have received a SIGINT\n");

}

void sigquit()

{ printf("My DADDY has Killed me!!!\n");

exit(0);

}

22.4 Other signal functions

There are a few other functions defined in signal.h:
int sighold(int sig) — adds sig to the calling process’s signal mask
int sigrelse(int sig) — removes sig from the calling process’s signal

mask
int sigignore(int sig) — sets the disposition of sig to SIG IGN

int sigpause(int sig) — removes sig from the calling process’s signal
mask and suspends the calling process until a signal is received

188 CHAPTER 22. IPC:INTERRUPTS AND SIGNALS: <SIGNAL.H>

Chapter 23

IPC:Message
Queues:<sys/msg.h>

The basic idea of a message queue is a simple one.
Two (or more) processes can exchange information via access to a com-

mon system message queue. The sending process places via some (OS)
message-passing module a message onto a queue which can be read by an-
other process (Figure 23.1). Each message is given an identification or type
so that processes can select the appropriate message. Process must share a
common key in order to gain access to the queue in the first place (subject
to other permissions — see below).

IPC messaging lets processes send and receive messages, and queue mes-
sages for processing in an arbitrary order. Unlike the file byte-stream data
flow of pipes, each IPC message has an explicit length. Messages can be
assigned a specific type. Because of this, a server process can direct message
traffic between clients on its queue by using the client process PID as the
message type. For single-message transactions, multiple server processes can
work in parallel on transactions sent to a shared message queue.

Before a process can send or receive a message, the queue must be ini-
tialized (through the msgget function see below) Operations to send and
receive messages are performed by the msgsnd() and msgrcv() functions,
respectively.

When a message is sent, its text is copied to the message queue. The
msgsnd() and msgrcv() functions can be performed as either blocking or
non-blocking operations. Non-blocking operations allow for asynchronous
message transfer — the process is not suspended as a result of sending or

189

190 CHAPTER 23. IPC:MESSAGE QUEUES:<SYS/MSG.H>

Figure 23.1: Basic Message Passing

23.1. INITIALISING THE MESSAGE QUEUE 191

receiving a message. In blocking or synchronous message passing the sending
process cannot continue until the message has been transferred or has even
been acknowledged by a receiver. IPC signal and other mechanisms can be
employed to implement such transfer. A blocked message operation remains
suspended until one of the following three conditions occurs:

• The call succeeds.

• The process receives a signal.

• The queue is removed.

23.1 Initialising the Message Queue

The msgget() function initializes a new message queue:

int msgget(key_t key, int msgflg)

It can also return the message queue ID (msqid) of the queue correspond-
ing to the key argument. The value passed as the msgflg argument must be
an octal integer with settings for the queue’s permissions and control flags.

The following code illustrates the msgget() function.

#include <sys/ipc.h>;

#include <sys/msg.h>;

...

key_t key; /* key to be passed to msgget() */

int msgflg /* msgflg to be passed to msgget() */

int msqid; /* return value from msgget() */

...

key = ...

msgflg = ...

if ((msqid = msgget(key, msgflg)) == –1)

{

192 CHAPTER 23. IPC:MESSAGE QUEUES:<SYS/MSG.H>

perror("msgget: msgget failed");

exit(1);

} else

(void) fprintf(stderr, “msgget succeeded");

...

23.2 IPC Functions, Key Arguments, and Cre-

ation Flags: <sys/ipc.h>

Processes requesting access to an IPC facility must be able to identify it.
To do this, functions that initialize or provide access to an IPC facility
use a key t key argument. (key t is essentially an int type defined in
<sys/types.h>

The key is an arbitrary value or one that can be derived from a common
seed at run time. One way is with ftok() , which converts a filename to a
key value that is unique within the system. Functions that initialize or get
access to messages (also semaphores or shared memory see later) return an
ID number of type int. IPC functions that perform read, write, and control
operations use this ID. If the key argument is specified as IPC PRIVATE,
the call initializes a new instance of an IPC facility that is private to the
creating process. When the IPC CREAT flag is supplied in the flags argument
appropriate to the call, the function tries to create the facility if it does not
exist already. When called with both the IPC CREAT and IPC EXCL flags, the
function fails if the facility already exists. This can be useful when more
than one process might attempt to initialize the facility. One such case
might involve several server processes having access to the same facility. If
they all attempt to create the facility with IPC EXCL in effect, only the first
attempt succeeds. If neither of these flags is given and the facility already
exists, the functions to get access simply return the ID of the facility. If
IPC CREAT is omitted and the facility is not already initialized, the calls fail.
These control flags are combined, using logical (bitwise) OR, with the octal
permission modes to form the flags argument. For example, the statement
below initializes a new message queue if the queue does not exist.

msqid = msgget(ftok("/tmp",

key), (IPC_CREAT | IPC_EXCL | 0400));

23.3. CONTROLLING MESSAGE QUEUES 193

The first argument evaluates to a key based on the string (”/tmp”). The
second argument evaluates to the combined permissions and control flags.

23.3 Controlling message queues

The msgctl() function alters the permissions and other characteristics of a
message queue. The owner or creator of a queue can change its ownership or
permissions using msgctl() Also, any process with permission to do so can
use msgctl() for control operations.

The msgctl() function is prototypes as follows:

int msgctl(int msqid, int cmd, struct msqid_ds *buf)

The msqid argument must be the ID of an existing message queue. The
cmd argument is one of:

IPC STAT — Place information about the status of the queue in the data
structure pointed to by buf. The process must have read permission
for this call to succeed.

IPC SET — Set the owner’s user and group ID, the permissions, and the
size (in number of bytes) of the message queue. A process must have
the effective user ID of the owner, creator, or superuser for this call to
succeed.

IPC RMID — Remove the message queue specified by the msqid argument.

The following code illustrates the msgctl() function with all its various
flags:

#include<sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

...

if (msgctl(msqid, IPC_STAT, &buf) == -1) {

perror("msgctl: msgctl failed");

exit(1);

}

...

194 CHAPTER 23. IPC:MESSAGE QUEUES:<SYS/MSG.H>

if (msgctl(msqid, IPC_SET, &buf) == -1) {

perror("msgctl: msgctl failed");

exit(1);

}

...

23.4 Sending and Receiving Messages

The msgsnd() and msgrcv() functions send and receive messages, respec-
tively:

int msgsnd(int msqid, const void *msgp, size_t msgsz,

int msgflg);

int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,

int msgflg);

The msqid argument must be the ID of an existing message queue. The
msgp argument is a pointer to a structure that contains the type of the
message and its text. The structure below is an example of what this user-
defined buffer might look like:

struct mymsg {

long mtype; /* message type */

char mtext[MSGSZ]; /* message text of length MSGSZ */

}

The msgsz argument specifies the length of the message in bytes.
The structure member msgtype is the received message’s type as specified

by the sending process.
The argument msgflg specifies the action to be taken if one or more of

the following are true:

• The number of bytes already on the queue is equal to msg qbytes.

• The total number of messages on all queues system-wide is equal to the
system-imposed limit.

These actions are as follows:

23.4. SENDING AND RECEIVING MESSAGES 195

• If (msgflg & IPC NOWAIT) is non-zero, the message will not be sent
and the calling process will return immediately.

• If (msgflg & IPC NOWAIT) is 0, the calling process will suspend execu-
tion until one of the following occurs:

– The condition responsible for the suspension no longer exists, in
which case the message is sent.

– The message queue identifier msqid is removed from the system;
when this occurs, errno is set equal to EIDRM and -1 is returned.

– The calling process receives a signal that is to be caught; in this
case the message is not sent and the calling process resumes exe-
cution.

Upon successful completion, the following actions are taken with re-
spect to the data structure associated with msqid:

– msg qnum is incremented by 1.

– msg lspid is set equal to the process ID of the calling process.

– msg stime is set equal to the current time.

The following code illustrates msgsnd() and msgrcv():

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

...

int msgflg; /* message flags for the operation */

struct msgbuf *msgp; /* pointer to the message buffer */

int msgsz; /* message size */

long msgtyp; /* desired message type */

int msqid /* message queue ID to be used */

...

msgp = (struct msgbuf *)malloc((unsigned)(sizeof(struct msgbuf)

196 CHAPTER 23. IPC:MESSAGE QUEUES:<SYS/MSG.H>

- sizeof msgp->mtext + maxmsgsz));

if (msgp == NULL) {

(void) fprintf(stderr, "msgop: %s %d byte messages.\n",

"could not allocate message buffer for", maxmsgsz);

exit(1);

...

msgsz = ...

msgflg = ...

if (msgsnd(msqid, msgp, msgsz, msgflg) == -1)

perror("msgop: msgsnd failed");

...

msgsz = ...

msgtyp = first_on_queue;

msgflg = ...

if (rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg) == -1)

perror("msgop: msgrcv failed");

...

23.5 POSIX Messages: <mqueue.h>

The POSIX message queue functions are:
mq open() — Connects to, and optionally creates, a named message

queue.
mq close() — Ends the connection to an open message queue.
mq unlink() — Ends the connection to an open message queue and

causes the queue to be removed when the last process closes it.
mq send() — Places a message in the queue.
mq receive() — Receives (removes) the oldest, highest priority message

from the queue.
mq notify() — Notifies a process or thread that a message is available

in the queue.
mq setattr() — Set or get message queue attributes.

23.6. EXAMPLE: SENDINGMESSAGES BETWEEN TWOPROCESSES197

The basic operation of these functions is as described above. For full
function prototypes and further information see the UNIX man pages

23.6 Example: Sending messages between two

processes

The following two programs should be compiled and run at the same time to
illustrate basic principle of message passing:

message send.c — Creates a message queue and sends one message to the
queue.

message rec.c — Reads the message from the queue.

23.6.1 message send.c — creating and sending to a sim-
ple message queue

The full code listing for message send.c is as follows:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <stdio.h>

#include <string.h>

#define MSGSZ 128

/*

* Declare the message structure.

*/

typedef struct msgbuf {

long mtype;

char mtext[MSGSZ];

} message_buf;

198 CHAPTER 23. IPC:MESSAGE QUEUES:<SYS/MSG.H>

main()

{

int msqid;

int msgflg = IPC_CREAT | 0666;

key_t key;

message_buf sbuf;

size_t buf_length;

/*

* Get the message queue id for the

* "name" 1234, which was created by

* the server.

*/

key = 1234;

(void) fprintf(stderr, "\nmsgget: Calling msgget(%#lx,\

%#o)\n",

key, msgflg);

if ((msqid = msgget(key, msgflg)) < 0) {

perror("msgget");

exit(1);

}

else

(void) fprintf(stderr,"msgget: msgget succeeded: msqid = %d\n", msqid);

/*

* We’ll send message type 1

*/

sbuf.mtype = 1;

(void) fprintf(stderr,"msgget: msgget succeeded: msqid = %d\n", msqid);

(void) strcpy(sbuf.mtext, "Did you get this?");

(void) fprintf(stderr,"msgget: msgget succeeded: msqid = %d\n", msqid);

23.6. EXAMPLE: SENDINGMESSAGES BETWEEN TWOPROCESSES199

buf_length = strlen(sbuf.mtext) ;

/*

* Send a message.

*/

if (msgsnd(msqid, &sbuf, buf_length, IPC_NOWAIT) < 0) {

printf ("%d, %d, %s, %d\n", msqid, sbuf.mtype, sbuf.mtext, buf_length);

perror("msgsnd");

exit(1);

}

else

printf("Message: \"%s\" Sent\n", sbuf.mtext);

exit(0);

}

The essential points to note here are:

• The Message queue is created with a basic key and message flag msgflg

= IPC CREAT | 0666 — create queue and make it read and appendable
by all.

• A message of type (sbuf.mtype) 1 is sent to the queue with the message
“Did you get this?”

23.6.2 message rec.c — receiving the above message

The full code listing for message send.c’s companion process, message rec.c

is as follows:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <stdio.h>

200 CHAPTER 23. IPC:MESSAGE QUEUES:<SYS/MSG.H>

#define MSGSZ 128

/*

* Declare the message structure.

*/

typedef struct msgbuf {

long mtype;

char mtext[MSGSZ];

} message_buf;

main()

{

int msqid;

key_t key;

message_buf rbuf;

/*

* Get the message queue id for the

* "name" 1234, which was created by

* the server.

*/

key = 1234;

if ((msqid = msgget(key, 0666)) < 0) {

perror("msgget");

exit(1);

}

/*

* Receive an answer of message type 1.

*/

if (msgrcv(msqid, &rbuf, MSGSZ, 1, 0) < 0) {

perror("msgrcv");

23.7. SOME FURTHER EXAMPLE MESSAGE QUEUE PROGRAMS201

exit(1);

}

/*

* Print the answer.

*/

printf("%s\n", rbuf.mtext);

exit(0);

}

The essential points to note here are:

• The Message queue is opened with msgget (message flag 0666) and the
same key as message send.c.

• A message of the same type 1 is received from the queue with the
message “Did you get this?” stored in rbuf.mtext.

23.7 Some further example message queue pro-

grams

The following suite of programs can be used to investigate interactively a
variety of massage passing ideas (see exercises below).

The message queue must be initialised with the msgget.c program. The
effects of controlling the queue and sending and receiving messages can be
investigated with msgctl.c and msgop.c respectively.

23.7.1 msgget.c: Simple Program to illustrate msget()

/*

* msgget.c: Illustrate the msgget() function.

* This is a simple exerciser of the msgget() function. It prompts

* for the arguments, makes the call, and reports the results.

*/

#include <stdio.h>

202 CHAPTER 23. IPC:MESSAGE QUEUES:<SYS/MSG.H>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

extern void exit();

extern void perror();

main()

{

key_t key; /* key to be passed to msgget() */

int msgflg, /* msgflg to be passed to msgget() */

msqid; /* return value from msgget() */

(void) fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);

(void) fprintf(stderr, "Enter key: ");

(void) scanf("%li", &key);

(void) fprintf(stderr, "\nExpected flags for msgflg argument

are:\n");

(void) fprintf(stderr, "\tIPC_EXCL =\t%#8.8o\n", IPC_EXCL);

(void) fprintf(stderr, "\tIPC_CREAT =\t%#8.8o\n", IPC_CREAT);

(void) fprintf(stderr, "\towner read =\t%#8.8o\n", 0400);

(void) fprintf(stderr, "\towner write =\t%#8.8o\n", 0200);

(void) fprintf(stderr, "\tgroup read =\t%#8.8o\n", 040);

(void) fprintf(stderr, "\tgroup write =\t%#8.8o\n", 020);

(void) fprintf(stderr, "\tother read =\t%#8.8o\n", 04);

(void) fprintf(stderr, "\tother write =\t%#8.8o\n", 02);

(void) fprintf(stderr, "Enter msgflg value: ");

(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "\nmsgget: Calling msgget(%#lx,

%#o)\n",

key, msgflg);

23.7. SOME FURTHER EXAMPLE MESSAGE QUEUE PROGRAMS203

if ((msqid = msgget(key, msgflg)) == -1)

{

perror("msgget: msgget failed");

exit(1);

} else {

(void) fprintf(stderr,

"msgget: msgget succeeded: msqid = %d\n", msqid);

exit(0);

}

}

23.7.2 msgctl.cSample Program to Illustrate msgctl()

/*

* msgctl.c: Illustrate the msgctl() function.

*

* This is a simple exerciser of the msgctl() function. It allows

* you to perform one control operation on one message queue. It

* gives up immediately if any control operation fails, so be

careful

* not to set permissions to preclude read permission; you won’t

be

* able to reset the permissions with this code if you do.

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <time.h>

static void do_msgctl();

extern void exit();

extern void perror();

static char warning_message[] = "If you remove read permission

for \

yourself, this program will fail frequently!";

204 CHAPTER 23. IPC:MESSAGE QUEUES:<SYS/MSG.H>

main()

{

struct msqid_ds buf; /* queue descriptor buffer for IPC_STAT

and IP_SET commands */

int cmd, /* command to be given to msgctl() */

msqid; /* queue ID to be given to msgctl() */

(void fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the msqid and cmd arguments for the msgctl() call. */

(void) fprintf(stderr,

"Please enter arguments for msgctls() as requested.");

(void) fprintf(stderr, "\nEnter the msqid: ");

(void) scanf("%i", &msqid);

(void) fprintf(stderr, "\tIPC_RMID = %d\n", IPC_RMID);

(void) fprintf(stderr, "\tIPC_SET = %d\n", IPC_SET);

(void) fprintf(stderr, "\tIPC_STAT = %d\n", IPC_STAT);

(void) fprintf(stderr, "\nEnter the value for the command: ");

(void) scanf("%i", &cmd);

switch (cmd) {

case IPC_SET:

/* Modify settings in the message queue control structure.

*/

(void) fprintf(stderr, "Before IPC_SET, get current

values:");

/* fall through to IPC_STAT processing */

case IPC_STAT:

/* Get a copy of the current message queue control

* structure and show it to the user. */

do_msgctl(msqid, IPC_STAT, &buf);

(void) fprintf(stderr,]

23.7. SOME FURTHER EXAMPLE MESSAGE QUEUE PROGRAMS205

"msg_perm.uid = %d\n", buf.msg_perm.uid);

(void) fprintf(stderr,

"msg_perm.gid = %d\n", buf.msg_perm.gid);

(void) fprintf(stderr,

"msg_perm.cuid = %d\n", buf.msg_perm.cuid);

(void) fprintf(stderr,

"msg_perm.cgid = %d\n", buf.msg_perm.cgid);

(void) fprintf(stderr, "msg_perm.mode = %#o, ",

buf.msg_perm.mode);

(void) fprintf(stderr, "access permissions = %#o\n",

buf.msg_perm.mode & 0777);

(void) fprintf(stderr, "msg_cbytes = %d\n",

buf.msg_cbytes);

(void) fprintf(stderr, "msg_qbytes = %d\n",

buf.msg_qbytes);

(void) fprintf(stderr, "msg_qnum = %d\n", buf.msg_qnum);

(void) fprintf(stderr, "msg_lspid = %d\n",

buf.msg_lspid);

(void) fprintf(stderr, "msg_lrpid = %d\n",

buf.msg_lrpid);

(void) fprintf(stderr, "msg_stime = %s", buf.msg_stime ?

ctime(&buf.msg_stime) : "Not Set\n");

(void) fprintf(stderr, "msg_rtime = %s", buf.msg_rtime ?

ctime(&buf.msg_rtime) : "Not Set\n");

(void) fprintf(stderr, "msg_ctime = %s",

ctime(&buf.msg_ctime));

if (cmd == IPC_STAT)

break;

/* Now continue with IPC_SET. */

(void) fprintf(stderr, "Enter msg_perm.uid: ");

(void) scanf ("%hi", &buf.msg_perm.uid);

(void) fprintf(stderr, "Enter msg_perm.gid: ");

(void) scanf("%hi", &buf.msg_perm.gid);

(void) fprintf(stderr, "%s\n", warning_message);

(void) fprintf(stderr, "Enter msg_perm.mode: ");

(void) scanf("%hi", &buf.msg_perm.mode);

(void) fprintf(stderr, "Enter msg_qbytes: ");

(void) scanf("%hi", &buf.msg_qbytes);

206 CHAPTER 23. IPC:MESSAGE QUEUES:<SYS/MSG.H>

do_msgctl(msqid, IPC_SET, &buf);

break;

case IPC_RMID:

default:

/* Remove the message queue or try an unknown command. */

do_msgctl(msqid, cmd, (struct msqid_ds *)NULL);

break;

}

exit(0);

}

/*

* Print indication of arguments being passed to msgctl(), call

* msgctl(), and report the results. If msgctl() fails, do not

* return; this example doesn’t deal with errors, it just reports

* them.

*/

static void

do_msgctl(msqid, cmd, buf)

struct msqid_ds *buf; /* pointer to queue descriptor buffer */

int cmd, /* command code */

msqid; /* queue ID */

{

register int rtrn; /* hold area for return value from msgctl()

*/

(void) fprintf(stderr, "\nmsgctl: Calling msgctl(%d, %d,

%s)\n",

msqid, cmd, buf ? "&buf" : "(struct msqid_ds *)NULL");

rtrn = msgctl(msqid, cmd, buf);

if (rtrn == -1) {

perror("msgctl: msgctl failed");

exit(1);

} else {

(void) fprintf(stderr, "msgctl: msgctl returned %d\n",

rtrn);

}

}

23.7. SOME FURTHER EXAMPLE MESSAGE QUEUE PROGRAMS207

23.7.3 msgop.c: Sample Program to Illustrate msgsnd()

and msgrcv()

/*

* msgop.c: Illustrate the msgsnd() and msgrcv() functions.

*

* This is a simple exerciser of the message send and receive

* routines. It allows the user to attempt to send and receive as

many

* messages as wanted to or from one message queue.

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

static int ask();

extern void exit();

extern char *malloc();

extern void perror();

char first_on_queue[] = "-> first message on queue",

full_buf[] = "Message buffer overflow. Extra message text\

discarded.";

main()

{

register int c; /* message text input */

int choice; /* user’s selected operation code */

register int i; /* loop control for mtext */

int msgflg; /* message flags for the operation */

struct msgbuf *msgp; /* pointer to the message buffer */

int msgsz; /* message size */

long msgtyp; /* desired message type */

208 CHAPTER 23. IPC:MESSAGE QUEUES:<SYS/MSG.H>

int msqid, /* message queue ID to be used */

maxmsgsz, /* size of allocated message buffer */

rtrn; /* return value from msgrcv or msgsnd */

(void) fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the message queue ID and set up the message buffer. */

(void) fprintf(stderr, "Enter msqid: ");

(void) scanf("%i", &msqid);

/*

* Note that <sys/msg.h> includes a definition of struct

msgbuf

* with the mtext field defined as:

* char mtext[1];

* therefore, this definition is only a template, not a

structure

* definition that you can use directly, unless you want only

to

* send and receive messages of 0 or 1 byte. To handle this,

* malloc an area big enough to contain the template - the size

* of the mtext template field + the size of the mtext field

* wanted. Then you can use the pointer returned by malloc as a

* struct msgbuf with an mtext field of the size you want. Note

* also that sizeof msgp->mtext is valid even though msgp

isn’t

* pointing to anything yet. Sizeof doesn’t dereference msgp,

but

* uses its type to figure out what you are asking about.

*/

(void) fprintf(stderr,

"Enter the message buffer size you want:");

(void) scanf("%i", &maxmsgsz);

if (maxmsgsz < 0) {

(void) fprintf(stderr, "msgop: %s\n",

"The message buffer size must be >= 0.");

23.7. SOME FURTHER EXAMPLE MESSAGE QUEUE PROGRAMS209

exit(1);

}

msgp = (struct msgbuf *)malloc((unsigned)(sizeof(struct

msgbuf)

- sizeof msgp->mtext + maxmsgsz));

if (msgp == NULL) {

(void) fprintf(stderr, "msgop: %s %d byte messages.\n",

"could not allocate message buffer for", maxmsgsz);

exit(1);

}

/* Loop through message operations until the user is ready to

quit. */

while (choice = ask()) {

switch (choice) {

case 1: /* msgsnd() requested: Get the arguments, make the

call, and report the results. */

(void) fprintf(stderr, "Valid msgsnd message %s\n",

"types are positive integers.");

(void) fprintf(stderr, "Enter msgp->mtype: ");

(void) scanf("%li", &msgp->mtype);

if (maxmsgsz) {

/* Since you’ve been using scanf, you need the loop

below to throw away the rest of the input on the

line after the entered mtype before you start

reading the mtext. */

while ((c = getchar()) != ’\n’ && c != EOF);

(void) fprintf(stderr, "Enter a %s:\n",

"one line message");

for (i = 0; ((c = getchar()) != ’\n’); i++) {

if (i >= maxmsgsz) {

(void) fprintf(stderr, "\n%s\n", full_buf);

while ((c = getchar()) != ’\n’);

break;

}

msgp->mtext[i] = c;

}

msgsz = i;

} else

210 CHAPTER 23. IPC:MESSAGE QUEUES:<SYS/MSG.H>

msgsz = 0;

(void) fprintf(stderr,"\nMeaningful msgsnd flag is:\n");

(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",

IPC_NOWAIT);

(void) fprintf(stderr, "Enter msgflg: ");

(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "%s(%d, msgp, %d, %#o)\n",

"msgop: Calling msgsnd", msqid, msgsz, msgflg);

(void) fprintf(stderr, "msgp->mtype = %ld\n",

msgp->mtype);

(void) fprintf(stderr, "msgp->mtext = \"");

for (i = 0; i < msgsz; i++)

(void) fputc(msgp->mtext[i], stderr);

(void) fprintf(stderr, "\"\n");

rtrn = msgsnd(msqid, msgp, msgsz, msgflg);

if (rtrn == -1)

perror("msgop: msgsnd failed");

else

(void) fprintf(stderr,

"msgop: msgsnd returned %d\n", rtrn);

break;

case 2: /* msgrcv() requested: Get the arguments, make the

call, and report the results. */

for (msgsz = -1; msgsz < 0 || msgsz > maxmsgsz;

(void) scanf("%i", &msgsz))

(void) fprintf(stderr, "%s (0 <= msgsz <= %d): ",

"Enter msgsz", maxmsgsz);

(void) fprintf(stderr, "msgtyp meanings:\n");

(void) fprintf(stderr, "\t 0 %s\n", first_on_queue);

(void) fprintf(stderr, "\t>0 %s of given type\n",

first_on_queue);

(void) fprintf(stderr, "\t<0 %s with type <= |msgtyp|\n",

first_on_queue);

(void) fprintf(stderr, "Enter msgtyp: ");

(void) scanf("%li", &msgtyp);

(void) fprintf(stderr,

"Meaningful msgrcv flags are:\n");

(void) fprintf(stderr, "\tMSG_NOERROR =\t%#8.8o\n",

23.7. SOME FURTHER EXAMPLE MESSAGE QUEUE PROGRAMS211

MSG_NOERROR);

(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",

IPC_NOWAIT);

(void) fprintf(stderr, "Enter msgflg: ");

(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "%s(%d, msgp, %d, %ld, %#o);\n",

"msgop: Calling msgrcv", msqid, msgsz,

msgtyp, msgflg);

rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg);

if (rtrn == -1)

perror("msgop: msgrcv failed");

else {

(void) fprintf(stderr, "msgop: %s %d\n",

"msgrcv returned", rtrn);

(void) fprintf(stderr, "msgp->mtype = %ld\n",

msgp->mtype);

(void) fprintf(stderr, "msgp->mtext is: \"");

for (i = 0; i < rtrn; i++)

(void) fputc(msgp->mtext[i], stderr);

(void) fprintf(stderr, "\"\n");

}

break;

default:

(void) fprintf(stderr, "msgop: operation unknown\n");

break;

}

}

exit(0);

}

/*

* Ask the user what to do next. Return the user’s choice code.

* Don’t return until the user selects a valid choice.

*/

static

ask()

{

int response; /* User’s response. */

212 CHAPTER 23. IPC:MESSAGE QUEUES:<SYS/MSG.H>

do {

(void) fprintf(stderr, "Your options are:\n");

(void) fprintf(stderr, "\tExit =\t0 or Control-D\n");

(void) fprintf(stderr, "\tmsgsnd =\t1\n");

(void) fprintf(stderr, "\tmsgrcv =\t2\n");

(void) fprintf(stderr, "Enter your choice: ");

/* Preset response so "^D" will be interpreted as exit. */

response = 0;

(void) scanf("%i", &response);

} while (response < 0 || response > 2);

return(response);

}

23.8 Exercises

Exercise 23.1 Write a 2 programs that will both send and messages and
construct the following dialog between them

• (Process 1) Sends the message ”Are you hearing me?”

• (Process 2) Receives the message and replies ”Loud and Clear”.

• (Process 1) Receives the reply and then says ”I can hear you too”.

Exercise 23.2 Compile the programs msgget.c, msgctl.c and msgop.c

and then

• investigate and understand fully the operations of the flags (access, cre-
ation etc. permissions) you can set interactively in the programs.

• Use the programs to:

– Send and receive messages of two different message types.

23.8. EXERCISES 213

– Place several messages on the queue and inquire about the state
of the queue with msgctl.c. Add/delete a few messages (using
msgop.c and perform the inquiry once more.

– Use msgctl.c to alter a message on the queue.

– Use msgctl.c to delete a message from the queue.

Exercise 23.3 Write a server program and two client programs so that the
server can communicate privately to each client individually via a single mes-
sage queue.

Exercise 23.4 Implement a blocked or synchronous method of message pass-
ing using signal interrupts.

214 CHAPTER 23. IPC:MESSAGE QUEUES:<SYS/MSG.H>

Chapter 24

IPC:Semaphores

Semaphores are a programming construct designed by E. W. Dijkstra in
the late 1960s. Dijkstra’s model was the operation of railroads: consider
a stretch of railroad in which there is a single track over which only one
train at a time is allowed. Guarding this track is a semaphore. A train
must wait before entering the single track until the semaphore is in a state
that permits travel. When the train enters the track, the semaphore changes
state to prevent other trains from entering the track. A train that is leaving
this section of track must again change the state of the semaphore to allow
another train to enter. In the computer version, a semaphore appears to be
a simple integer. A process (or a thread) waits for permission to proceed by
waiting for the integer to become 0. The signal if it proceeds signals that
this by performing incrementing the integer by 1. When it is finished, the
process changes the semaphore’s value by subtracting one from it.

Semaphores let processes query or alter status information. They are
often used to monitor and control the availability of system resources such
as shared memory segments.

Semaphores can be operated on as individual units or as elements in a
set. Because System V IPC semaphores can be in a large array, they are
extremely heavy weight. Much lighter weight semaphores are available in
the threads library (see man semaphore and also Chapter 29.3) and POSIX
semaphores (see below briefly). Threads library semaphores must be used
with mapped memory . A semaphore set consists of a control structure and
an array of individual semaphores. A set of semaphores can contain up to
25 elements.

In a similar fashion to message queues, the semaphore set must be ini-

215

216 CHAPTER 24. IPC:SEMAPHORES

tialized using semget(); the semaphore creator can change its ownership or
permissions using semctl(); and semaphore operations are performed via
the semop() function. These are now discussed below:

24.1 Initializing a Semaphore Set

The function semget() initializes or gains access to a semaphore. It is pro-
totyped by:

int semget(key_t key, int nsems, int semflg);

When the call succeeds, it returns the semaphore ID (semid).
The key argument is a access value associated with the semaphore ID.
The nsems argument specifies the number of elements in a semaphore

array. The call fails when nsems is greater than the number of elements in
an existing array; when the correct count is not known, supplying 0 for this
argument ensures that it will succeed.

The semflg argument specifies the initial access permissions and creation
control flags.

The following code illustrates the semget() function.

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

...

key_t key; /* key to pass to semget() */

int semflg; /* semflg to pass tosemget() */

int nsems; /* nsems to pass to semget() */

int semid; /* return value from semget() */

...

key = ...

nsems = ...

semflg =

if ((semid = semget(key, nsems, semflg)) == -1) {

perror("semget: semget failed");

24.2. CONTROLLING SEMAPHORES 217

exit(1); }

else

...

24.2 Controlling Semaphores

semctl() changes permissions and other characteristics of a semaphore set.
It is prototyped as follows:

int semctl(int semid, int semnum, int cmd, union semun arg);

It must be called with a valid semaphore ID, semid. The semnum value
selects a semaphore within an array by its index. The cmd argument is one
of the following control flags:

GETVAL — Return the value of a single semaphore.

SETVAL — Set the value of a single semaphore. In this case, arg is taken as
arg.val, an int.

GETPID — Return the PID of the process that performed the last operation
on the semaphore or array.

GETNCNT — Return the number of processes waiting for the value of a semaphore
to increase.

GETZCNT — Return the number of processes waiting for the value of a par-
ticular semaphore to reach zero.

GETALL — Return the values for all semaphores in a set. In this case, arg
is taken as arg.array, a pointer to an array of unsigned shorts (see
below).

SETALL — Set values for all semaphores in a set. In this case, arg is taken
as arg.array, a pointer to an array of unsigned shorts.

IPC STAT — Return the status information from the control structure for
the semaphore set and place it in the data structure pointed to by
arg.buf, a pointer to a buffer of type semid ds.

218 CHAPTER 24. IPC:SEMAPHORES

IPC SET — Set the effective user and group identification and permissions.
In this case, arg is taken as arg.buf.

IPC RMID — Remove the specified semaphore set.

A process must have an effective user identification of owner, creator, or
superuser to perform an IPC SET or IPC RMID command. Read and write
permission is required as for the other control commands. The following
code illustrates semctl ().

The fourth argument union semun arg is optional, depending upon the
operation requested. If required it is of type union semun, which must be
explicitly declared by the application program as:

union semun {

int val;

struct semid_ds *buf;

ushort *array;

} arg;

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

union semun {

int val;

struct semid_ds *buf;

ushort *array;

} arg;

int i;

int semnum =;

int cmd = GETALL; /* get value */

...

i = semctl(semid, semnum, cmd, arg);

if (i == -1) {

perror("semctl: semctl failed");

24.3. SEMAPHORE OPERATIONS 219

exit(1);

}

else

...

24.3 Semaphore Operations

semop() performs operations on a semaphore set. It is prototyped by:

int semop(int semid, struct sembuf *sops, size_t nsops);

The semid argument is the semaphore ID returned by a previous semget()
call. The sops argument is a pointer to an array of structures, each contain-
ing the following information about a semaphore operation:

• The semaphore number

• The operation to be performed

• Control flags, if any.

The sembuf structure specifies a semaphore operation, as defined in<sys/sem.h>.

struct sembuf {

ushort_t sem_num; /* semaphore number */

short sem_op; /* semaphore operation */

short sem_flg; /* operation flags */

};

The nsops argument specifies the length of the array, the maximum size of
which is determined by the SEMOPM configuration option; this is the maximum
number of operations allowed by a single semop() call, and is set to 10 by
default. The operation to be performed is determined as follows:

• A positive integer increments the semaphore value by that amount.

• A negative integer decrements the semaphore value by that amount.
An attempt to set a semaphore to a value less than zero fails or blocks,
depending on whether IPC NOWAIT is in effect.

220 CHAPTER 24. IPC:SEMAPHORES

• A value of zero means to wait for the semaphore value to reach zero.

There are two control flags that can be used with semop():

IPC NOWAIT — Can be set for any operations in the array. Makes the func-
tion return without changing any semaphore value if any operation for
which IPC NOWAIT is set cannot be performed. The function fails if it
tries to decrement a semaphore more than its current value, or tests a
nonzero semaphore to be equal to zero.

SEM UNDO — Allows individual operations in the array to be undone when
the process exits.

This function takes a pointer, sops, to an array of semaphore operation
structures. Each structure in the array contains data about an operation to
perform on a semaphore. Any process with read permission can test whether
a semaphore has a zero value. To increment or decrement a semaphore
requires write permission. When an operation fails, none of the semaphores
is altered.

The process blocks (unless the IPC NOWAIT flag is set), and remains
blocked until:

• the semaphore operations can all finish, so the call succeeds,

• the process receives a signal, or

• the semaphore set is removed.

Only one process at a time can update a semaphore. Simultaneous re-
quests by different processes are performed in an arbitrary order. When an
array of operations is given by a semop() call, no updates are done until all
operations on the array can finish successfully.

If a process with exclusive use of a semaphore terminates abnormally and
fails to undo the operation or free the semaphore, the semaphore stays locked
in memory in the state the process left it. To prevent this, the SEM UNDO

control flag makes semop() allocate an undo structure for each semaphore
operation, which contains the operation that returns the semaphore to its pre-
vious state. If the process dies, the system applies the operations in the undo
structures. This prevents an aborted process from leaving a semaphore set in
an inconsistent state. If processes share access to a resource controlled by a

24.3. SEMAPHORE OPERATIONS 221

semaphore, operations on the semaphore should not be made with SEM UNDO

in effect. If the process that currently has control of the resource terminates
abnormally, the resource is presumed to be inconsistent. Another process
must be able to recognize this to restore the resource to a consistent state.
When performing a semaphore operation with SEM UNDO in effect, you must
also have it in effect for the call that will perform the reversing operation.
When the process runs normally, the reversing operation updates the undo
structure with a complementary value. This ensures that, unless the process
is aborted, the values applied to the undo structure are cancel to zero. When
the undo structure reaches zero, it is removed.

NOTE:Using SEM UNDO inconsistently can lead to excessive resource con-
sumption because allocated undo structures might not be freed until the
system is rebooted.

The following code illustrates the semop() function:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

...

int i;

int nsops; /* number of operations to do */

int semid; /* semid of semaphore set */

struct sembuf *sops; /* ptr to operations to perform */

...

if ((semid = semop(semid, sops, nsops)) == -1)

{

perror("semop: semop failed");

exit(1);

}

else

(void) fprintf(stderr, "semop: returned %d\n", i);

...

222 CHAPTER 24. IPC:SEMAPHORES

24.4 POSIX Semaphores: <semaphore.h>

POSIX semaphores are much lighter weight than are System V semaphores.
A POSIX semaphore structure defines a single semaphore, not an array of
up to twenty five semaphores. The POSIX semaphore functions are:

sem open() — Connects to, and optionally creates, a named semaphore
sem init() — Initializes a semaphore structure (internal to the calling

program, so not a named semaphore).
sem close() — Ends the connection to an open semaphore.
sem unlink() — Ends the connection to an open semaphore and causes

the semaphore to be removed when the last process closes it.
sem destroy() — Initializes a semaphore structure (internal to the call-

ing program, so not a named semaphore).
sem getvalue() — Copies the value of the semaphore into the specified

integer.
sem wait(), sem trywait() — Blocks while the semaphore is held by

other processes or returns an error if the semaphore is held by another pro-
cess.

sem post() — Increments the count of the semaphore.
The basic operation of these functions is essence the same as described

above, except note there are more specialised functions, here. These are not
discussed further here and the reader is referred to the online man pages for
further details.

24.5 semaphore.c: Illustration of simple semaphore

passing

/* semaphore.c --- simple illustration of dijkstra’s semaphore analogy

*

* We fork() a child process so that we have two processes running:

* Each process communicates via a semaphore.

* The respective process can only do its work (not much here)

* When it notices that the semaphore track is free when it returns to 0

* Each process must modify the semaphore accordingly

*/

#include <stdio.h>

24.5. SEMAPHORE.C: ILLUSTRATIONOF SIMPLE SEMAPHORE PASSING223

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

union semun {

int val;

struct semid_ds *buf;

ushort *array;

};

main()

{ int i,j;

int pid;

int semid; /* semid of semaphore set */

key_t key = 1234; /* key to pass to semget() */

int semflg = IPC_CREAT | 0666; /* semflg to pass to semget() */

int nsems = 1; /* nsems to pass to semget() */

int nsops; /* number of operations to do */

struct sembuf *sops = (struct sembuf *) malloc(2*sizeof(struct sembuf));

/* ptr to operations to perform */

/* set up semaphore */

(void) fprintf(stderr, "\nsemget: Setting up seamaphore: semget(%#lx, %\

%#o)\n",key, nsems, semflg);

if ((semid = semget(key, nsems, semflg)) == -1) {

perror("semget: semget failed");

exit(1);

} else

(void) fprintf(stderr, "semget: semget succeeded: semid =\

%d\n", semid);

/* get child process */

if ((pid = fork()) < 0) {

perror("fork");

exit(1);

224 CHAPTER 24. IPC:SEMAPHORES

}

if (pid == 0)

{ /* child */

i = 0;

while (i < 3) {/* allow for 3 semaphore sets */

nsops = 2;

/* wait for semaphore to reach zero */

sops[0].sem_num = 0; /* We only use one track */

sops[0].sem_op = 0; /* wait for semaphore flag to become zero */

sops[0].sem_flg = SEM_UNDO; /* take off semaphore asynchronous */

sops[1].sem_num = 0;

sops[1].sem_op = 1; /* increment semaphore -- take control of track */

sops[1].sem_flg = SEM_UNDO | IPC_NOWAIT; /* take off semaphore */

/* Recap the call to be made. */

(void) fprintf(stderr,"\nsemop:Child Calling semop(%d, &sops, %d) with:", semid, nsops);

for (j = 0; j < nsops; j++)

{

(void) fprintf(stderr, "\n\tsops[%d].sem_num = %d, ", j, sops[j].sem_num);

(void) fprintf(stderr, "sem_op = %d, ", sops[j].sem_op);

(void) fprintf(stderr, "sem_flg = %#o\n", sops[j].sem_flg);

}

/* Make the semop() call and report the results. */

if ((j = semop(semid, sops, nsops)) == -1) {

perror("semop: semop failed");

}

else

{

24.5. SEMAPHORE.C: ILLUSTRATIONOF SIMPLE SEMAPHORE PASSING225

(void) fprintf(stderr, "\tsemop: semop returned %d\n", j);

(void) fprintf(stderr, "\n\nChild Process Taking Control of Track: %d/3 times\n", i+1);

sleep(5); /* DO Nothing for 5 seconds */

nsops = 1;

/* wait for semaphore to reach zero */

sops[0].sem_num = 0;

sops[0].sem_op = -1; /* Give UP COntrol of track */

sops[0].sem_flg = SEM_UNDO | IPC_NOWAIT; /* take off semaphore, asynchronous */

if ((j = semop(semid, sops, nsops)) == -1) {

perror("semop: semop failed");

}

else

(void) fprintf(stderr, "Child Process Giving up Control of Track: %d/3 times\n", i+1);

sleep(5); /* halt process to allow parent to catch semaphor change first */

}

++i;

}

}

else /* parent */

{ /* pid hold id of child */

i = 0;

while (i < 3) { /* allow for 3 semaphore sets */

nsops = 2;

/* wait for semaphore to reach zero */

sops[0].sem_num = 0;

sops[0].sem_op = 0; /* wait for semaphore flag to become zero */

sops[0].sem_flg = SEM_UNDO; /* take off semaphore asynchronous */

226 CHAPTER 24. IPC:SEMAPHORES

sops[1].sem_num = 0;

sops[1].sem_op = 1; /* increment semaphore -- take control of track */

sops[1].sem_flg = SEM_UNDO | IPC_NOWAIT; /* take off semaphore */

/* Recap the call to be made. */

(void) fprintf(stderr,"\nsemop:Parent Calling semop(%d, &sops, %d) with:", semid, nsops);

for (j = 0; j < nsops; j++)

{

(void) fprintf(stderr, "\n\tsops[%d].sem_num = %d, ", j, sops[j].sem_num);

(void) fprintf(stderr, "sem_op = %d, ", sops[j].sem_op);

(void) fprintf(stderr, "sem_flg = %#o\n", sops[j].sem_flg);

}

/* Make the semop() call and report the results. */

if ((j = semop(semid, sops, nsops)) == -1) {

perror("semop: semop failed");

}

else

{

(void) fprintf(stderr, "semop: semop returned %d\n", j);

(void) fprintf(stderr, "Parent Process Taking Control of Track: %d/3 times\n", i+1);

sleep(5); /* Do nothing for 5 seconds */

nsops = 1;

/* wait for semaphore to reach zero */

sops[0].sem_num = 0;

sops[0].sem_op = -1; /* Give UP COntrol of track */

sops[0].sem_flg = SEM_UNDO | IPC_NOWAIT; /* take off semaphore, asynchronous */

if ((j = semop(semid, sops, nsops)) == -1) {

perror("semop: semop failed");

}

else

24.5. SEMAPHORE.C: ILLUSTRATIONOF SIMPLE SEMAPHORE PASSING227

(void) fprintf(stderr, "Parent Process Giving up Control of Track: %d/3 times\n", i+1);

sleep(5); /* halt process to allow child to catch semaphor change first */

}

++i;

}

}

}

The key elements of this program are as follows:

• After a semaphore is created with as simple key 1234, two prcesses are
forked.

• Each process (parent and child) essentially performs the same opera-
tions:

– Each process accesses the same semaphore track (sops[].sem num

= 0).

– Each process waits for the track to become free and then attempts
to take control of track

This is achieved by setting appropriate sops[].sem op values in
the array.

– Once the process has control it sleeps for 5 seconds (in reality some
processing would take place in place of this simple illustration)

– The process then gives up control of the track sops[1].sem op =

-1

– an additional sleep operation is then performed to ensure that the
other process has time to access the semaphore before a subse-
quent (same process) semaphore read.

Note: There is no synchronisation here in this simple example an
we have no control over how the OS will schedule the processes.

228 CHAPTER 24. IPC:SEMAPHORES

24.6 Some further example semaphore pro-

grams

The following suite of programs can be used to investigate interactively a
variety of semaphore ideas (see exercises below).

The semaphore must be initialised with the semget.c program. The ef-
fects of controlling the semaphore queue and sending and receiving semaphore
can be investigated with semctl.c and semop.c respectively.

24.6.1 semget.c: Illustrate the semget() function

/*

* semget.c: Illustrate the semget() function.

*

* This is a simple exerciser of the semget() function. It prompts

* for the arguments, makes the call, and reports the results.

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

extern void exit();

extern void perror();

main()

{

key_t key; /* key to pass to semget() */

int semflg; /* semflg to pass to semget() */

int nsems; /* nsems to pass to semget() */

int semid; /* return value from semget() */

(void) fprintf(stderr,

"All numeric input must follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

24.6. SOME FURTHER EXAMPLE SEMAPHORE PROGRAMS 229

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);

(void) fprintf(stderr, "Enter key: ");

(void) scanf("%li", &key);

(void) fprintf(stderr, "Enter nsems value: ");

(void) scanf("%i", &nsems);

(void) fprintf(stderr, "\nExpected flags for semflg are:\n");

(void) fprintf(stderr, "\tIPC_EXCL = \t%#8.8o\n", IPC_EXCL);

(void) fprintf(stderr, "\tIPC_CREAT = \t%#8.8o\n",

IPC_CREAT);

(void) fprintf(stderr, "\towner read = \t%#8.8o\n", 0400);

(void) fprintf(stderr, "\towner alter = \t%#8.8o\n", 0200);

(void) fprintf(stderr, "\tgroup read = \t%#8.8o\n", 040);

(void) fprintf(stderr, "\tgroup alter = \t%#8.8o\n", 020);

(void) fprintf(stderr, "\tother read = \t%#8.8o\n", 04);

(void) fprintf(stderr, "\tother alter = \t%#8.8o\n", 02);

(void) fprintf(stderr, "Enter semflg value: ");

(void) scanf("%i", &semflg);

(void) fprintf(stderr, "\nsemget: Calling semget(%#lx, %

%#o)\n",key, nsems, semflg);

if ((semid = semget(key, nsems, semflg)) == -1) {

perror("semget: semget failed");

exit(1);

} else {

(void) fprintf(stderr, "semget: semget succeeded: semid =

%d\n",

semid);

exit(0);

}

}

24.6.2 semctl.c: Illustrate the semctl() function

/*

* semctl.c: Illustrate the semctl() function.

230 CHAPTER 24. IPC:SEMAPHORES

*

* This is a simple exerciser of the semctl() function. It lets you

* perform one control operation on one semaphore set. It gives up

* immediately if any control operation fails, so be careful not

to

* set permissions to preclude read permission; you won’t be able

to

* reset the permissions with this code if you do.

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#include <time.h>

struct semid_ds semid_ds;

static void do_semctl();

static void do_stat();

extern char *malloc();

extern void exit();

extern void perror();

char warning_message[] = "If you remove read permission\

for yourself, this program will fail frequently!";

main()

{

union semun arg; /* union to pass to semctl() */

int cmd, /* command to give to semctl() */

i, /* work area */

semid, /* semid to pass to semctl() */

semnum; /* semnum to pass to semctl() */

(void) fprintf(stderr,

"All numeric input must follow C conventions:\n");

(void) fprintf(stderr,

24.6. SOME FURTHER EXAMPLE SEMAPHORE PROGRAMS 231

"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

(void) fprintf(stderr, "Enter semid value: ");

(void) scanf("%i", &semid);

(void) fprintf(stderr, "Valid semctl cmd values are:\n");

(void) fprintf(stderr, "\tGETALL = %d\n", GETALL);

(void) fprintf(stderr, "\tGETNCNT = %d\n", GETNCNT);

(void) fprintf(stderr, "\tGETPID = %d\n", GETPID);

(void) fprintf(stderr, "\tGETVAL = %d\n", GETVAL);

(void) fprintf(stderr, "\tGETZCNT = %d\n", GETZCNT);

(void) fprintf(stderr, "\tIPC_RMID = %d\n", IPC_RMID);

(void) fprintf(stderr, "\tIPC_SET = %d\n", IPC_SET);

(void) fprintf(stderr, "\tIPC_STAT = %d\n", IPC_STAT);

(void) fprintf(stderr, "\tSETALL = %d\n", SETALL);

(void) fprintf(stderr, "\tSETVAL = %d\n", SETVAL);

(void) fprintf(stderr, "\nEnter cmd: ");

(void) scanf("%i", &cmd);

/* Do some setup operations needed by multiple commands. */

switch (cmd) {

case GETVAL:

case SETVAL:

case GETNCNT:

case GETZCNT:

/* Get the semaphore number for these commands. */

(void) fprintf(stderr, "\nEnter semnum value: ");

(void) scanf("%i", &semnum);

break;

case GETALL:

case SETALL:

/* Allocate a buffer for the semaphore values. */

(void) fprintf(stderr,

"Get number of semaphores in the set.\n");

arg.buf = &semid_ds;

do_semctl(semid, 0, IPC_STAT, arg);

if (arg.array =

232 CHAPTER 24. IPC:SEMAPHORES

(ushort *)malloc((unsigned)

(semid_ds.sem_nsems * sizeof(ushort)))) {

/* Break out if you got what you needed. */

break;

}

(void) fprintf(stderr,

"semctl: unable to allocate space for %d values\n",

semid_ds.sem_nsems);

exit(2);

}

/* Get the rest of the arguments needed for the specified

command. */

switch (cmd) {

case SETVAL:

/* Set value of one semaphore. */

(void) fprintf(stderr, "\nEnter semaphore value: ");

(void) scanf("%i", &arg.val);

do_semctl(semid, semnum, SETVAL, arg);

/* Fall through to verify the result. */

(void) fprintf(stderr,

"Do semctl GETVAL command to verify results.\n");

case GETVAL:

/* Get value of one semaphore. */

arg.val = 0;

do_semctl(semid, semnum, GETVAL, arg);

break;

case GETPID:

/* Get PID of last process to successfully complete a

semctl(SETVAL), semctl(SETALL), or semop() on the

semaphore. */

arg.val = 0;

do_semctl(semid, 0, GETPID, arg);

break;

case GETNCNT:

/* Get number of processes waiting for semaphore value to

increase. */

arg.val = 0;

24.6. SOME FURTHER EXAMPLE SEMAPHORE PROGRAMS 233

do_semctl(semid, semnum, GETNCNT, arg);

break;

case GETZCNT:

/* Get number of processes waiting for semaphore value to

become zero. */

arg.val = 0;

do_semctl(semid, semnum, GETZCNT, arg);

break;

case SETALL:

/* Set the values of all semaphores in the set. */

(void) fprintf(stderr,

"There are %d semaphores in the set.\n",

semid_ds.sem_nsems);

(void) fprintf(stderr, "Enter semaphore values:\n");

for (i = 0; i < semid_ds.sem_nsems; i++) {

(void) fprintf(stderr, "Semaphore %d: ", i);

(void) scanf("%hi", &arg.array[i]);

}

do_semctl(semid, 0, SETALL, arg);

/* Fall through to verify the results. */

(void) fprintf(stderr,

"Do semctl GETALL command to verify results.\n");

case GETALL:

/* Get and print the values of all semaphores in the

set.*/

do_semctl(semid, 0, GETALL, arg);

(void) fprintf(stderr,

"The values of the %d semaphores are:\n",

semid_ds.sem_nsems);

for (i = 0; i < semid_ds.sem_nsems; i++)

(void) fprintf(stderr, "%d ", arg.array[i]);

(void) fprintf(stderr, "\n");

break;

case IPC_SET:

/* Modify mode and/or ownership. */

arg.buf = &semid_ds;

do_semctl(semid, 0, IPC_STAT, arg);

(void) fprintf(stderr, "Status before IPC_SET:\n");

234 CHAPTER 24. IPC:SEMAPHORES

do_stat();

(void) fprintf(stderr, "Enter sem_perm.uid value: ");

(void) scanf("%hi", &semid_ds.sem_perm.uid);

(void) fprintf(stderr, "Enter sem_perm.gid value: ");

(void) scanf("%hi", &semid_ds.sem_perm.gid);

(void) fprintf(stderr, "%s\n", warning_message);

(void) fprintf(stderr, "Enter sem_perm.mode value: ");

(void) scanf("%hi", &semid_ds.sem_perm.mode);

do_semctl(semid, 0, IPC_SET, arg);

/* Fall through to verify changes. */

(void) fprintf(stderr, "Status after IPC_SET:\n");

case IPC_STAT:

/* Get and print current status. */

arg.buf = &semid_ds;

do_semctl(semid, 0, IPC_STAT, arg);

do_stat();

break;

case IPC_RMID:

/* Remove the semaphore set. */

arg.val = 0;

do_semctl(semid, 0, IPC_RMID, arg);

break;

default:

/* Pass unknown command to semctl. */

arg.val = 0;

do_semctl(semid, 0, cmd, arg);

break;

}

exit(0);

}

/*

* Print indication of arguments being passed to semctl(), call

* semctl(), and report the results. If semctl() fails, do not

* return; this example doesn’t deal with errors, it just reports

* them.

*/

static void

24.6. SOME FURTHER EXAMPLE SEMAPHORE PROGRAMS 235

do_semctl(semid, semnum, cmd, arg)

union semun arg;

int cmd,

semid,

semnum;

{

register int i; /* work area */

void) fprintf(stderr, "\nsemctl: Calling semctl(%d, %d, %d,

",

semid, semnum, cmd);

switch (cmd) {

case GETALL:

(void) fprintf(stderr, "arg.array = %#x)\n",

arg.array);

break;

case IPC_STAT:

case IPC_SET:

(void) fprintf(stderr, "arg.buf = %#x)\n", arg.buf);

break;

case SETALL:

(void) fprintf(stderr, "arg.array = [", arg.buf);

for (i = 0;i < semid_ds.sem_nsems;) {

(void) fprintf(stderr, "%d", arg.array[i++]);

if (i < semid_ds.sem_nsems)

(void) fprintf(stderr, ", ");

}

(void) fprintf(stderr, "])\n");

break;

case SETVAL:

default:

(void) fprintf(stderr, "arg.val = %d)\n", arg.val);

break;

}

i = semctl(semid, semnum, cmd, arg);

if (i == -1) {

perror("semctl: semctl failed");

exit(1);

236 CHAPTER 24. IPC:SEMAPHORES

}

(void) fprintf(stderr, "semctl: semctl returned %d\n", i);

return;

}

/*

* Display contents of commonly used pieces of the status

structure.

*/

static void

do_stat()

{

(void) fprintf(stderr, "sem_perm.uid = %d\n",

semid_ds.sem_perm.uid);

(void) fprintf(stderr, "sem_perm.gid = %d\n",

semid_ds.sem_perm.gid);

(void) fprintf(stderr, "sem_perm.cuid = %d\n",

semid_ds.sem_perm.cuid);

(void) fprintf(stderr, "sem_perm.cgid = %d\n",

semid_ds.sem_perm.cgid);

(void) fprintf(stderr, "sem_perm.mode = %#o, ",

semid_ds.sem_perm.mode);

(void) fprintf(stderr, "access permissions = %#o\n",

semid_ds.sem_perm.mode & 0777);

(void) fprintf(stderr, "sem_nsems = %d\n",

semid_ds.sem_nsems);

(void) fprintf(stderr, "sem_otime = %s", semid_ds.sem_otime ?

ctime(&semid_ds.sem_otime) : "Not Set\n");

(void) fprintf(stderr, "sem_ctime = %s",

ctime(&semid_ds.sem_ctime));

}

24.6.3 semop() Sample Program to Illustrate semop()

/*

* semop.c: Illustrate the semop() function.

*

* This is a simple exerciser of the semop() function. It lets you

24.6. SOME FURTHER EXAMPLE SEMAPHORE PROGRAMS 237

* to set up arguments for semop() and make the call. It then

reports

* the results repeatedly on one semaphore set. You must have read

* permission on the semaphore set or this exerciser will fail.

(It

* needs read permission to get the number of semaphores in the set

* and to report the values before and after calls to semop().)

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

static int ask();

extern void exit();

extern void free();

extern char *malloc();

extern void perror();

static struct semid_ds semid_ds; /* status of semaphore set */

static char error_mesg1[] = "semop: Can’t allocate space for %d\

semaphore values. Giving up.\n";

static char error_mesg2[] = "semop: Can’t allocate space for %d\

sembuf structures. Giving up.\n";

main()

{

register int i; /* work area */

int nsops; /* number of operations to do */

int semid; /* semid of semaphore set */

struct sembuf *sops; /* ptr to operations to perform */

(void) fprintf(stderr,

"All numeric input must follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

238 CHAPTER 24. IPC:SEMAPHORES

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Loop until the invoker doesn’t want to do anymore. */

while (nsops = ask(&semid, &sops)) {

/* Initialize the array of operations to be performed.*/

for (i = 0; i < nsops; i++) {

(void) fprintf(stderr,

"\nEnter values for operation %d of %d.\n",

i + 1, nsops);

(void) fprintf(stderr,

"sem_num(valid values are 0 <= sem_num < %d): ",

semid_ds.sem_nsems);

(void) scanf("%hi", &sops[i].sem_num);

(void) fprintf(stderr, "sem_op: ");

(void) scanf("%hi", &sops[i].sem_op);

(void) fprintf(stderr,

"Expected flags in sem_flg are:\n");

(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#6.6o\n",

IPC_NOWAIT);

(void) fprintf(stderr, "\tSEM_UNDO =\t%#6.6o\n",

SEM_UNDO);

(void) fprintf(stderr, "sem_flg: ");

(void) scanf("%hi", &sops[i].sem_flg);

}

/* Recap the call to be made. */

(void) fprintf(stderr,

"\nsemop: Calling semop(%d, &sops, %d) with:",

semid, nsops);

for (i = 0; i < nsops; i++)

{

(void) fprintf(stderr, "\nsops[%d].sem_num = %d, ", i,

sops[i].sem_num);

(void) fprintf(stderr, "sem_op = %d, ", sops[i].sem_op);

(void) fprintf(stderr, "sem_flg = %#o\n",

sops[i].sem_flg);

}

24.6. SOME FURTHER EXAMPLE SEMAPHORE PROGRAMS 239

/* Make the semop() call and report the results. */

if ((i = semop(semid, sops, nsops)) == -1) {

perror("semop: semop failed");

} else {

(void) fprintf(stderr, "semop: semop returned %d\n", i);

}

}

}

/*

* Ask if user wants to continue.

*

* On the first call:

* Get the semid to be processed and supply it to the caller.

* On each call:

* 1. Print current semaphore values.

* 2. Ask user how many operations are to be performed on the next

* call to semop. Allocate an array of sembuf structures

* sufficient for the job and set caller-supplied pointer to

that

* array. (The array is reused on subsequent calls if it is big

* enough. If it isn’t, it is freed and a larger array is

* allocated.)

*/

static

ask(semidp, sopsp)

int *semidp; /* pointer to semid (used only the first time) */

struct sembuf **sopsp;

{

static union semun arg; /* argument to semctl */

int i; /* work area */

static int nsops = 0; /* size of currently allocated

sembuf array */

static int semid = -1; /* semid supplied by user */

static struct sembuf *sops; /* pointer to allocated array */

if (semid < 0) {

/* First call; get semid from user and the current state of

240 CHAPTER 24. IPC:SEMAPHORES

the semaphore set. */

(void) fprintf(stderr,

"Enter semid of the semaphore set you want to use: ");

(void) scanf("%i", &semid);

*semidp = semid;

arg.buf = &semid_ds;

if (semctl(semid, 0, IPC_STAT, arg) == -1) {

perror("semop: semctl(IPC_STAT) failed");

/* Note that if semctl fails, semid_ds remains filled

with zeros, so later test for number of semaphores will

be zero. */

(void) fprintf(stderr,

"Before and after values are not printed.\n");

} else {

if ((arg.array = (ushort *)malloc(

(unsigned)(sizeof(ushort) * semid_ds.sem_nsems)))

== NULL) {

(void) fprintf(stderr, error_mesg1,

semid_ds.sem_nsems);

exit(1);

}

}

}

/* Print current semaphore values. */

if (semid_ds.sem_nsems) {

(void) fprintf(stderr,

"There are %d semaphores in the set.\n",

semid_ds.sem_nsems);

if (semctl(semid, 0, GETALL, arg) == -1) {

perror("semop: semctl(GETALL) failed");

} else {

(void) fprintf(stderr, "Current semaphore values are:");

for (i = 0; i < semid_ds.sem_nsems;

(void) fprintf(stderr, " %d", arg.array[i++]));

(void) fprintf(stderr, "\n");

}

}

/* Find out how many operations are going to be done in the

24.7. EXERCISES 241

next

call and allocate enough space to do it. */

(void) fprintf(stderr,

"How many semaphore operations do you want %s\n",

"on the next call to semop()?");

(void) fprintf(stderr, "Enter 0 or control-D to quit: ");

i = 0;

if (scanf("%i", &i) == EOF || i == 0)

exit(0);

if (i > nsops) {

if (nsops)

free((char *)sops);

nsops = i;

if ((sops = (struct sembuf *)malloc((unsigned)(nsops *

sizeof(struct sembuf)))) == NULL) {

(void) fprintf(stderr, error_mesg2, nsops);

exit(2);

}

}

*sopsp = sops;

return (i);

}

24.7 Exercises

Exercise 24.1 Write 2 programs that will communicate both ways (i.e
each process can read and write) when run concurrently via semaphores.

Exercise 24.2 Modify the semaphore.c program to handle synchronous semaphore
communication semaphores.

Exercise 24.3 Write 3 programs that communicate together via semaphores
according to the following specifications:

242 CHAPTER 24. IPC:SEMAPHORES

sem server.c — a program that can communicate independently (on differ-
ent semaphore tracks) with two clients programs.

sem client1.c — a program that talks to sem server.c on one track.

sem client2.c — a program that talks to sem server.c on another track to
sem client1.c.

Exercise 24.4 Compile the programs semget.c, semctl.c and semop.c

and then

• investigate and understand fully the operations of the flags (access, cre-
ation etc. permissions) you can set interactively in the programs.

• Use the prgrams to:

– Send and receive semaphores of 3 different semaphore tracks.

– Inquire about the state of the semaphore queue with semctl.c.
Add/delete a few semaphores (using semop.c and perform the in-
quiry once more.

– Use semctl.c to alter a semaphore on the queue.

– Use semctl.c to delete a semaphore from the queue.

Chapter 25

IPC:Shared Memory

Shared Memory is an efficeint means of passing data between programs. One
program will create a memory portion which other processes (if permitted)
can access.

In the Solaris 2.x operating system, the most efficient way to implement
shared memory applications is to rely on the mmap() function and on the
system’s native virtual memory facility. Solaris 2.x also supports System
V shared memory, which is another way to let multiple processes attach
a segment of physical memory to their virtual address spaces. When write
access is allowed for more than one process, an outside protocol or mechanism
such as a semaphore can be used to prevent inconsistencies and collisions.

A process creates a shared memory segment using shmget()|. The orig-
inal owner of a shared memory segment can assign ownership to another
user with shmctl(). It can also revoke this assignment. Other processes
with proper permission can perform various control functions on the shared
memory segment using shmctl(). Once created, a shared segment can be
attached to a process address space using shmat(). It can be detached using
shmdt() (see shmop()). The attaching process must have the appropriate
permissions for shmat(). Once attached, the process can read or write to
the segment, as allowed by the permission requested in the attach operation.
A shared segment can be attached multiple times by the same process. A
shared memory segment is described by a control structure with a unique ID
that points to an area of physical memory. The identifier of the segment is
called the shmid. The structure definition for the shared memory segment
control structures and prototypews can be found in <sys/shm.h>.

243

244 CHAPTER 25. IPC:SHARED MEMORY

25.1 Accessing a Shared Memory Segment

shmget() is used to obtain access to a shared memory segment. It is prot-
typed by:

int shmget(key_t key, size_t size, int shmflg);

The key argument is a access value associated with the semaphore ID.
The size argument is the size in bytes of the requested shared memory. The
shmflg argument specifies the initial access permissions and creation control
flags.

When the call succeeds, it returns the shared memory segment ID. This
call is also used to get the ID of an existing shared segment (from a process
requesting sharing of some existing memory portion).

The following code illustrates shmget():

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

...

key_t key; /* key to be passed to shmget() */

int shmflg; /* shmflg to be passed to shmget() */

int shmid; /* return value from shmget() */

int size; /* size to be passed to shmget() */

...

key = ...

size = ...

shmflg) = ...

if ((shmid = shmget (key, size, shmflg)) == -1) {

perror("shmget: shmget failed"); exit(1); } else {

(void) fprintf(stderr, "shmget: shmget returned %d\n", shmid);

exit(0);

}

...

25.1. ACCESSING A SHARED MEMORY SEGMENT 245

25.1.1 Controlling a Shared Memory Segment

shmctl() is used to alter the permissions and other characteristics of a shared
memory segment. It is prototyped as follows:

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

The process must have an effective shmid of owner, creator or superuser
to perform this command. The cmd argument is one of following control
commands:

SHM LOCK — Lock the specified shared memory segment in memory. The
process must have the effective ID of superuser to perform this com-
mand.

SHM UNLOCK — Unlock the shared memory segment. The process must have
the effective ID of superuser to perform this command.

IPC STAT — Return the status information contained in the control structure
and place it in the buffer pointed to by buf. The process must have
read permission on the segment to perform this command.

IPC SET — Set the effective user and group identification and access per-
missions. The process must have an effective ID of owner, creator or
superuser to perform this command.

IPC RMID — Remove the shared memory segment.

The buf is a sructure of type struct shmid ds which is defined in<sys/shm.h>
The following code illustrates shmctl():

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

...

int cmd; /* command code for shmctl() */

int shmid; /* segment ID */

struct shmid_ds shmid_ds; /* shared memory data structure to

246 CHAPTER 25. IPC:SHARED MEMORY

hold results */

...

shmid = ...

cmd = ...

if ((rtrn = shmctl(shmid, cmd, shmid_ds)) == -1) {

perror("shmctl: shmctl failed");

exit(1);

}

...

25.2 Attaching and Detaching a Shared Mem-

ory Segment

shmat() and shmdt() are used to attach and detach shared memory seg-
ments. They are prototypes as follows:

void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(const void *shmaddr);

shmat() returns a pointer, shmaddr, to the head of the shared segment
associated with a valid shmid. shmdt() detaches the shared memory segment
located at the address indicated by shmaddr

. The following code illustrates calls to shmat() and shmdt():

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

static struct state { /* Internal record of attached segments. */

int shmid; /* shmid of attached segment */

char *shmaddr; /* attach point */

int shmflg; /* flags used on attach */

} ap[MAXnap]; /* State of current attached segments. */

int nap; /* Number of currently attached segments. */

...

25.2. ATTACHING ANDDETACHING A SHAREDMEMORY SEGMENT247

char *addr; /* address work variable */

register int i; /* work area */

register struct state *p; /* ptr to current state entry */

...

p = &ap[nap++];

p->shmid = ...

p->shmaddr = ...

p->shmflg = ...

p->shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);

if(p->shmaddr == (char *)-1) {

perror("shmop: shmat failed");

nap--;

} else

(void) fprintf(stderr, "shmop: shmat returned %#8.8x\n",

p->shmaddr);

...

i = shmdt(addr);

if(i == -1) {

perror("shmop: shmdt failed");

} else {

(void) fprintf(stderr, "shmop: shmdt returned %d\n", i);

for (p = ap, i = nap; i--; p++)

if (p->shmaddr == addr) *p = ap[--nap];

}

...

248 CHAPTER 25. IPC:SHARED MEMORY

25.3 Example two processes comunicating via

shared memory:shm server.c, shm client.c

We develop two programs here that illustrate the passing of a simple piece
of memery (a string) between the processes if running simulatenously:

shm server.c — simply creates the string and shared memory portion.

shm client.c — attaches itself to the created shared memory portion and
uses the string (printf.

The code listings of the 2 programs no follow:

25.3.1 shm server.c

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#define SHMSZ 27

main()

{

char c;

int shmid;

key_t key;

char *shm, *s;

/*

* We’ll name our shared memory segment

* "5678".

*/

key = 5678;

/*

* Create the segment.

*/

25.3. EXAMPLE TWOPROCESSES COMUNICATING VIA SHAREDMEMORY:SHM SERVER.C, SHM CLIENT.C249

if ((shmid = shmget(key, SHMSZ, IPC_CREAT | 0666)) < 0) {

perror("shmget");

exit(1);

}

/*

* Now we attach the segment to our data space.

*/

if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {

perror("shmat");

exit(1);

}

/*

* Now put some things into the memory for the

* other process to read.

*/

s = shm;

for (c = ’a’; c <= ’z’; c++)

*s++ = c;

*s = NULL;

/*

* Finally, we wait until the other process

* changes the first character of our memory

* to ’*’, indicating that it has read what

* we put there.

*/

while (*shm != ’*’)

sleep(1);

exit(0);

}

250 CHAPTER 25. IPC:SHARED MEMORY

25.3.2 shm client.c

/*

* shm-client - client program to demonstrate shared memory.

*/

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#define SHMSZ 27

main()

{

int shmid;

key_t key;

char *shm, *s;

/*

* We need to get the segment named

* "5678", created by the server.

*/

key = 5678;

/*

* Locate the segment.

*/

if ((shmid = shmget(key, SHMSZ, 0666)) < 0) {

perror("shmget");

exit(1);

}

/*

* Now we attach the segment to our data space.

*/

if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {

perror("shmat");

exit(1);

25.4. POSIX SHARED MEMORY 251

}

/*

* Now read what the server put in the memory.

*/

for (s = shm; *s != NULL; s++)

putchar(*s);

putchar(’\n’);

/*

* Finally, change the first character of the

* segment to ’*’, indicating we have read

* the segment.

*/

shm = ’’;

exit(0);

}

25.4 POSIX Shared Memory

POSIX shared memory is actually a variation of mapped memory. The major
differences are to use shm open() to open the shared memory object (instead
of calling open()) and use shm unlink() to close and delete the object (in-
stead of calling close() which does not remove the object). The options in
shm open() are substantially fewer than the number of options provided in
open().

25.5 Mapped memory

In a system with fixed memory (non-virtual), the address space of a process
occupies and is limited to a portion of the system’s main memory. In Solaris
2.x virtual memory the actual address space of a process occupies a file in
the swap partition of disk storage (the file is called the backing store). Pages
of main memory buffer the active (or recently active) portions of the process
address space to provide code for the CPU(s) to execute and data for the

252 CHAPTER 25. IPC:SHARED MEMORY

program to process.
A page of address space is loaded when an address that is not currently

in memory is accessed by a CPU, causing a page fault. Since execution
cannot continue until the page fault is resolved by reading the referenced
address segment into memory, the process sleeps until the page has been
read. The most obvious difference between the two memory systems for
the application developer is that virtual memory lets applications occupy
much larger address spaces. Less obvious advantages of virtual memory are
much simpler and more efficient file I/O and very efficient sharing of memory
between processes.

25.5.1 Address Spaces and Mapping

Since backing store files (the process address space) exist only in swap stor-
age, they are not included in the UNIX named file space. (This makes backing
store files inaccessible to other processes.) However, it is a simple extension
to allow the logical insertion of all, or part, of one, or more, named files in the
backing store and to treat the result as a single address space. This is called
mapping. With mapping, any part of any readable or writable file can be
logically included in a process’s address space. Like any other portion of the
process’s address space, no page of the file is not actually loaded into memory
until a page fault forces this action. Pages of memory are written to the file
only if their contents have been modified. So, reading from and writing to
files is completely automatic and very efficient. More than one process can
map a single named file. This provides very efficient memory sharing between
processes. All or part of other files can also be shared between processes.

Not all named file system objects can be mapped. Devices that cannot be
treated as storage, such as terminal and network device files, are examples of
objects that cannot be mapped. A process address space is defined by all of
the files (or portions of files) mapped into the address space. Each mapping is
sized and aligned to the page boundaries of the system on which the process
is executing. There is no memory associated with processes themselves.

A process page maps to only one object at a time, although an object ad-
dress may be the subject of many process mappings. The notion of a ”page”
is not a property of the mapped object. Mapping an object only provides the
potential for a process to read or write the object’s contents. Mapping makes
the object’s contents directly addressable by a process. Applications can ac-
cess the storage resources they use directly rather than indirectly through

25.5. MAPPED MEMORY 253

read and write. Potential advantages include efficiency (elimination of un-
necessary data copying) and reduced complexity (single-step updates rather
than the read, modify buffer, write cycle). The ability to access an object
and have it retain its identity over the course of the access is unique to this
access method, and facilitates the sharing of common code and data.

Because the file system name space includes any directory trees that are
connected from other systems via NFS, any networked file can also be mapped
into a process’s address space.

25.5.2 Coherence

Whether to share memory or to share data contained in the file, when mul-
tiple process map a file simultaneously there may be problems with simul-
taneous access to data elements. Such processes can cooperate through any
of the synchronization mechanisms provided in Solaris 2.x. Because they are
very light weight, the most efficient synchronization mechanisms in Solaris
2.x are the threads library ones.

25.5.3 Creating and Using Mappings

mmap() establishes a mapping of a named file system object (or part of one)
into a process address space. It is the basic memory management function
and it is very simple.

• First open() the file, then

• mmap() it with appropriate access and sharing options

• Away you go.

mmap is prototypes as follows:

#include <sys/types.h>

#include <sys/mman.h>

caddr_t mmap(caddr_t addr, size_t len, int prot, int flags,

int fildes, off_t off);

254 CHAPTER 25. IPC:SHARED MEMORY

The mapping established by mmap() replaces any previous mappings for
specified address range. The flags MAP SHARED and MAP PRIVATE specify the
mapping type, and one of them must be specified. MAP SHARED specifies that
writes modify the mapped object. No further operations on the object are
needed to make the change. MAP PRIVATE specifies that an initial write to
the mapped area creates a copy of the page and all writes reference the copy.
Only modified pages are copied.

A mapping type is retained across a fork(). The file descriptor used in
a mmap call need not be kept open after the mapping is established. If it
is closed, the mapping remains until the mapping is undone by munmap() or
be replacing in with a new mapping. If a mapped file is shortened by a call
to truncate, an access to the area of the file that no longer exists causes a
SIGBUS signal.

The following code fragment demonstrates a use of this to create a block
of scratch storage in a program, at an address that the system chooses.:

int fd;

caddr_t result;

if ((fd = open("/dev/zero", O_RDWR)) == -1)

return ((caddr_t)-1);

result = mmap(0, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

(void) close(fd);

25.5.4 Other Memory Control Functions

int mlock(caddr t addr, size t len) causes the pages in the specified
address range to be locked in physical memory. References to locked pages
(in this or other processes) do not result in page faults that require an I/O
operation. This operation ties up physical resources and can disrupt normal
system operation, so, use of mlock() is limited to the superuser. The system
lets only a configuration dependent limit of pages be locked in memory. The
call to mlock fails if this limit is exceeded.

int munlock(caddr t addr, size t len) releases the locks on physi-
cal pages. If multiple mlock() calls are made on an address range of a single
mapping, a single munlock call is release the locks. However, if different
mappings to the same pages are mlocked, the pages are not unlocked until
the locks on all the mappings are released. Locks are also released when

25.6. SOME FURTHER EXAMPLE SHAREDMEMORY PROGRAMS255

a mapping is removed, either through being replaced with an mmap opera-
tion or removed with munmap. A lock is transferred between pages on the
“copy-on-write” event associated with a MAP PRIVATE mapping, thus locks
on an address range that includes MAP PRIVATE mappings will be retained
transparently along with the copy-on-write redirection (see mmap above for
a discussion of this redirection)

int mlockall(int flags) and int munlockall(void) are similar to
mlock() and munlock(), but they operate on entire address spaces. mlockall()
sets locks on all pages in the address space and munlockall() removes all
locks on all pages in the address space, whether established by mlock or
mlockall.

int msync(caddr t addr, size t len, int flags) causes all modi-
fied pages in the specified address range to be flushed to the objects mapped
by those addresses. It is similar to fsync() for files.

long sysconf(int name) returns the system dependent size of a mem-
ory page. For portability, applications should not embed any constants spec-
ifying the size of a page. Note that it is not unusual for page sizes to vary
even among implementations of the same instruction set.

int mprotect(caddr t addr, size t len, int prot) assigns the spec-
ified protection to all pages in the specified address range. The protection
cannot exceed the permissions allowed on the underlying object.

int brk(void *endds) and void *sbrk(int incr) are called to add
storage to the data segment of a process. A process can manipulate this
area by calling brk() and sbrk(). brk() sets the system idea of the lowest
data segment location not used by the caller to addr (rounded up to the next
multiple of the system page size). sbrk() adds incr bytes to the caller data
space and returns a pointer to the start of the new data area.

25.6 Some further example shared memory

programs

The following suite of programs can be used to investigate interactively a
variety of shared ideas (see exercises below).

The semaphore must be initialised with the shmget.c program. The
effects of controlling shared memory and accessing can be investigated with
shmctl.c and shmop.c respectively.

256 CHAPTER 25. IPC:SHARED MEMORY

25.6.1 shmget.c:Sample Program to Illustrate shmget()

/*

* shmget.c: Illustrate the shmget() function.

*

* This is a simple exerciser of the shmget() function. It

prompts

* for the arguments, makes the call, and reports the results.

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

extern void exit();

extern void perror();

main()

{

key_t key; /* key to be passed to shmget() */

int shmflg; /* shmflg to be passed to shmget() */

int shmid; /* return value from shmget() */

int size; /* size to be passed to shmget() */

(void) fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the key. */

(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);

(void) fprintf(stderr, "Enter key: ");

(void) scanf("%li", &key);

/* Get the size of the segment. */

25.6. SOME FURTHER EXAMPLE SHAREDMEMORY PROGRAMS257

(void) fprintf(stderr, "Enter size: ");

(void) scanf("%i", &size);

/* Get the shmflg value. */

(void) fprintf(stderr,

"Expected flags for the shmflg argument are:\n");

(void) fprintf(stderr, "\tIPC_CREAT = \t%#8.8o\n",

IPC_CREAT);

(void) fprintf(stderr, "\tIPC_EXCL = \t%#8.8o\n", IPC_EXCL);

(void) fprintf(stderr, "\towner read =\t%#8.8o\n", 0400);

(void) fprintf(stderr, "\towner write =\t%#8.8o\n", 0200);

(void) fprintf(stderr, "\tgroup read =\t%#8.8o\n", 040);

(void) fprintf(stderr, "\tgroup write =\t%#8.8o\n", 020);

(void) fprintf(stderr, "\tother read =\t%#8.8o\n", 04);

(void) fprintf(stderr, "\tother write =\t%#8.8o\n", 02);

(void) fprintf(stderr, "Enter shmflg: ");

(void) scanf("%i", &shmflg);

/* Make the call and report the results. */

(void) fprintf(stderr,

"shmget: Calling shmget(%#lx, %d, %#o)\n",

key, size, shmflg);

if ((shmid = shmget (key, size, shmflg)) == -1) {

perror("shmget: shmget failed");

exit(1);

} else {

(void) fprintf(stderr,

"shmget: shmget returned %d\n", shmid);

exit(0);

}

}

258 CHAPTER 25. IPC:SHARED MEMORY

25.6.2 shmctl.c: Sample Program to Illustrate shmctl()

/*

* shmctl.c: Illustrate the shmctl() function.

*

* This is a simple exerciser of the shmctl() function. It lets you

* to perform one control operation on one shared memory segment.

* (Some operations are done for the user whether requested or

not.

* It gives up immediately if any control operation fails. Be

careful

* not to set permissions to preclude read permission; you won’t

be

*able to reset the permissions with this code if you do.)

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <time.h>

static void do_shmctl();

extern void exit();

extern void perror();

main()

{

int cmd; /* command code for shmctl() */

int shmid; /* segment ID */

struct shmid_ds shmid_ds; /* shared memory data structure to

hold results */

(void) fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

25.6. SOME FURTHER EXAMPLE SHAREDMEMORY PROGRAMS259

/* Get shmid and cmd. */

(void) fprintf(stderr,

"Enter the shmid for the desired segment: ");

(void) scanf("%i", &shmid);

(void) fprintf(stderr, "Valid shmctl cmd values are:\n");

(void) fprintf(stderr, "\tIPC_RMID =\t%d\n", IPC_RMID);

(void) fprintf(stderr, "\tIPC_SET =\t%d\n", IPC_SET);

(void) fprintf(stderr, "\tIPC_STAT =\t%d\n", IPC_STAT);

(void) fprintf(stderr, "\tSHM_LOCK =\t%d\n", SHM_LOCK);

(void) fprintf(stderr, "\tSHM_UNLOCK =\t%d\n", SHM_UNLOCK);

(void) fprintf(stderr, "Enter the desired cmd value: ");

(void) scanf("%i", &cmd);

switch (cmd) {

case IPC_STAT:

/* Get shared memory segment status. */

break;

case IPC_SET:

/* Set owner UID and GID and permissions. */

/* Get and print current values. */

do_shmctl(shmid, IPC_STAT, &shmid_ds);

/* Set UID, GID, and permissions to be loaded. */

(void) fprintf(stderr, "\nEnter shm_perm.uid: ");

(void) scanf("%hi", &shmid_ds.shm_perm.uid);

(void) fprintf(stderr, "Enter shm_perm.gid: ");

(void) scanf("%hi", &shmid_ds.shm_perm.gid);

(void) fprintf(stderr,

"Note: Keep read permission for yourself.\n");

(void) fprintf(stderr, "Enter shm_perm.mode: ");

(void) scanf("%hi", &shmid_ds.shm_perm.mode);

break;

case IPC_RMID:

/* Remove the segment when the last attach point is

detached. */

break;

case SHM_LOCK:

/* Lock the shared memory segment. */

260 CHAPTER 25. IPC:SHARED MEMORY

break;

case SHM_UNLOCK:

/* Unlock the shared memory segment. */

break;

default:

/* Unknown command will be passed to shmctl. */

break;

}

do_shmctl(shmid, cmd, &shmid_ds);

exit(0);

}

/*

* Display the arguments being passed to shmctl(), call shmctl(),

* and report the results. If shmctl() fails, do not return; this

* example doesn’t deal with errors, it just reports them.

*/

static void

do_shmctl(shmid, cmd, buf)

int shmid, /* attach point */

cmd; /* command code */

struct shmid_ds *buf; /* pointer to shared memory data structure */

{

register int rtrn; /* hold area */

(void) fprintf(stderr, "shmctl: Calling shmctl(%d, %d,

buf)\n",

shmid, cmd);

if (cmd == IPC_SET) {

(void) fprintf(stderr, "\tbuf->shm_perm.uid == %d\n",

buf->shm_perm.uid);

(void) fprintf(stderr, "\tbuf->shm_perm.gid == %d\n",

buf->shm_perm.gid);

(void) fprintf(stderr, "\tbuf->shm_perm.mode == %#o\n",

buf->shm_perm.mode);

}

if ((rtrn = shmctl(shmid, cmd, buf)) == -1) {

perror("shmctl: shmctl failed");

25.6. SOME FURTHER EXAMPLE SHAREDMEMORY PROGRAMS261

exit(1);

} else {

(void) fprintf(stderr,

"shmctl: shmctl returned %d\n", rtrn);

}

if (cmd != IPC_STAT && cmd != IPC_SET)

return;

/* Print the current status. */

(void) fprintf(stderr, "\nCurrent status:\n");

(void) fprintf(stderr, "\tshm_perm.uid = %d\n",

buf->shm_perm.uid);

(void) fprintf(stderr, "\tshm_perm.gid = %d\n",

buf->shm_perm.gid);

(void) fprintf(stderr, "\tshm_perm.cuid = %d\n",

buf->shm_perm.cuid);

(void) fprintf(stderr, "\tshm_perm.cgid = %d\n",

buf->shm_perm.cgid);

(void) fprintf(stderr, "\tshm_perm.mode = %#o\n",

buf->shm_perm.mode);

(void) fprintf(stderr, "\tshm_perm.key = %#x\n",

buf->shm_perm.key);

(void) fprintf(stderr, "\tshm_segsz = %d\n", buf->shm_segsz);

(void) fprintf(stderr, "\tshm_lpid = %d\n", buf->shm_lpid);

(void) fprintf(stderr, "\tshm_cpid = %d\n", buf->shm_cpid);

(void) fprintf(stderr, "\tshm_nattch = %d\n", buf->shm_nattch);

(void) fprintf(stderr, "\tshm_atime = %s",

buf->shm_atime ? ctime(&buf->shm_atime) : "Not Set\n");

(void) fprintf(stderr, "\tshm_dtime = %s",

buf->shm_dtime ? ctime(&buf->shm_dtime) : "Not Set\n");

(void) fprintf(stderr, "\tshm_ctime = %s",

ctime(&buf->shm_ctime));

}

262 CHAPTER 25. IPC:SHARED MEMORY

25.6.3 shmop.c: Sample Program to Illustrate shmat()

and shmdt()

/*

* shmop.c: Illustrate the shmat() and shmdt() functions.

*

* This is a simple exerciser for the shmat() and shmdt() system

* calls. It allows you to attach and detach segments and to

* write strings into and read strings from attached segments.

*/

#include <stdio.h>

#include <setjmp.h>

#include <signal.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#define MAXnap 4 /* Maximum number of concurrent attaches. */

static ask();

static void catcher();

extern void exit();

static good_addr();

extern void perror();

extern char *shmat();

static struct state { /* Internal record of currently attached

segments. */

int shmid; /* shmid of attached segment */

char *shmaddr; /* attach point */

int shmflg; /* flags used on attach */

} ap[MAXnap]; /* State of current attached segments. */

static int nap; /* Number of currently attached segments. */

static jmp_buf segvbuf; /* Process state save area for SIGSEGV

catching. */

25.6. SOME FURTHER EXAMPLE SHAREDMEMORY PROGRAMS263

main()

{

register int action; /* action to be performed */

char *addr; /* address work area */

register int i; /* work area */

register struct state *p; /* ptr to current state entry */

void (*savefunc)(); /* SIGSEGV state hold area */

(void) fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

while (action = ask()) {

if (nap) {

(void) fprintf(stderr,

"\nCurrently attached segment(s):\n");

(void) fprintf(stderr, " shmid address\n");

(void) fprintf(stderr, "------ ----------\n");

p = &ap[nap];

while (p-- != ap) {

(void) fprintf(stderr, "%6d", p->shmid);

(void) fprintf(stderr, "%#11x", p->shmaddr);

(void) fprintf(stderr, " Read%s\n",

(p->shmflg & SHM_RDONLY) ?

"-Only" : "/Write");

}

} else

(void) fprintf(stderr,

"\nNo segments are currently attached.\n");

switch (action) {

case 1: /* Shmat requested. */

/* Verify that there is space for another attach. */

if (nap == MAXnap) {

(void) fprintf(stderr, "%s %d %s\n",

"This simple example will only allow",

MAXnap, "attached segments.");

break;

264 CHAPTER 25. IPC:SHARED MEMORY

}

p = &ap[nap++];

/* Get the arguments, make the call, report the

results, and update the current state array. */

(void) fprintf(stderr,

"Enter shmid of segment to attach: ");

(void) scanf("%i", &p->shmid);

(void) fprintf(stderr, "Enter shmaddr: ");

(void) scanf("%i", &p->shmaddr);

(void) fprintf(stderr,

"Meaningful shmflg values are:\n");

(void) fprintf(stderr, "\tSHM_RDONLY = \t%#8.8o\n",

SHM_RDONLY);

(void) fprintf(stderr, "\tSHM_RND = \t%#8.8o\n",

SHM_RND);

(void) fprintf(stderr, "Enter shmflg value: ");

(void) scanf("%i", &p->shmflg);

(void) fprintf(stderr,

"shmop: Calling shmat(%d, %#x, %#o)\n",

p->shmid, p->shmaddr, p->shmflg);

p->shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);

if(p->shmaddr == (char *)-1) {

perror("shmop: shmat failed");

nap--;

} else {

(void) fprintf(stderr,

"shmop: shmat returned %#8.8x\n",

p->shmaddr);

}

break;

case 2: /* Shmdt requested. */

/* Get the address, make the call, report the results,

and make the internal state match. */

(void) fprintf(stderr,

"Enter detach shmaddr: ");

25.6. SOME FURTHER EXAMPLE SHAREDMEMORY PROGRAMS265

(void) scanf("%i", &addr);

i = shmdt(addr);

if(i == -1) {

perror("shmop: shmdt failed");

} else {

(void) fprintf(stderr,

"shmop: shmdt returned %d\n", i);

for (p = ap, i = nap; i--; p++) {

if (p->shmaddr == addr)

*p = ap[--nap];

}

}

break;

case 3: /* Read from segment requested. */

if (nap == 0)

break;

(void) fprintf(stderr, "Enter address of an %s",

"attached segment: ");

(void) scanf("%i", &addr);

if (good_addr(addr))

(void) fprintf(stderr, "String @ %#x is ‘%s’\n",

addr, addr);

break;

case 4: /* Write to segment requested. */

if (nap == 0)

break;

(void) fprintf(stderr, "Enter address of an %s",

"attached segment: ");

(void) scanf("%i", &addr);

/* Set up SIGSEGV catch routine to trap attempts to

write into a read-only attached segment. */

savefunc = signal(SIGSEGV, catcher);

266 CHAPTER 25. IPC:SHARED MEMORY

if (setjmp(segvbuf)) {

(void) fprintf(stderr, "shmop: %s: %s\n",

"SIGSEGV signal caught",

"Write aborted.");

} else {

if (good_addr(addr)) {

(void) fflush(stdin);

(void) fprintf(stderr, "%s %s %#x:\n",

"Enter one line to be copied",

"to shared segment attached @",

addr);

(void) gets(addr);

}

}

(void) fflush(stdin);

/* Restore SIGSEGV to previous condition. */

(void) signal(SIGSEGV, savefunc);

break;

}

}

exit(0);

/*NOTREACHED*/

}

/*

** Ask for next action.

*/

static

ask()

{

int response; /* user response */

do {

(void) fprintf(stderr, "Your options are:\n");

(void) fprintf(stderr, "\t^D = exit\n");

(void) fprintf(stderr, "\t 0 = exit\n");

(void) fprintf(stderr, "\t 1 = shmat\n");

(void) fprintf(stderr, "\t 2 = shmdt\n");

25.6. SOME FURTHER EXAMPLE SHAREDMEMORY PROGRAMS267

(void) fprintf(stderr, "\t 3 = read from segment\n");

(void) fprintf(stderr, "\t 4 = write to segment\n");

(void) fprintf(stderr,

"Enter the number corresponding to your choice: ");

/* Preset response so "^D" will be interpreted as exit. */

response = 0;

(void) scanf("%i", &response);

} while (response < 0 || response > 4);

return (response);

}

/*

** Catch signal caused by attempt to write into shared memory

segment

** attached with SHM_RDONLY flag set.

*/

/*ARGSUSED*/

static void

catcher(sig)

{

longjmp(segvbuf, 1);

/*NOTREACHED*/

}

/*

** Verify that given address is the address of an attached

segment.

** Return 1 if address is valid; 0 if not.

*/

static

good_addr(address)

char *address;

{

register struct state *p; /* ptr to state of attached

segment */

for (p = ap; p != &ap[nap]; p++)

if (p->shmaddr == address)

return(1);

268 CHAPTER 25. IPC:SHARED MEMORY

return(0);

}

25.7 Exercises

Exercise 25.1 Write 2 programs that will communicate via shared memory
and semaphores. Data will be exchanged via memory and semaphores will be
used to synchronise and notify each process when operations such as memory
loaded and memory read have been performed.

Exercise 25.2 Compile the programs shmget.c, shmctl.c and shmop.c

and then

• investigate and understand fully the operations of the flags (access, cre-
ation etc. permissions) you can set interactively in the programs.

• Use the prgrams to:

– Exchange data between two processe running as shmop.c.

– Inquire about the state of shared memory with shmctl.c.

– Use semctl.c to lock a shared memory segment.

– Use semctl.c to delete a shared memory segment.

Exercise 25.3 Write 2 programs that will communicate via mapped mem-
ory.

Chapter 26

IPC:Sockets

Sockets provide point-to-point, two-way communication between two pro-
cesses. Sockets are very versatile and are a basic component of interprocess
and intersystem communication. A socket is an endpoint of communication
to which a name can be bound. It has a type and one or more associated
processes.

Sockets exist in communication domains. A socket domain is an abstrac-
tion that provides an addressing structure and a set of protocols. Sockets
connect only with sockets in the same domain. Twenty three socket domains
are identified (see <sys/socket.h>), of which only the UNIX and Internet
domains are normally used Solaris 2.x Sockets can be used to communicate
between processes on a single system, like other forms of IPC.

The UNIX domain provides a socket address space on a single system.
UNIX domain sockets are named with UNIX paths. Sockets can also be used
to communicate between processes on different systems. The socket address
space between connected systems is called the Internet domain.

Internet domain communication uses the TCP/IP internet protocol suite.

Socket types define the communication properties visible to the applica-
tion. Processes communicate only between sockets of the same type. There
are five types of socket.

A stream socket — provides two-way, sequenced, reliable, and undupli-
cated flow of data with no record boundaries. A stream operates much
like a telephone conversation. The socket type is SOCK STREAM, which,
in the Internet domain, uses Transmission Control Protocol (TCP).

269

270 CHAPTER 26. IPC:SOCKETS

A datagram socket — supports a two-way flow of messages. A on a data-
gram socket may receive messages in a different order from the sequence
in which the messages were sent. Record boundaries in the data are
preserved. Datagram sockets operate much like passing letters back
and forth in the mail. The socket type is SOCK DGRAM, which, in the
Internet domain, uses User Datagram Protocol (UDP).

A sequential packet socket — provides a two-way, sequenced, reliable,
connection, for datagrams of a fixed maximum length. The socket type
is SOCK SEQPACKET. No protocol for this type has been implemented for
any protocol family.

A raw socket provides access to the underlying communication protocols.

These sockets are usually datagram oriented, but their exact characteristics
depend on the interface provided by the protocol.

26.1 Socket Creation and Naming

int socket(int domain, int type, int protocol) is called to create a
socket in the specified domain and of the specified type. If a protocol is not
specified, the system defaults to a protocol that supports the specified socket
type. The socket handle (a descriptor) is returned. A remote process has
no way to identify a socket until an address is bound to it. Communicating
processes connect through addresses. In the UNIX domain, a connection
is usually composed of one or two path names. In the Internet domain, a
connection is composed of local and remote addresses and local and remote
ports. In most domains, connections must be unique.

int bind(int s, const struct sockaddr *name, int namelen) is called
to bind a path or internet address to a socket. There are three different ways
to call bind(), depending on the domain of the socket.

• For UNIX domain sockets with paths containing 14, or fewer characters,
you can:

#include <sys/socket.h>

...

bind (sd, (struct sockaddr *) &addr, length);

26.2. CONNECTING STREAM SOCKETS 271

• If the path of a UNIX domain socket requires more characters, use:

#include <sys/un.h>

...

bind (sd, (struct sockaddr_un *) &addr, length);

• For Internet domain sockets, use

#include <netinet/in.h>

...

bind (sd, (struct sockaddr_in *) &addr, length);

In the UNIX domain, binding a name creates a named socket in the file
system. Use unlink() or rm () to remove the socket.

26.2 Connecting Stream Sockets

Connecting sockets is usually not symmetric. One process usually acts as
a server and the other process is the client. The server binds its socket
to a previously agreed path or address. It then blocks on the socket. For
a SOCK STREAM socket, the server calls int listen(int s, int backlog)

, which specifies how many connection requests can be queued. A client
initiates a connection to the server’s socket by a call to int connect(int

s, struct sockaddr *name, int namelen) . A UNIX domain call is like
this:

struct sockaddr_un server;

...

connect (sd, (struct sockaddr_un *)&server, length);

while an Internet domain call would be:

struct sockaddr_in;

...

connect (sd, (struct sockaddr_in *)&server, length);

272 CHAPTER 26. IPC:SOCKETS

If the client’s socket is unbound at the time of the connect call, the system
automatically selects and binds a name to the socket. For a SOCK STREAM

socket, the server calls accept(3N) to complete the connection.
int accept(int s, struct sockaddr *addr, int *addrlen) returns

a new socket descriptor which is valid only for the particular connection. A
server can have multiple SOCK STREAM connections active at one time.

26.3 Stream Data Transfer and Closing

Several functions to send and receive data from a SOCK STREAM socket. These
are write(), read(), int send(int s, const char *msg, int len, int

flags), and int recv(int s, char *buf, int len, int flags). send()
and recv() are very similar to read() and write(), but have some addi-
tional operational flags.

The flags parameter is formed from the bitwise OR of zero or more of the
following:

MSG OOB — Send ”out-of-band” data on sockets that support this notion.
The underlying protocol must also support ”out-of-band” data. Only
SOCK STREAM sockets created in the AF INET address family support
out-of-band data.

MSG DONTROUTE — The SO DONTROUTE option is turned on for the duration
of the operation. It is used only by diagnostic or routing pro- grams.

MSG PEEK — ”Peek” at the data present on the socket; the data is returned,
but not consumed, so that a subsequent receive operation will see the
same data.

A SOCK STREAM socket is discarded by calling close().

26.4 Datagram sockets

A datagram socket does not require that a connection be established. Each
message carries the destination address. If a particular local address is
needed, a call to bind() must precede any data transfer. Data is sent through
calls to sendto() or sendmsg(). The sendto() call is like a send() call with
the destination address also specified. To receive datagram socket messages,

26.5. SOCKET OPTIONS 273

call recvfrom() or recvmsg(). While recv() requires one buffer for the ar-
riving data, recvfrom() requires two buffers, one for the incoming message
and another to receive the source address.

Datagram sockets can also use connect() to connect the socket to a
specified destination socket. When this is done, send() and recv() are used
to send and receive data.

accept() and listen() are not used with datagram sockets.

26.5 Socket Options

Sockets have a number of options that can be fetched with getsockopt()

and set with setsockopt(). These functions can be used at the native socket
level (level = SOL_SOCKET), in which case the socket option name must be
specified. To manipulate options at any other level the protocol number of
the desired protocol controlling the option of interest must be specified (see
getprotoent() in getprotobyname()).

26.6 Example Socket Programs:socket server.c,socket client

These two programs show how you can establish a socket connection using
the above functions.

26.6.1 socket server.c

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stdio.h>

#define NSTRS 3 /* no. of strings */

#define ADDRESS "mysocket" /* addr to connect */

/*

* Strings we send to the client.

*/

char *strs[NSTRS] = {

"This is the first string from the server.\n",

274 CHAPTER 26. IPC:SOCKETS

"This is the second string from the server.\n",

"This is the third string from the server.\n"

};

main()

{

char c;

FILE *fp;

int fromlen;

register int i, s, ns, len;

struct sockaddr_un saun, fsaun;

/*

* Get a socket to work with. This socket will

* be in the UNIX domain, and will be a

* stream socket.

*/

if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {

perror("server: socket");

exit(1);

}

/*

* Create the address we will be binding to.

*/

saun.sun_family = AF_UNIX;

strcpy(saun.sun_path, ADDRESS);

/*

* Try to bind the address to the socket. We

* unlink the name first so that the bind won’t

* fail.

*

* The third argument indicates the "length" of

* the structure, not just the length of the

* socket name.

*/

unlink(ADDRESS);

26.6. EXAMPLE SOCKET PROGRAMS:SOCKET SERVER.C,SOCKET CLIENT275

len = sizeof(saun.sun_family) + strlen(saun.sun_path);

if (bind(s, &saun, len) < 0) {

perror("server: bind");

exit(1);

}

/*

* Listen on the socket.

*/

if (listen(s, 5) < 0) {

perror("server: listen");

exit(1);

}

/*

* Accept connections. When we accept one, ns

* will be connected to the client. fsaun will

* contain the address of the client.

*/

if ((ns = accept(s, &fsaun, &fromlen)) < 0) {

perror("server: accept");

exit(1);

}

/*

* We’ll use stdio for reading the socket.

*/

fp = fdopen(ns, "r");

/*

* First we send some strings to the client.

*/

for (i = 0; i < NSTRS; i++)

send(ns, strs[i], strlen(strs[i]), 0);

/*

* Then we read some strings from the client and

276 CHAPTER 26. IPC:SOCKETS

* print them out.

*/

for (i = 0; i < NSTRS; i++) {

while ((c = fgetc(fp)) != EOF) {

putchar(c);

if (c == ’\n’)

break;

}

}

/*

* We can simply use close() to terminate the

* connection, since we’re done with both sides.

*/

close(s);

exit(0);

}

26.6.2 socket client.c

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stdio.h>

#define NSTRS 3 /* no. of strings */

#define ADDRESS "mysocket" /* addr to connect */

/*

* Strings we send to the server.

*/

char *strs[NSTRS] = {

"This is the first string from the client.\n",

"This is the second string from the client.\n",

"This is the third string from the client.\n"

26.6. EXAMPLE SOCKET PROGRAMS:SOCKET SERVER.C,SOCKET CLIENT277

};

main()

{

char c;

FILE *fp;

register int i, s, len;

struct sockaddr_un saun;

/*

* Get a socket to work with. This socket will

* be in the UNIX domain, and will be a

* stream socket.

*/

if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {

perror("client: socket");

exit(1);

}

/*

* Create the address we will be connecting to.

*/

saun.sun_family = AF_UNIX;

strcpy(saun.sun_path, ADDRESS);

/*

* Try to connect to the address. For this to

* succeed, the server must already have bound

* this address, and must have issued a listen()

* request.

*

* The third argument indicates the "length" of

* the structure, not just the length of the

* socket name.

*/

len = sizeof(saun.sun_family) + strlen(saun.sun_path);

if (connect(s, &saun, len) < 0) {

278 CHAPTER 26. IPC:SOCKETS

perror("client: connect");

exit(1);

}

/*

* We’ll use stdio for reading

* the socket.

*/

fp = fdopen(s, "r");

/*

* First we read some strings from the server

* and print them out.

*/

for (i = 0; i < NSTRS; i++) {

while ((c = fgetc(fp)) != EOF) {

putchar(c);

if (c == ’\n’)

break;

}

}

/*

* Now we send some strings to the server.

*/

for (i = 0; i < NSTRS; i++)

send(s, strs[i], strlen(strs[i]), 0);

/*

* We can simply use close() to terminate the

* connection, since we’re done with both sides.

*/

close(s);

exit(0);

}

26.7. EXERCISES 279

26.7 Exercises

Exercise 26.1 Configure the above socket server.c and socket client.c

programs for you system and compile and run them. You will need to set up
socket ADDRESS definition.

280 CHAPTER 26. IPC:SOCKETS

Chapter 27

Threads: Basic Theory and
Libraries

This chapter examines aspects of threads and multiprocessing (and multi-
threading). We will firts study a little theory of threads and also look at how
threading can be effectively used to make programs more efficient. The C
thread libraries will then be introduced. The following chapters will look at
further thread issues such as synchronisation and practical examples.

27.1 Processes and Threads

We can think of a thread as basically a lightweight process. In order to
understand this let us consider the two main characteristics of a process:

Unit of resource ownership — A process is allocated:

• a virtual address space to hold the process image

• control of some resources (files, I/O devices...)

Unit of dispatching - A process is an execution path through one or more
programs:

• execution may be interleaved with other processes

• the process has an execution state and a dispatching priority

If we treat these two characteristics as being independent (as does modern
OS theory):

281

282 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

• The unit of resource ownership is usually referred to as a process or
task. This Processes have:

– a virtual address space which holds the process image.

– protected access to processors, other processes, files, and I/O re-
sources.

• The unit of dispatching is usually referred to a thread or a lightweight
process. Thus a thread:

– Has an execution state (running, ready, etc.)

– Saves thread context when not running

– Has an execution stack and some per-thread static storage for
local variables

– Has access to the memory address space and resources of its pro-
cess

• all threads of a process share this when one thread alters a (non-private)
memory item, all other threads (of the process) sees that a file open
with one thread, is available to others

27.1.1 Benefits of Threads vs Processes

If implemented correctly then threads have some advantages of (multi) pro-
cesses, They take:

• Less time to create a new thread than a process, because the newly
created thread uses the current process address space.

• Less time to terminate a thread than a process.

• Less time to switch between two threads within the same process,
partly because the newly created thread uses the current process ad-
dress space.

• Less communication overheads — communicating between the threads
of one process is simple because the threads share everything: address
space, in particular. So, data produced by one thread is immediately
available to all the other threads.

27.1. PROCESSES AND THREADS 283

Figure 27.1: Threads and Processes

27.1.2 Multithreading vs. Single threading

Just a we can multiple processes running on some systems we can have mul-
tiple threads running:

Single threading — when the OS does not recognize the concept of thread

Multithreading — when the OS supports multiple threads of execution
within a single process

Figure 27.1 shows a variety of models for threads and processes.
Some example popular OSs and their thread support is:

MS-DOS — support a single user process and a single thread

UNIX — supports multiple user processes but only supports one thread per
process

Solaris — supports multiple threads

Multithreading your code can have many benefits:

• Improve application responsiveness — Any program in which many ac-
tivities are not dependent upon each other can be redesigned so that
each activity is defined as a thread. For example, the user of a multi-
threaded GUI does not have to wait for one activity to complete before
starting another.

284 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

• Use multiprocessors more efficiently — Typically, applications that ex-
press concurrency requirements with threads need not take into account
the number of available processors. The performance of the applica-
tion improves transparently with additional processors. Numerical al-
gorithms and applications with a high degree of parallelism, such as
matrix multiplications, can run much faster when implemented with
threads on a multiprocessor.

• Improve program structure — Many programs are more efficiently
structured as multiple independent or semi-independent units of ex-
ecution instead of as a single, monolithic thread. Multithreaded pro-
grams can be more adaptive to variations in user demands than single
threaded programs.

• Use fewer system resources — Programs that use two or more processes
that access common data through shared memory are applying more
than one thread of control. However, each process has a full address
space and operating systems state. The cost of creating and maintain-
ing this large amount of state information makes each process much
more expensive than a thread in both time and space. In addition,
the inherent separation between processes can require a major effort
by the programmer to communicate between the threads in different
processes, or to synchronize their actions.

Figure 27.2 illustrates different process models and thread control in a
single thread and multithreaded application.

27.1.3 Some Example applications of threads

:
Example : A file server on a LAN

• It needs to handle several file requests over a short period

• Hence more efficient to create (and destroy) a single thread for each
request

• Multiple threads can possibly be executing simultaneously on different
processors

27.2. THREAD LEVELS 285

Figure 27.2: Single and Multi- Thread Applicatiions

Example 2: Matrix Multiplication

Matrix Multilication essentially involves taking the rows of one matrix
and multiplying and adding corresponding columns in a second matrix i.e:

Note that each element of the resultant matrix can be computed inde-
pendently, that is to say by a different thread.

We will develop a C++ example program for matrix multiplication later
(see Chapter ??).

27.2 Thread Levels

There are two broad categories of thread implementation:

• User-Level Threads — Thread Libraries.

• Kernel-level Threads — System Calls.

There are merits to both, in fact some OSs allow access to both levels (e.g.
Solaris).

27.2.1 User-Level Threads (ULT)

In this level, the kernel is not aware of the existence of threads — All thread
management is done by the application by using a thread library. Thread

286 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

Figure 27.3: Matrix Multiplication (3x3 example)

switching does not require kernel mode privileges (no mode switch) and
scheduling is application specific

Kernel activity for ULTs:

• The kernel is not aware of thread activity but it is still managing process
activity

• When a thread makes a system call, the whole process will be blocked
but for the thread library that thread is still in the running state

• So thread states are independent of process states

Advantages and inconveniences of ULT
Advantages:

• Thread switching does not involve the kernel — no mode switching

• Scheduling can be application specific — choose the best algorithm.

• ULTs can run on any OS — Only needs a thread library

Disadvantages:

27.2. THREAD LEVELS 287

• Most system calls are blocking and the kernel blocks processes — So
all threads within the process will be blocked

• The kernel can only assign processes to processors — Two threads
within the same process cannot run simultaneously on two processors

27.2.2 Kernel-Level Threads (KLT)

In this level, All thread management is done by kernel No thread library
but an API (system calls) to the kernel thread facility exists. The kernel
maintains context information for the process and the threads, switching
between threads requires the kernel Scheduling is performed on a thread
basis.

Advantages and inconveniences of KLT
Advantages

• the kernel can simultaneously schedule many threads of the same pro-
cess on many processors blocking is done on a thread level

• kernel routines can be multithreaded

Disadvantages:

• thread switching within the same process involves the kernel, e.g if we
have 2 mode switches per thread switch this results in a significant slow
down.

27.2.3 Combined ULT/KLT Approaches

Idea is to combine the best of both approaches
Solaris is an example of an OS that combines both ULT and KLT (Fig-

ure 27.4:

• Thread creation done in the user space

• Bulk of scheduling and synchronization of threads done in the user
space

• The programmer may adjust the number of KLTs

288 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

Figure 27.4: Solaris Thread Implementation

• Process includes the user’s address space, stack, and process control
block

• User-level threads (threads library) invisible to the OS are the interface
for application parallelism

• Kernel threads the unit that can be dispatched on a processor

• Lightweight processes (LWP) each LWP supports one or more ULTs
and maps to exactly one KLT

27.3 Threads libraries

The interface to multithreading support is through a subroutine library,
libpthread for POSIX threads, and libthread for Solaris threads. They both
contain code for:

• creating and destroying threads

• passing messages and data between threads

• scheduling thread execution

• saving and restoring thread contexts

27.4. THE POSIX THREADS LIBRARY:LIBPTHREAD,<PTHREAD.H>289

27.4 The POSIX Threads Library:libpthread,

<pthread.h>

27.4.1 Creating a (Default) Thread

Use the function pthread create() to add a new thread of control to the
current process. It is prototyped by:

int pthread_create(pthread_t *tid, const pthread_attr_t *tattr,

void*(*start_routine)(void *), void *arg);

When an attribute object is not specified, it is NULL, and the default
thread is created with the following attributes:

• It is unbounded

• It is nondetached

• It has a a default stack and stack size

• It inhetits the parent’s priority

You can also create a default attribute object with pthread attr init()

function, and then use this attribute object to create a default thread. See
the Section 28.2.

An example call of default thread creation is:

#include <pthread.h>

pthread_attr_t tattr;

pthread_t tid;

extern void *start_routine(void *arg);

void *arg;

int ret;

/* default behavior*/

ret = pthread_create(&tid, NULL, start_routine, arg);

/* initialized with default attributes */

ret = pthread_attr_init(&tattr);

/* default behavior specified*/

ret = pthread_create(&tid, &tattr, start_routine, arg);

290 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

The pthread create() function is called with attr having the necessary
state behavior. start routine is the function with which the new thread
begins execution. When start routine returns, the thread exits with the
exit status set to the value returned by start routine.

When pthread create is successful, the ID of the thread created is stored
in the location referred to as tid.

Creating a thread using a NULL attribute argument has the same effect
as using a default attribute; both create a default thread. When tattr is
initialized, it acquires the default behavior.

pthread create() returns a zero and exits when it completes success-
fully. Any other returned value indicates that an error occurred.

27.4.2 Wait for Thread Termination

Use the pthread join function to wait for a thread to terminate. It is
prototyped by:

int pthread_join(thread_t tid, void **status);

An example use of this function is:

#include <pthread.h>

pthread_t tid;

int ret;

int status;

/* waiting to join thread "tid" with status */

ret = pthread_join(tid, &status);

/* waiting to join thread "tid" without status */

ret = pthread_join(tid, NULL);

The pthread join() function blocks the calling thread until the specified
thread terminates. The specified thread must be in the current process and
must not be detached. When status is not NULL, it points to a location
that is set to the exit status of the terminated thread when pthread join()

returns successfully. Multiple threads cannot wait for the same thread to
terminate. If they try to, one thread returns successfully and the others fail
with an error of ESRCH. After pthread join() returns, any stack storage
associated with the thread can be reclaimed by the application.

27.4. THE POSIX THREADS LIBRARY:LIBPTHREAD,<PTHREAD.H>291

The pthread join() routine takes two arguments, giving you some flex-
ibility in its use. When you want the caller to wait until a specific thread
terminates, supply that thread’s ID as the first argument. If you are in-
terested in the exit code of the defunct thread, supply the address of an
area to receive it. Remember that pthread join() works only for target
threads that are nondetached. When there is no reason to synchronize with
the termination of a particular thread, then that thread should be detached.
Think of a detached thread as being the thread you use in most instances
and reserve nondetached threads for only those situations that require them.

27.4.3 A Simple Threads Example

In this Simple Threads fragment below, one thread executes the procedure
at the top, creating a helper thread that executes the procedure fetch, which
involves a complicated database lookup and might take some time.

The main thread wants the results of the lookup but has other work to do
in the meantime. So it does those other things and then waits for its helper
to complete its job by executing pthread join(). An argument, pbe, to the
new thread is passed as a stack parameter. This can be done here because the
main thread waits for the spun-off thread to terminate. In general, though,
it is better to malloc() storage from the heap instead of passing an address
to thread stack storage, which can disappear or be reassigned if the thread
terminated.

The source for thread.c is as follows:

void mainline (...)

{

struct phonebookentry *pbe;

pthread_attr_t tattr;

pthread_t helper;

int status;

pthread_create(&helper, NULL, fetch, &pbe);

/* do something else for a while */

pthread_join(helper, &status);

/* it’s now safe to use result */

}

void fetch(struct phonebookentry *arg)

{

292 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

struct phonebookentry *npbe;

/* fetch value from a database */

npbe = search (prog_name)

if (npbe != NULL)

*arg = *npbe;

pthread_exit(0);

}

struct phonebookentry {

char name[64];

char phonenumber[32];

char flags[16];

}

27.4.4 Detaching a Thread

The function pthread detach() is an alternative to pthread join() to re-
claim storage for a thread that is created with a detachstate attribute set to
PTHREAD CREATE JOINABLE. It is prototyped by:

int pthread_detach(thread_t tid);

A simple example of calling this fucntion to detatch a thread is given by:

#include <pthread.h>

pthread_t tid;

int ret;

/* detach thread tid */

ret = pthread_detach(tid);

The pthread detach() function is used to indicate to the implementation
that storage for the thread tid can be reclaimed when the thread terminates.
If tid has not terminated, pthread detach() does not cause it to terminate.
The effect of multiple pthread detach() calls on the same target thread is
unspecified.

pthread detach() returns a zero when it completes successfully. Any
other returned value indicates that an error occurred. When any of the
following conditions are detected, pthread detach() fails and returns the
an error value.

27.4. THE POSIX THREADS LIBRARY:LIBPTHREAD,<PTHREAD.H>293

27.4.5 Create a Key for Thread-Specific Data

Single-threaded C programs have two basic classes of data: local data and
global data. For multithreaded C programs a third class is added:thread-
specific data (TSD). This is very much like global data, except that it is
private to a thread.

Thread-specific data is maintained on a per-thread basis. TSD is the
only way to define and refer to data that is private to a thread. Each thread-
specific data item is associated with a key that is global to all threads in
the process. Using the key, a thread can access a pointer (void *) that is
maintained per-thread.

The function pthread keycreate() is used to allocate a key that is used
to identify thread-specific data in a process. The key is global to all threads
in the process, and all threads initially have the value NULL associated with
the key when it is created.

pthread keycreate() is called once for each key before the key is used.
There is no implicit synchronization. Once a key has been created, each
thread can bind a value to the key. The values are specific to the thread
and are maintained for each thread independently. The per-thread binding is
deallocated when a thread terminates if the key was created with a destructor
function. pthread keycreate() is prototyped by:

int pthread_key_create(pthread_key_t *key, void (*destructor) (void *));

A simple example use of this function is:

#include <pthread.h>

pthread_key_t key;

int ret;

/* key create without destructor */

ret = pthread_key_create(&key, NULL);

/* key create with destructor */

ret = pthread_key_create(&key, destructor);

When pthread keycreate() returns successfully, the allocated key is
stored in the location pointed to by key. The caller must ensure that the
storage and access to this key are properly synchronized. An optional de-
structor function, destructor, can be used to free stale storage. When a key
has a non-NULL destructor function and the thread has a non-NULL value

294 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

associated with that key, the destructor function is called with the current
associated value when the thread exits. The order in which the destructor
functions are called is unspecified.

pthread keycreate() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When any of the
following conditions occur, pthread keycreate() fails and returns an error
value.

27.4.6 Delete the Thread-Specific Data Key

The function pthread keydelete() is used to destroy an existing thread-
specific data key. Any memory associated with the key can be freed because
the key has been invalidated and will return an error if ever referenced.
(There is no comparable function in Solaris threads.)

pthread keydelete() is prototyped by:

int pthread_key_delete(pthread_key_t key);

A simple example use of this function is:

#include <pthread.h>

pthread_key_t key;

int ret;

/* key previously created */

ret = pthread_key_delete(key);

Once a key has been deleted, any reference to it with the pthread setspecific()

or pthread getspecific() call results in the EINVAL error.
It is the responsibility of the programmer to free any thread-specific re-

sources before calling the delete function. This function does not invoke any
of the destructors.

pthread keydelete() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When the following
condition occurs, pthread keycreate() fails and returns the corresponding
value.

27.4.7 Set the Thread-Specific Data Key

The function pthread setspecific() is used to set the thread-specific bind-
ing to the specified thread-specific data key. It is prototyped by :

27.4. THE POSIX THREADS LIBRARY:LIBPTHREAD,<PTHREAD.H>295

int pthread_setspecific(pthread_key_t key, const void *value);

A simple example use of this function is:

#include <pthread.h>

pthread_key_t key;

void *value;

int ret;

/* key previously created */

ret = pthread_setspecific(key, value);

pthread setspecific() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When any of the fol-
lowing conditions occur, pthread setspecific() fails and returns an error
value.

Note: pthread setspecific() does not free its storage. If a new bind-
ing is set, the existing binding must be freed; otherwise, a memory leak can
occur.

27.4.8 Get the Thread-Specific Data Key

Use pthread getspecific() to get the calling thread’s binding for key, and
store it in the location pointed to by value. This function is prototyped by:

int pthread_getspecific(pthread_key_t key);

A simple example use of this function is:

#include <pthread.h>

pthread_key_t key;

void *value;

/* key previously created */

value = pthread_getspecific(key);

296 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

27.4.9 Global and Private Thread-Specific Data Ex-
ample

Thread-Specific Data Global but Private
Consider the following code:

body() {

...

while (write(fd, buffer, size) == -1) {

if (errno != EINTR) {

fprintf(mywindow, "%s\n", strerror(errno));

exit(1);

}

}

...

}

This code may be executed by any number of threads, but it has references
to two global variables, errno and mywindow, that really should be references
to items private to each thread.

References to errno should get the system error code from the routine
called by this thread, not by some other thread. So, references to errno by
one thread refer to a different storage location than references to errno by
other threads. The mywindow variable is intended to refer to a stdio stream
connected to a window that is private to the referring thread. So, as with
errno, references to mywindow by one thread should refer to a different
storage location (and, ultimately, a different window) than references to my-
window by other threads. The only difference here is that the threads library
takes care of errno, but the programmer must somehow make this work for
mywindow. The next example shows how the references to mywindow work.
The preprocessor converts references to mywindow into invocations of the
mywindow procedure. This routine in turn invokes pthread getspecific(),
passing it the mywindow key global variable (it really is a global variable) and
an output parameter, win, that receives the identity of this thread’s window.

Turning Global References Into Private References Now consider
this code fragment:

thread_key_t mywin_key;

27.4. THE POSIX THREADS LIBRARY:LIBPTHREAD,<PTHREAD.H>297

FILE *_mywindow(void) {

FILE *win;

pthread_getspecific(mywin_key, &win);

return(win);

}

#define mywindow _mywindow()

void routine_uses_win(FILE *win) {

...

}

void thread_start(...) {

...

make_mywin();

...

routine_uses_win(mywindow)

...

}

The mywin key variable identifies a class of variables for which each thread
has its own private copy; that is, these variables are thread-specific data.
Each thread calls make mywin to initialize its window and to arrange for its
instance of mywindow to refer to it. Once this routine is called, the thread can
safely refer to mywindow and, after mywindow, the thread gets the reference
to its private window. So, references to mywindow behave as if they were
direct references to data private to the thread.

We can now set up our initial Thread-Specific Data:

void make_mywindow(void) {

FILE **win;

static pthread_once_t mykeycreated = PTHREAD_ONCE_INIT;

pthread_once(&mykeycreated, mykeycreate);

win = malloc(sizeof(*win));

create_window(win, ...);

pthread_setspecific(mywindow_key, win);

}

void mykeycreate(void) {

pthread_keycreate(&mywindow_key, free_key);

298 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

}

void free_key(void *win) {

free(win);

}

First, get a unique value for the key, mywin key. This key is used to iden-
tify the thread-specific class of data. So, the first thread to call make mywin

eventually calls pthread keycreate(), which assigns to its first argument
a unique key. The second argument is a destructor function that is used
to deallocate a thread’s instance of this thread-specific data item once the
thread terminates.

The next step is to allocate the storage for the caller’s instance of this
thread-specific data item. Having allocated the storage, a call is made to
the create window routine, which sets up a window for the thread and
sets the storage pointed to by win to refer to it. Finally, a call is made to
pthread setspecific(), which associates the value contained in win (that
is, the location of the storage containing the reference to the window) with
the key. After this, whenever this thread calls pthread getspecific(),
passing the global key, it gets the value that was associated with this key
by this thread when it called pthread setspecific(). When a thread
terminates, calls are made to the destructor functions that were set up in
pthread key create(). Each destructor function is called only if the termi-
nating thread established a value for the key by calling pthread setspecific().

27.4.10 Getting the Thread Identifiers

The function pthread self() can be called to return the ID of the calling
thread. It is prototyped by:

pthread_t pthread_self(void);

It is use is very straightforward:

#include <pthread.h>

pthread_t tid;

tid = pthread_self();

27.4. THE POSIX THREADS LIBRARY:LIBPTHREAD,<PTHREAD.H>299

27.4.11 Comparing Thread IDs

The function pthread equal() can be called to compare the thread identi-
fication numbers of two threads. It is prototyped by:

int pthread_equal(pthread_t tid1, pthread_t tid2);

It is use is straightforward to use, also:

#include <pthread.h>

pthread_t tid1, tid2;

int ret;

ret = pthread_equal(tid1, tid2);

As with other comparison functions, pthread equal() returns a non-
zero value when tid1 and tid2 are equal; otherwise, zero is returned. When
either tid1 or tid2 is an invalid thread identification number, the result is
unpredictable.

27.4.12 Initializing Threads

Use pthread once() to call an initialization routine the first time pthread once()

is called — Subsequent calls to have no effect. The prototype of this function
is:

int pthread_once(pthread_once_t *once_control,

void (*init_routine)(void));

27.4.13 Yield Thread Execution

The function sched yield() to cause the current thread to yield its exe-
cution in favor of another thread with the same or greater priority. It is
prototyped by:

int sched_yield(void);

It is clearly a simple function to call:

#include <sched.h>

int ret;

ret = sched_yield();

sched yield() returns zero after completing successfully. Otherwise -1
is returned and errno is set to indicate the error condition.

300 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

27.4.14 Set the Thread Priority

Use pthread setschedparam() to modify the priority of an existing thread.
This function has no effect on scheduling policy. It is prototyped as follows:

int pthread_setschedparam(pthread_t tid, int policy,

const struct sched_param *param);

and used as follows:

#include <pthread.h>

pthread_t tid;

int ret;

struct sched_param param;

int priority;

/* sched_priority will be the priority of the thread */

sched_param.sched_priority = priority;

/* only supported policy, others will result in ENOTSUP */

policy = SCHED_OTHER;

/* scheduling parameters of target thread */

ret = pthread_setschedparam(tid, policy, ¶m);

pthread setschedparam() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When either of the fol-
lowing conditions occurs, the pthread setschedparam() function fails and
returns an error value.

27.4.15 Get the Thread Priority

int pthread getschedparam(pthread t tid, int policy, struct schedparam

*param) gets the priority of the existing thread.
An example call of this function is:

#include <pthread.h>

pthread_t tid;

sched_param param;

int priority;

27.4. THE POSIX THREADS LIBRARY:LIBPTHREAD,<PTHREAD.H>301

int policy;

int ret;

/* scheduling parameters of target thread */

ret = pthread_getschedparam (tid, &policy, ¶m);

/* sched_priority contains the priority of the thread */

priority = param.sched_priority;

pthread getschedparam() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When the following
condition occurs, the function fails and returns the error value set.

27.4.16 Send a Signal to a Thread

Signal may be sent to threads is a similar fashion to those for process as
follows:

#include <pthread.h>

#include <signal.h>

int sig;

pthread_t tid;

int ret;

ret = pthread_kill(tid, sig);

pthread kill() sends the signal sig to the thread specified by tid. tid
must be a thread within the same process as the calling thread. The sig

argument must be a valid signal of the same type defined for signal() in
<signal.h> (See Chapter 22)

When sig is zero, error checking is performed but no signal is actually
sent. This can be used to check the validity of tid.

This function returns zero after completing successfully. Any other re-
turned value indicates that an error occurred. When either of the following
conditions occurs, pthread kill() fails and returns an error value.

27.4.17 Access the Signal Mask of the Calling Thread

The function pthread sigmask() may be used to change or examine the
signal mask of the calling thread. It is prototyped as follows:

302 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

int pthread_sigmask(int how, const sigset_t *new, sigset_t *old);

Example uses of this function include:

#include <pthread.h>

#include <signal.h>

int ret;

sigset_t old, new;

ret = pthread_sigmask(SIG_SETMASK, &new, &old); /* set new mask */

ret = pthread_sigmask(SIG_BLOCK, &new, &old); /* blocking mask */

ret = pthread_sigmask(SIG_UNBLOCK, &new, &old); /* unblocking */

how determines how the signal set is changed. It can have one of the
following values:

SIG SETMASK — Replace the current signal mask with new, where new indi-
cates the new signal mask.

SIG BLOCK — Add new to the current signal mask, where new indicates the
set of signals to block.

SIG UNBLOCK — Delete new from the current signal mask, where new indi-
cates the set of signals to unblock.

When the value of new is NULL, the value of how is not significant and
the signal mask of the thread is unchanged. So, to inquire about currently
blocked signals, assign a NULL value to the new argument. The old variable
points to the space where the previous signal mask is stored, unless it is NULL.

pthread sigmask() returns a zero when it completes successfully. Any
other returned value indicates that an error occurred. When the following
condition occurs, pthread sigmask() fails and returns an errro value.

27.4.18 Terminate a Thread

A thread can terminate its execution in the following ways:

• By returning from its first (outermost) procedure, the threads start
routine; see pthread create()

• By calling pthread exit(), supplying an exit status

27.5. SOLARIS THREADS: <THREAD.H> 303

• By termination with POSIX cancel functions; see pthread cancel()

The void pthread exit(void *status) is used terminate a thread in a
similar fashion the exit() for a process:

#include <pthread.h>

int status;

pthread_exit(&status); /* exit with status */

The pthread exit() function terminates the calling thread. All thread-
specific data bindings are released. If the calling thread is not detached, then
the thread’s ID and the exit status specified by status are retained until the
thread is waited for (blocked). Otherwise, status is ignored and the thread’s
ID can be reclaimed immediately.

The pthread cancel() function to cancel a thread is prototyped:

int pthread_cancel(pthread_t thread);

and called:

#include <pthread.h>

pthread_t thread;

int ret;

ret = pthread_cancel(thread);

How the cancellation request is treated depends on the state of the target
thread. Two functions,

pthread setcancelstate() and pthread setcanceltype() (see man pages
for further information on these functions), determine that state.

pthread cancel() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition
occurs, the function fails and returns an error value.

27.5 Solaris Threads: <thread.h>

Solaris have many similarities to POSIX threads,In this sectionfocus on the
Solaris features that are not found in POSIX threads. Where functionality is
virtually the same for both Solaris threads and for pthreads, (even though the
function names or arguments might differ), only a brief example consisting of

304 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

the correct include file and the function prototype is presented. Where return
values are not given for the Solaris threads functions, see the appropriate man
pages.

The Solaris threads API and the pthreads API are two solutions to the
same problem: building parallelism into application software. Although each
API is complete in itself, you can safely mix Solaris threads functions and
pthread functions in the same program.

The two APIs do not match exactly, however. Solaris threads supports
functions that are not found in pthreads, and pthreads includes functions
that are not supported in the Solaris interface. For those functions that
do match, the associated arguments might not, although the information
content is effectively the same.

By combining the two APIs, you can use features not found in one to
enhance the other. Similarly, you can run applications using Solaris threads,
exclusively, with applications using pthreads, exclusively, on the same sys-
tem.

To use the Solaris threads functions described in this chapter, you must
link with the Solaris threads library -lthread and include the <thread.h>
in all programs.

27.5.1 Unique Solaris Threads Functions

Let us begin by looking at some functions that are unique to Solaris threads:

• Suspend Thread Execution

• Continue a Suspended Thread

• Set Thread Concurrency Level

• Get Thread Concurrency

Suspend Thread Execution

The function thr suspend() immediately suspends the execution of the
thread specified by a target thread, (tid below). It is prototyped by:

int thr_suspend(thread_t tid);

27.5. SOLARIS THREADS: <THREAD.H> 305

On successful return from thr suspend(), the suspended thread is no
longer executing. Once a thread is suspended, subsequent calls to thr suspend()

have no effect. Signals cannot awaken the suspended thread; they remain
pending until the thread resumes execution.

A simple example call is as follows:

#include <thread.h>

thread_t tid; /* tid from thr_create() */

/* pthreads equivalent of Solaris tid from thread created */

/* with pthread_create() */

pthread_t ptid;

int ret;

ret = thr_suspend(tid);

/* using pthreads ID variable with a cast */

ret = thr_suspend((thread_t) ptid);

Note: pthread t tid as defined in pthreads is the same as thread t

tid in Solaris threads. tid values can be used interchangeably either by
assignment or through the use of casts.

Continue a Suspended Thread

The function thr continue() resumes the execution of a suspended thread.
It is prototypes as follows:

int thr_continue(thread_t tid);

Once a suspended thread is continued, subsequent calls to thr continue()

have no effect.
A suspended thread will not be awakened by a signal. The signal stays

pending until the execution of the thread is resumed by thr continue().
thr continue() returns zero after completing successfully. Any other

returned value indicates that an error occurred. When the following condition
occurs, thr continue() The following code fragment illustrates the use of
the function:

thread_t tid; /* tid from thr_create()*/

/* pthreads equivalent of Solaris tid from thread created */

306 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

/* with pthread_create()*/

pthread_t ptid;

int ret;

ret = thr_continue(tid);

/* using pthreads ID variable with a cast */

ret = thr_continue((thread_t) ptid)

Set Thread Concurrency Level

By default, Solaris threads attempt to adjust the system execution resources
(LWPs) used to run unbound threads to match the real number of active
threads. While the Solaris threads package cannot make perfect decisions,
it at least ensures that the process continues to make progress. When you
have some idea of the number of unbound threads that should be simul-
taneously active (executing code or system calls), tell the library through
thr setconcurrency(int new level). To get the number of threads being
used, use the function thr getconcurrencyint(void):

thr setconcurrency() provides a hint to the system about the required
level of concurrency in the application. The system ensures that a sufficient
number of threads are active so that the process continues to make progress,
for example:

#include <thread.h>

int new_level;

int ret;

ret = thr_setconcurrency(new_level);

Unbound threads in a process might or might not be required to be si-
multaneously active. To conserve system resources, the threads system en-
sures by default that enough threads are active for the process to make
progress, and that the process will not deadlock through a lack of concur-
rency. Because this might not produce the most effective level of concurrency,
thr setconcurrency() permits the application to give the threads system
a hint, specified by new level, for the desired level of concurrency. The ac-
tual number of simultaneously active threads can be larger or smaller than
new level. Note that an application with multiple compute-bound threads
can fail to schedule all the runnable threads if thr setconcurrency() has

27.5. SOLARIS THREADS: <THREAD.H> 307

not been called to adjust the level of execution resources. You can also affect
the value for the desired concurrency level by setting the THR NEW LW flag in
thr create(). This effectively increments the current level by one.

thr setconcurrency() a zero when it completes successfully. Any other
returned value indicates that an error occurred. When any of the following
conditions are detected, thr setconcurrency() fails and returns the corre-
sponding value to �errno.

Readers/Writer Locks

Readers/Writer locks are another unique feature of Solaris threads. They
allow simultaneous read access by many threads while restricting write access
to only one thread at a time.

When any thread holds the lock for reading, other threads can also acquire
the lock for reading but must wait to acquire the lock for writing. If one
thread holds the lock for writing, or is waiting to acquire the lock for writing,
other threads must wait to acquire the lock for either reading or writing.
Readers/writer locks are slower than mutexes, but can improve performance
when they protect data that are not frequently written but that are read by
many concurrent threads. Use readers/writer locks to synchronize threads
in this process and other processes by allocating them in memory that is
writable and shared among the cooperating processes (see mmap(2)) and by
initializing them for this behavior. By default, the acquisition order is not
defined when multiple threads are waiting for a readers/writer lock. However,
to avoid writer starvation, the Solaris threads package tends to favor writers
over readers. Readers/writer locks must be initialized before use.

Initialize a Readers/Writer Lock
The function rwlock init() initialises the readers/writer lock. it is pro-

totypes in <synch.h> or <thread.h> as follows:

int rwlock_init(rwlock_t *rwlp, int type, void * arg);

The readers/writer lock pointed to by rwlp and to set the lock state to
unlocked. type can be one of the following

USYNC PROCESS — The readers/writer lock can be used to synchronize threads
in this process and other processes.

USYNC THREAD — The readers/writer lock can be used to synchronize threads
in this process, only.

308 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

Note: that arg is currently ignored.
rwlock init() returns zero after completing successfully. Any other re-

turned value indicates that an error occurred. When any of the following
conditions occur, the function fails and returns the corresponding value to
errno.

Multiple threads must not initialize the same readers/writer lock simulta-
neously. Readers/writer locks can also be initialized by allocation in zeroed
memory, in which case a type of USYNC THREAD is assumed. A readers/writer
lock must not be reinitialized while other threads might be using it.

An example code fragment that initialises Readers/Writer Locks with
Intraprocess Scope is as follows:

#include <thread.h>

rwlock_t rwlp;

int ret;

/* to be used within this process only */

ret = rwlock_init(&rwlp, USYNC_THREAD, 0);

Initializing Readers/Writer Locks with Interprocess Scope

#include <thread.h>

rwlock_t rwlp;

int ret;

/* to be used among all processes */

ret = rwlock_init(&rwlp, USYNC_PROCESS, 0);

Acquire a Read Lock
To acquire a read lock on the readers/writer lock use the rw rdlock()

function:

int rw_rdlock(rwlock_t *rwlp);

The readers/writer lock pointed to by rwlp. When the readers/writer
lock is already locked for writing, the calling thread blocks until the write
lock is released. Otherwise, the read lock is acquired.

rw rdlock() returns zero after completing successfully. Any other re-
turned value indicates that an error occurred. When any of the following
conditions occur, the function fails and returns the corresponding value to
errno.

27.5. SOLARIS THREADS: <THREAD.H> 309

A function rw tryrdlock(rwlock t *rwlp) may also be used to attempt
to acquire a read lock on the readers/writer lock pointed to by rwlp. When
the readers/writer lock is already locked for writing, it returns an error. Oth-
erwise, the read lock is acquired. This function returns zero after completing
successfully. Any other returned value indicates that an error occurred.

Acquire a Write Lock
The function rw wrlock(rwlock t *rwlp) acquires a write lock on the

readers/writer lock pointed to by rwlp. When the readers/writer lock is
already locked for reading or writing, the calling thread blocks until all the
read locks and write locks are released. Only one thread at a time can hold
a write lock on a readers/writer lock.

rw wrlock() returns zero after completing successfully. Any other re-
turned value indicates that an error occurred.

Use rw trywrlockrwlock t *rwlp) to attempt to acquire a write lock
on the readers/writer lock pointed to by rwlp. When the readers/writer lock
is already locked for reading or writing, it returns an error.

rw trywrlock() returns zero after completing successfully. Any other
returned value indicates that an error occurred.

Unlock a Readers/Writer Lock
The function rw unlock(rwlock t *rwlp) unlocks a readers/writer lock

pointed to by rwlp. The readers/writer lock must be locked and the calling
thread must hold the lock either for reading or writing. When any other
threads are waiting for the readers/writer lock to become available, one of
them is unblocked.

rw unlock() returns zero after completing successfully. Any other re-
turned value indicates that an error occurred.

Destroy Readers/Writer Lock State
The function rwlock destroy(rwlock t *rwlp) destroys any state asso-

ciated with the readers/writer lock pointed to by rlwp. The space for storing
the readers/writer lock is not freed.

rwlock destroy() returns zero after completing successfully. Any other
returned value indicates that an error occurred.

Readers/Writer Lock Example

The following example uses a bank account analogy to demonstrate read-
ers/writer locks. While the program could allow multiple threads to have
concurrent read-only access to the account balance, only a single writer is

310 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

allowed. Note that the get balance() function needs the lock to ensure
that the addition of the checking and saving balances occurs atomically.

rwlock_t account_lock;

float checking_balance = 100.0;

float saving_balance = 100.0;

...

rwlock_init(&account_lock, 0, NULL);

...

float

get_balance() {

float bal;

rw_rdlock(&account_lock);

bal = checking_balance + saving_balance;

rw_unlock(&account_lock);

return(bal);

}

void

transfer_checking_to_savings(float amount) {

rw_wrlock(&account_lock);

checking_balance = checking_balance - amount;

saving_balance = saving_balance + amount;

rw_unlock(&account_lock);

}

27.5.2 Similar Solaris Threads Functions

Here we simply list the similar thread functions and their prototype defini-
tions, except where the complexity of the function merits further exposition.
.

Create a Thread

The thr create() routine is one of the most elaborate of all the Solaris
threads library routines.

It is prototyped as follows:

int thr_create(void *stack_base, size_t stack_size,

27.5. SOLARIS THREADS: <THREAD.H> 311

void *(*start_routine) (void *), void *arg, long flags,

thread_t *new_thread);

Thjis function adds a new thread of control to the current process. Note
that the new thread does not inherit pending signals, but it does inherit
priority and signal masks.

stack base contains the address for the stack that the new thread uses. If
stack base is NULL then thr create() allocates a stack for the new thread
with at least stac size bytes. stack size Contains the size, in number of
bytes, for the stack that the new thread uses. If stack size is zero, a default
size is used. In most cases, a zero value works best. If stack size is not
zero, it must be greater than the value returned by thr min stack(void)

inquiry function.
There is no general need to allocate stack space for threads. The threads

library allocates one megabyte of virtual memory for each thread’s stack with
no swap space reserved.

start routine contains the function with which the new thread begins
execution. When start routine returns, the thread exits with the exit
status set to the value returned by start routine

arg can be anything that is described by void, which is typically any
4-byte value. Anything larger must be passed indirectly by having the argu-
ment point to it.

Note that you can supply only one argument. To get your procedure to
take multiple arguments, encode them as one (such as by putting them in a
structure).

flags specifies attributes for the created thread. In most cases a zero
value works best. The value in flags is constructed from the bitwise inclusive
OR of the following:

THR SUSPENDED — Suspends the new thread and does not execute start routine

until the thread is started by thr continue(). Use this to operate on
the thread (such as changing its priority) before you run it. The ter-
mination of a detached thread is ignored.

THR DETACHED — Detaches the new thread so that its thread ID and other
resources can be reused as soon as the thread terminates. Set this when
you do not want to wait for the thread to terminate. Note - When there
is no explicit synchronization to prevent it, an unsuspended, detached

312 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

thread can die and have its thread ID reassigned to another new thread
before its creator returns from thr create().

THR BOUND — Permanently binds the new thread to an LWP (the new thread
is a bound thread).

THR NEW LWP — Increases the concurrency level for unbound threads by one.
The effect is similar to incrementing concurrency by one with thr setconcurrency(),
although THR NEW LWP does not affect the level set through the thr setconcurrency()

function. Typically, THR NEW LWP adds a new LWP to the pool of LWPs
running unbound threads.

When you specify both THR BOUND and THR NEW LWP, two LWPs are
typically created — one for the bound thread and another for the pool
of LWPs running unbound threads.

THR DAEMON —- Marks the new thread as a daemon. The process exits when
all nondaemon threads exit. Daemon threads do not affect the process
exit status and are ignored when counting the number of thread exits.

A process can exit either by calling exit() or by having every thread
in the process that was not created with the THR DAEMON flag call
thr exit(). An application, or a library it calls, can create one or
more threads that should be ignored (not counted) in the decision of
whether to exit. The THR DAEMONl flag identifies threads that are not
counted in the process exit criterion.

new thread points to a location (when new thread is not NULL) where
the ID of the new thread is stored when thr create() is successful. The
caller is responsible for supplying the storage this argument points to. The
ID is valid only within the calling process. If you are not interested in this
identifier, supply a zero value to new thread.

thr create() returns a zero and exits when it completes successfully.
Any other returned value indicates that an error occurred. When any of
the following conditions are detected, thr create() fails and returns the
corresponding value to errno.

Get the Thread Identifier

The int thr self(void) to get the ID of the calling thread.

27.5. SOLARIS THREADS: <THREAD.H> 313

Yield Thread Execution

void thr yield(void) causes the current thread to yield its execution in
favor of another thread with the same or greater priority; otherwise it has no
effect. There is no guarantee that a thread calling thr yield() will do so.

Signals and Solaris Threads

The following functions exist and operate as do pthreads.

int thr kill(thread t target thread, int sig) sends a signal to a
thread.

int thr sigsetmask(int how, const sigset t *set, sigset t *oset)

to change or examine the signal mask of the calling thread.

Terminating a Thread

The void th exit(void *status) to terminates a thread.

The int thr join(thread t tid, thread t *departedid, void **status)

function to wait for a thread to terminate.

Therefore to join specific threads one would do:

#include <thread.h>

thread_t tid;

thread_t departedid;

int ret;

int status;

/* waiting to join thread "tid" with status */

ret = thr_join(tid, &departedid, (void**)&status);

/* waiting to join thread "tid" without status */

ret = thr_join(tid, &departedid, NULL);

/* waiting to join thread "tid" without return id and status */

ret = thr_join(tid, NULL, NULL);

When the tid is (thread t) 0, then thread join() waits for any unde-
tached thread in the process to terminate. In other words, when no thread
identifier is specified, any undetached thread that exits causes thread join()

to return.

To join any threads:

314 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

#include <thread.h>

thread_t tid;

thread_t departedid;

int ret;

int status;

/* waiting to join thread "tid" with status */

ret = thr_join(NULL, &departedid, (void **)&status);

By indicating NULL as thread id in the thr join(), a join will take
place when any non detached thread in the process exits. The departedid
will indicate the thread ID of exiting thread.

Creating a Thread-Specific Data Key

Except for the function names and arguments, thread specific data is the
same for Solaris as it is for POSIX.

int thr keycreate(thread key t *keyp, void (*destructor) (void

*value)) allocates a key that is used to identify thread-specific data in a pro-
cess.

int thr setspecific(thread key t key, void *value) binds value to
the thread-specific data key, key, for the calling thread.

int thr getspecific(thread key t key, void **valuep) stores the
current value bound to key for the calling thread into the location pointed
to by valuep.

In Solaris threads, if a thread is to be created with a priority other than
that of its parent’s, it is created in SUSPEND mode. While suspended, the
threads priority is modified using the int thr setprio(thread t tid, int

newprio) function call; then it is continued.
An unbound thread is usually scheduled only with respect to other threads

in the process using simple priority levels with no adjustments and no kernel
involvement. Its system priority is usually uniform and is inherited from the
creating process.

The function thr setprio() changes the priority of the thread, specified
by tid, within the current process to the priority specified by newprio.

By default, threads are scheduled based on fixed priorities that range
from zero, the least significant, to the largest integer. The tid will preempt
lower priority threads, and will yield to higher priority threads. For example:

27.5. SOLARIS THREADS: <THREAD.H> 315

#include <thread.h>

thread_t tid;

int ret;

int newprio = 20;

/* suspended thread creation */

ret = thr_create(NULL, NULL, func, arg, THR_SUSPEND, &tid);

/* set the new priority of suspended child thread */

ret = thr_setprio(tid, newprio);

/* suspended child thread starts executing with new priority */

ret = thr_continue(tid);

Use �int thr getprio(thread t tid, int *newprio) to get the current priority
for the thread. Each thread inherits a priority from its creator. thr getprio()

stores the current priority, tid, in the location pointed to by newprio.

Example Use of Thread Specific Data:Rethinking Global Variables

Historically, most code has been designed for single-threaded programs. This
is especially true for most of the library routines called from C programs. The
following implicit assumptions were made for single-threaded code:

• When you write into a global variable and then, a moment later, read
from it, what you read is exactly what you just wrote.

• This is also true for nonglobal, static storage.

• You do not need synchronization because there is nothing to synchro-
nize with.

The next few examples discuss some of the problems that arise in multi-
threaded programs because of these assumptions, and how you can deal with
them.

Traditional, single-threaded C and UNIX have a convention for handling
errors detected in system calls. System calls can return anything as a func-
tional value (for example, write returns the number of bytes that were trans-
ferred). However, the value -1 is reserved to indicate that something went
wrong. So, when a system call returns -1, you know that it failed.

Consider the following piece of code:

316 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

extern int errno;

...

if (write(file_desc, buffer, size) == -1)

{ /* the system call failed */

fprintf(stderr, "something went wrong, error code = %d\n", errno);

exit(1);

}

Rather than return the actual error code (which could be confused with
normal return values), the error code is placed into the global variable errno.
When the system call fails, you can look in errno to find out what went
wrong.

Now consider what happens in a multithreaded environment when two
threads fail at about the same time, but with different errors.

• Both expect to find their error codes in errno,

• but one copy of errno cannot hold both values.a

This global variable approach simply does not work for multithreaded
programs. Threads solves this problem through a conceptually new storage
class: thread-specific data.

This storage is similar to global storage in that it can be accessed from
any procedure in which a thread might be running. However, it is private
to the thread: when two threads refer to the thread-specific data location of
the same name, they are referring to two different areas of storage.

So, when using threads, each reference to errno is thread-specific because
each thread has a private copy of errno. This is achieved in this implemen-
tation by making errno a macro that expands to a function call.

27.6 Compiling a Multithreaded Application

There are many options to consider for header files, define flags, and linking.

27.6. COMPILING A MULTITHREADED APPLICATION 317

27.6.1 Preparing for Compilation

The following items are required to compile and link a multithreaded pro-
gram.

• A standard C compiler (cc, gcc etc)

• Include files:

– <thread.h> and <pthread.h>

– <errno.h¿, <limits.h>, <signal.h>, <unistd.h>

• The Solaris threads library (libthread), the POSIX threads library
(libpthread), and possibly the POSIX realtime library (libposix4)
for semaphores

• MT-safe libraries (libc, libm, libw, libintl, libnsl, libsocket,

libmalloc, libmapmalloc, and so on)

The include file <thread.h>, used with the -lthread library, compiles
code that is upward compatible with earlier releases of the Solaris system.
This library contains both interfaces: those with Solaris semantics and those
with POSIX semantics. To call thr setconcurrency() with POSIX threads,
your program needs to include <thread.h>.

The include file <pthread.h>, used with the -lpthread library, compiles
code that is conformant with the multithreading interfaces defined by the
POSIX 1003.1c standard. For complete POSIX compliance, the define flag
_POSIX_C_SOURCE should be set to a (long) value ≥ 199506, as follows:

cc [flags] file... -D_POSIX_C_SOURCE=N (where N 199506L)

You can mix Solaris threads and POSIX threads in the same application,
by including both <thread.h> and <pthread.h>, and linking with either the
-lthread or -lpthread library. In mixed use, Solaris semantics prevail when
compiling with -D_REENTRANT flag set ≥ 199506L and linking with -lthread,
whereas POSIX semantics prevail when compiling with D_POSIX_C_SOURCE

flag set ≥ 199506L and linking with -lpthread. Defining REENTRANT or
POSIX C SOURCE

Linking With libthread or libpthread

318 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

For POSIX threads behavior, load the libpthread library. For Solaris
threads behavior, load the libthread library. Some POSIX programmers
might want to link with -lthreadto preserve the Solaris distinction between
fork() and fork1(). All that -lpthread really does is to make fork()

behave the same way as the Solaris fork1() call, and change the behavior
of alarm().

To use libthread, specify -lthread last on the cc command line.

To use libpthread, specify -lpthread last on the cc command line.

Do not link a nonthreaded program with -lthread or -lpthread. Do-
ing so establishes multithreading mechanisms at link time that are initiated
at run time. These slow down a single-threaded application, waste system
resources, and produce misleading results when you debug your code.

Note: For C++ programs that use threads, use the -mt option, rather
than -lthread, to compile and link your application. The -mt option links
with libthread and ensures proper library linking order. (Using -lthread

might cause your program to crash (core dump).

Linking with -lposix4 for POSIX Semaphores

The Solaris semaphore routines (see Chapter 29.3) are contained in the
libthread library. By contrast, you link with the -lposix4 library to get
the standard POSIX semaphore routines (See Chapter 24)

27.6.2 Debugging a Multithreaded Program

The following list points out some of the more frequent oversights and errors
that can cause bugs in multithreaded programs.

• Passing a pointer to the caller’s stack as an argument to a new thread.

• Accessing global memory (shared changeable state) without the pro-
tection of a synchronization mechanism.

• Creating deadlocks caused by two threads trying to acquire rights to
the same pair of global resources in alternate order (so that one thread
controls the first resource and the other controls the second resource
and neither can proceed until the other gives up).

• Trying to reacquire a lock already held (recursive deadlock).

27.6. COMPILING A MULTITHREADED APPLICATION 319

• Creating a hidden gap in synchronization protection. This is caused
when a code segment protected by a synchronization mechanism con-
tains a call to a function that frees and then reacquires the synchro-
nization mechanism before it returns to the caller. The result is that
it appears to the caller that the global data has been protected when
it actually has not.

• Mixing UNIX signals with threads — it is better to use the sigwait()

model for handling asynchronous signals.

• Forgetting that default threads are created PTHREAD CREATE JOINABLE

and must be reclaimed with pthread join(). Note, pthread exit()

does not free up its storage space.

• Making deeply nested, recursive calls and using large automatic ar-
rays can cause problems because multithreaded programs have a more
limited stack size than single-threaded programs.

• Specifying an inadequate stack size, or using non-default stacks. And,
note that multithreaded programs (especially those containing bugs)
often behave differently in two successive runs, given identical inputs,
because of differences in the thread scheduling order.

In general, multithreading bugs are statistical instead of deterministic.
Tracing is usually a more effective method of finding order of execution prob-
lems than is breakpoint-based debugging.

320 CHAPTER 27. THREADS: BASIC THEORY AND LIBRARIES

Chapter 28

Further Threads
Programming:Thread
Attributes (POSIX)

The previous chapter covered the basics of threads creation using default
attributes. This chapter discusses setting attributes at thread creation time.

Note that only pthreads uses attributes and cancellation, so the API cov-
ered in this chapter is for POSIX threads only. Otherwise, the functionality
for Solaris threads and pthreads is largely the same.

28.1 Attributes

Attributes are a way to specify behavior that is different from the default.
When a thread is created with pthread create() or when a synchronization
variable is initialized, an attribute object can be specified. Note: however
that the default atributes are usually sufficient for most applications.

Impottant Note: Attributes are specified only at thread creation time;
they cannot be altered while the thread is being used.

Thus three functions are usually called in tandem

• Thread attibute intialisation — pthread attr init() create a default
pthread attr t tattr

• Thread attribute value change (unless defaults appropriate) — a variety
of pthread attr *() functions are available to set individual attribute

321

322CHAPTER 28. FURTHER THREADS PROGRAMMING:THREADATTRIBUTES (POSIX)

values for the pthread attr t tattr structure. (see below).

• Thread creation — a call to pthread create() with approriate at-
tribute values set in a pthread attr t tattr structure.

The following code fragment should make this point clearer:

#include <pthread.h>

pthread_attr_t tattr;

pthread_t tid;

void *start_routine;

void arg

int ret;

/* initialized with default attributes */

ret = pthread_attr_init(&tattr);

/* call an appropriate functions to alter a default value */

ret = pthread_attr_*(&tattr,SOME_ATRIBUTE_VALUE_PARAMETER);

/* create the thread */

ret = pthread_create(&tid, &tattr, start_routine, arg);

In order to save space, code examples mainly focus on the attribute setting
functions and the intializing and creation functions are ommitted. These
must of course be present in all actual code fragtments.

An attribute object is opaque, and cannot be directly modified by assign-
ments. A set of functions is provided to initialize, configure, and destroy each
object type. Once an attribute is initialized and configured, it has process-
wide scope. The suggested method for using attributes is to configure all
required state specifications at one time in the early stages of program exe-
cution. The appropriate attribute object can then be referred to as needed.
Using attribute objects has two primary advantages:

• First, it adds to code portability. Even though supported attributes
might vary between implementations, you need not modify function
calls that create thread entities because the attribute object is hidden
from the interface. If the target port supports attributes that are not

28.2. INITIALIZING THREAD ATTRIBUTES 323

found in the current port, provision must be made to manage the new
attributes. This is an easy porting task though, because attribute
objects need only be initialized once in a well-defined location.

• Second, state specification in an application is simplified. As an exam-
ple, consider that several sets of threads might exist within a process,
each providing a separate service, and each with its own state require-
ments. At some point in the early stages of the application, a thread
attribute object can be initialized for each set. All future thread cre-
ations will then refer to the attribute object initialized for that type of
thread. The initialization phase is simple and localized, and any future
modifications can be made quickly and reliably.

Attribute objects require attention at process exit time. When the object
is initialized, memory is allocated for it. This memory must be returned
to the system. The pthreads standard provides function calls to destroy
attribute objects.

28.2 Initializing Thread Attributes

The function pthread attr init() is used to initialize object attributes to
their default values. The storage is allocated by the thread system during
execution.

The function is prototyped by:

int pthread_attr_init(pthread_attr_t *tattr);

An example call to this function is:

#include <pthread.h>

pthread_attr_t tattr;

int ret;

/* initialize an attribute to the default value */

ret = pthread_attr_init(&tattr);

The default values for attributes (tattr) are:

324CHAPTER 28. FURTHER THREADS PROGRAMMING:THREADATTRIBUTES (POSIX)

Attribute Value Result
scope PTHREAD SCOPE PROCESS New thread is

unbound -
not
permanently
attached to
LWP.

detachstate PTHREAD CREATE JOINABLE Exit status
and thread are
preserved
after the
thread
terminates.

stackaddr NULL New thread
has
system-allocated stack
address.

stacksize 1 megabyte New thread
has
system-defined
stack size.
priority New thread
inherits
parent thread
priority.

inheritsched PTHREAD INHERIT SCHED New thread
inherits
parent thread
scheduling
priority.

schedpolicy SCHED OTHER New thread
uses
Solaris-defined
fixed priority
scheduling;
threads run
until
preempted by a
higher-priority
thread or
until they
block or
yield.

28.3. DESTROYING THREAD ATTRIBUTES 325

This function zero after completing successfully. Any other returned value
indicates that an error occurred. If the following condition occurs, the func-
tion fails and returns an error value (to errno).

28.3 Destroying Thread Attributes

The function pthread attr destroy() is used to remove the storage al-
located during initialization. The attribute object becomes invalid. It is
prototyped by:

int pthread_attr_destroy(pthread_attr_t *tattr);

A sample call to this functions is:

#include <pthread.h>

pthread_attr_t tattr;

int ret;

/* destroy an attribute */

ret = pthread_attr_destroy(&tattr);

Attribites are declared as for pthread attr init() above.
pthread attr destroy() returns zero after completing successfully. Any

other returned value indicates that an error occurred.

28.4 Thread’s Detach State

When a thread is created detached (PTHREAD CREATE DETACHED), its thread
ID and other resources can be reused as soon as the thread terminates.

If you do not want the calling thread to wait for the thread to terminate
then call the function pthread attr setdetachstate().

When a thread is created nondetached (PTHREAD CREATE JOINABLE), it is
assumed that you will be waiting for it. That is, it is assumed that you will
be executing a pthread join() on the thread. Whether a thread is created
detached or nondetached, the process does not exit until all threads have
exited.

pthread attr setdetachstate() is prototyped by:

326CHAPTER 28. FURTHER THREADS PROGRAMMING:THREADATTRIBUTES (POSIX)

int pthread_attr_setdetachstate(pthread_attr_t *tattr,int detachstate);

pthread attr setdetachstate() returns zero after completing success-
fully. Any other returned value indicates that an error occurred. If the
following condition occurs, the function fails and returns the corresponding
value.

An example call to detatch a thread with this function is:

#include <pthread.h>

pthread_attr_t tattr;

int ret;

/* set the thread detach state */

ret = pthread_attr_setdetachstate(&tattr,PTHREAD_CREATE_DETACHED);

Note - When there is no explicit synchronization to prevent it, a newly
created, detached thread can die and have its thread ID reassigned to an-
other new thread before its creator returns from pthread create(). For
nondetached (PTHREAD CREATE JOINABLE) threads, it is very important that
some thread join with it after it terminates — otherwise the resources of that
thread are not released for use by new threads. This commonly results in a
memory leak. So when you do not want a thread to be joined, create it as a
detached thread.

It is quite common that you will wish to create a thread which is detatched
from creation. The following code illustrates how this may be achieved with
the standard calls to initialise and set and then create a thread:

#include <pthread.h>

pthread_attr_t tattr;

pthread_t tid;

void *start_routine;

void arg

int ret;

/* initialized with default attributes */

ret = pthread_attr_init(&tattr);

ret = pthread_attr_setdetachstate(&tattr,PTHREAD_CREATE_DETACHED);

ret = pthread_create(&tid, &tattr, start_routine, arg);

28.5. THREAD’S SET SCOPE 327

The function pthread attr getdetachstate() may be used to retrieve
the thread create state, which can be either detached or joined. It is proto-
typed by:

int pthread_attr_getdetachstate(const pthread_attr_t *tattr, int *detachstate);

pthread attr getdetachstate() returns zero after completing success-
fully. Any other returned value indicates that an error occurred.

An example call to this fuction is:

#include <pthread.h>

pthread_attr_t tattr;

int detachstate;

int ret;

/* get detachstate of thread */

ret = pthread_attr_getdetachstate (&tattr, &detachstate);

28.5 Thread’s Set Scope

A thread may be bound (PTHREAD SCOPE SYSTEM) or an unbound (PTHREAD SCOPE PROCESS).
Both these types of types are accessible only within a given process.

The function pthread attr setscope() to create a bound or unbound
thread. It is prototyped by:

int pthread_attr_setscope(pthread_attr_t *tattr,int scope);

Scope takes on the value of either PTHREAD SCOP SYSTEM or PTHREAD SCOPE PROCESS.
pthread attr setscope() returns zero after completing successfully. Any

other returned value indicates that an error occurred and an appropriate
value is returned.

So to set a bound thread at thread creation on would do the following
function calls:

#include <pthread.h>

pthread_attr_t attr;

pthread_t tid;

328CHAPTER 28. FURTHER THREADS PROGRAMMING:THREADATTRIBUTES (POSIX)

void start_routine;

void arg;

int ret;

/* initialized with default attributes */

ret = pthread_attr_init (&tattr);

/* BOUND behavior */

ret = pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM);

ret = pthread_create (&tid, &tattr, start_routine, arg);

If the following conditions occur, the function fails and returns the corre-
sponding value.

The function pthread attr getscope() is used to retrieve the thread
scope, which indicates whether the thread is bound or unbound. It is proto-
typed by:

int pthread_attr_getscope(pthread_attr_t *tattr, int *scope);

An example use of this function is:

#include <pthread.h>

pthread_attr_t tattr;

int scope;

int ret;

/* get scope of thread */

ret = pthread_attr_getscope(&tattr, &scope);

If successful the approriate (PTHREAD SCOP SYSTEM or PTHREAD SCOPE PROCESS)
wil be stored in scope.

pthread att getscope() returns zero after completing successfully. Any
other returned value indicates that an error occurred.

28.6 Thread Scheduling Policy

The POSIX draft standard specifies scheduling policy attributes of SCHED FIFO

(first-in-first-out), SCHED RR (round-robin), or SCHED OTHER (an implementation-
defined method). SCHED FIFO and SCHED RR are optional in POSIX, and only
are supported for real time bound threads.

28.6. THREAD SCHEDULING POLICY 329

Howver Note, currently, only the Solaris SCHED OTHER default value is
supported in pthreads. Attempting to set policy as SCHED FIFO or SCHED RR

will result in the error ENOSUP.

The function is used to set the scheduling policy.It is prototyped by:

int pthread_attr_setschedpolicy(pthread_attr_t *tattr, int policy);

pthread attr setschedpolicy() returns zero after completing success-
fully. Any other returned value indicates that an error occurred.

To set the scheduling policy to SCHED OTHER simply do:

#include <pthread.h>

pthread_attr_t tattr;

int ret;

/* set the scheduling policy to SCHED_OTHER */

ret = pthread_attr_setschedpolicy(&tattr, SCHED_OTHER);

There is a function pthread attr getschedpolicy() that retrieves the
scheduling policy. But, currently, it is not of great use as it can only return
the (Solaris-based) SCHED OTHER default value

28.6.1 Thread Inherited Scheduling Policy

The function pthread attr setinheritsched() can be used to the inher-
ited scheduling policy of a thread. It is prototyped by:

int pthread_attr_setinheritsched(pthread_attr_t *tattr, int inherit);

An inherit value of PTHREAD INHERIT SCHED (the default) means that
the scheduling policies defined in the creating thread are to be used, and any
scheduling attributes defined in the pthread create() call are to be ignored.
If PTHREAD EXPLICIT SCHED is used, the attributes from the pthread create()

call are to be used.

The function returns zero after completing successfully. Any other re-
turned value indicates that an error occurred.

An example call of this function is:

330CHAPTER 28. FURTHER THREADS PROGRAMMING:THREADATTRIBUTES (POSIX)

#include <pthread.h>

pthread_attr_t tattr;

int ret;

/* use the current scheduling policy */

ret = pthread_attr_setinheritsched(&tattr, PTHREAD_EXPLICIT_SCHED);

The function pthread attr getinheritsched(pthread attr t *tattr,

int *inherit) may be used to inquire a current threads scheduling policy.

28.6.2 Set Scheduling Parameters

Scheduling parameters are defined in the sched param structure; only pri-
ority sched param.sched priority is supported. This priority is an inte-
ger value the higher the value the higher a thread’s proiority for scehduling.
Newly created threads run with this priority. The pthread attr setschedparam()

is used to set this stucture appropiately. It is prototyped by:

int pthread_attr_setschedparam(pthread_attr_t *tattr,

const struct sched_param *param);

and returns zero after completing successfully. Any other returned value
indicates that an error occurred.

An example call to pthread attr setschedparam() is:

#include <pthread.h>

pthread_attr_t tattr;

int newprio;

sched_param param;

/* set the priority; others are unchanged */

newprio = 30;

param.sched_priority = newprio;

/* set the new scheduling param */

ret = pthread_attr_setschedparam (&tattr, ¶m);

28.7. THREAD STACK SIZE 331

The function pthread attr getschedparam(pthread attr t *tattr, const

struct sched param *param) may be used to inquire a current thread’s pri-
ority of scheduling.

28.7 Thread Stack Size

Typically, thread stacks begin on page boundaries and any specified size is
rounded up to the next page boundary. A page with no access permission
is appended to the top of the stack so that most stack overflows result in
sending a SIGSEGV signal to the offending thread. Thread stacks allocated
by the caller are used as is.

When a stack is specified, the thread should also be created PTHREAD CREATE JOINABLE.
That stack cannot be freed until the pthread join() call for that thread has
returned, because the thread’s stack cannot be freed until the thread has ter-
minated. The only reliable way to know if such a thread has terminated is
through pthread join().

Generally, you do not need to allocate stack space for threads. The
threads library allocates one megabyte of virtual memory for each thread’s
stack with no swap space reserved. (The library uses the MAP NORESERVE

option of mmap to make the allocations.)

Each thread stack created by the threads library has a red zone. The
library creates the red zone by appending a page to the top of a stack to
catch stack overflows. This page is invalid and causes a memory fault if it
is accessed. Red zones are appended to all automatically allocated stacks
whether the size is specified by the application or the default size is used.

Note: Because runtime stack requirements vary, you should be absolutely
certain that the specified stack will satisfy the runtime requirements needed
for library calls and dynamic linking.

There are very few occasions when it is appropriate to specify a stack,
its size, or both. It is difficult even for an expert to know if the right size
was specified. This is because even a program compliant with ABI standards
cannot determine its stack size statically. Its size is dependent on the needs
of the particular runtime environment in which it executes.

332CHAPTER 28. FURTHER THREADS PROGRAMMING:THREADATTRIBUTES (POSIX)

28.7.1 Building Your Own Thread Stack

When you specify the size of a thread stack, be sure to account for the al-
locations needed by the invoked function and by each function called. The
accounting should include calling sequence needs, local variables, and infor-
mation structures.

Occasionally you want a stack that is a bit different from the default stack.
An obvious situation is when the thread needs more than one megabyte of
stack space. A less obvious situation is when the default stack is too large.
You might be creating thousands of threads and not have enough virtual
memory to handle the gigabytes of stack space that this many default stacks
require.

The limits on the maximum size of a stack are often obvious, but what
about the limits on its minimum size? There must be enough stack space
to handle all of the stack frames that are pushed onto the stack, along with
their local variables, and so on.

You can get the absolute minimum limit on stack size by calling the macro
PTHREAD STACK MIN (defined in <pthread.h>), which returns the amount of
stack space required for a thread that executes a NULL procedure. Useful
threads need more than this, so be very careful when reducing the stack size.

The function pthread attr setstacksize() is used to set this a thread’s
stack size, it is prototyped by:

int pthread_attr_setstacksize(pthread_attr_t *tattr, int stacksize);

The stacksize attribute defines the size of the stack (in bytes) that the
system will allocate. The size should not be less than the system-defined
minimum stack size.

pthread attr setstacksize() returns zero after completing success-
fully. Any other returned value indicates that an error occurred.

An example call to set the stacksize is:

#include <pthread.h>

pthread_attr_t tattr;

int stacksize;

int ret;

28.7. THREAD STACK SIZE 333

/* setting a new size */

stacksize = (PTHREAD_STACK_MIN + 0x4000);

ret = pthread_attr_setstacksize(&tattr, stacksize);

In the example above, size contains the size, in number of bytes, for the
stack that the new thread uses. If size is zero, a default size is used. In most
cases, a zero value works best. PTHREAD STACK MIN is the amount of stack
space required to start a thread. This does not take into consideration the
threads routine requirements that are needed to execute application code.

The function pthread attr getstacksize(pthread attr t *tattr, size t

*size) may be used to inquire about a current threads stack size as follows:

#include <pthread.h>

pthread_attr_t tattr;

int stacksize;

int ret;

/* getting the stack size */

ret = pthread_attr_getstacksize(&tattr, &stacksize);

The function only returns the minimum stack size (in bytes) allocated
for the created threads stack to the variable stacksize. It DOES NOT
RETURN the actual stack size so use the function with care.

You may wish tp specify the base adress of thread’s stack. The function
pthread attr setstackaddr() does this task. It is prototyped by:

int pthread_attr_setstackaddr(pthread_attr_t *tattr,void *stackaddr);

The stackaddr parameter defines the base of the thread’s stack. If this
is set to non-null (NULL is the default) the system initializes the stack at
that address.

The function returns zero after completing successfully. Any other re-
turned value indicates that an error occurred.

This example shows how to create a thread with both a custom stack
address and a custom stack size.

#include <pthread.h>

334CHAPTER 28. FURTHER THREADS PROGRAMMING:THREADATTRIBUTES (POSIX)

pthread_attr_t tattr;

pthread_t tid;

int ret;

void *stackbase;

int size = PTHREAD_STACK_MIN + 0x4000;

stackbase = (void *) malloc(size);

/* initialized with default attributes */

ret = pthread_attr_init(&tattr);

/* setting the size of the stack also */

ret = pthread_attr_setstacksize(&tattr, size);

/* setting the base address in the attribute */

ret = pthread_attr_setstackaddr(&tattr, stackbase);

/* address and size specified */

ret = pthread_create(&tid, &tattr, func, arg);

The function pthread attr getstackaddr(pthread attr t *tattr,void

* *stackaddr) can be used to obtain the base address for a current thread’s
stack address.

Chapter 29

Further Threads
Programming:Synchronization

When we multiple threads running they will invariably need to communicate
with each other in order synchronise their execution. This chapter describes
the synchronization types available with threads and discusses when and how
to use synchronization.

There are a few possible methods of synchronising threads:

• Mutual Exclusion (Mutex) Locks

• Condition Variables

• Semaphores

We will frequently make use of Synchronization objects: these are vari-
ables in memory that you access just like data. Threads in different processes
can communicate with each other through synchronization objects placed in
threads-controlled shared memory, even though the threads in different pro-
cesses are generally invisible to each other.

Synchronization objects can also be placed in files and can have lifetimes
beyond that of the creating process.

Here are some example situations that require or can profit from the use
of synchronization:

• When synchronization is the only way to ensure consistency of shared
data.

335

336CHAPTER 29. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

• When threads in two or more processes can use a single synchronization
object jointly. Note that the synchronization object should be initial-
ized by only one of the cooperating processes, because reinitializing a
synchronization object sets it to the unlocked state.

• When synchronization can ensure the safety of mutable data.

• When a process can map a file and have a thread in this process get
a record’s lock. Once the lock is acquired, any other thread in any
process mapping the file that tries to acquire the lock is blocked until
the lock is released.

• Even when accessing a single primitive variable, such as an integer. On
machines where the integer is not aligned to the bus data width or is
larger than the data width, a single memory load can use more than one
memory cycle. While this cannot happen on the SPARC architectures,
portable programs cannot rely on this.

29.1 Mutual Exclusion Locks

Mutual exclusion locks (mutexes) are a comon method of serializing thread
execution. Mutual exclusion locks synchronize threads, usually by ensuring
that only one thread at a time executes a critical section of code. Mutex
locks can also preserve single-threaded code.

Mutex attributes may be associated with every thread. To change the
default mutex attributes, you can declare and initialize an mutex attribute
object and then alter specific values much like we have seen in the last chapter
on more general POSIX attributes. Often, the mutex attributes are set in
one place at the beginning of the application so they can be located quickly
and modified easily.

After the attributes for a mutex are configured, you initialize the mutex
itself. Functions are available to initialize or destroy, lock or unlock, or try
to lock a mutex.

29.1.1 Initializing a Mutex Attribute Object

The function pthread mutexattr init() is used to initialize attributes as-
sociated with this object to their default values. It is prototyped by:

29.1. MUTUAL EXCLUSION LOCKS 337

int pthread_mutexattr_init(pthread_mutexattr_t *mattr);

Storage for each attribute object is allocated by the threads system dur-
ing execution. mattr is an opaque type that contains a system-allocated at-
tribute object. The possible values of mattr’s scope are PTHREAD PROCESS PRIVATE

(the default) and PTHREAD PROCESS SHARED.The default value of the pshared
attribute when this function is called is PTHREAD PROCESS PRIVATE, which
means that the initialized mutex can be used within a process.

Before a mutex attribute object can be reinitialized, it must first be de-
stroyed by pthread mutexattr destroy() (see below). The pthread mutexattr init()

call returns a pointer to an opaque object. If the object is not destroyed,
a memory leak will result. pthread mutexattr init() returns zero after
completing successfully. Any other returned value indicates that an error
occurred.

A simple example of this function call is:

#include <pthread.h>

pthread_mutexattr_t mattr;

int ret;

/* initialize an attribute to default value */

ret = pthread_mutexattr_init(&mattr);

29.1.2 Destroying a Mutex Attribute Object

The function pthread mutexattr destroy() deallocates the storage space
used to maintain the attribute object created by pthread mutexattr init().
It is prototyped by:

int pthread_mutexattr_destroy(pthread_mutexattr_t *mattr);

which returns zero after completing successfully. Any other returned value
indicates that an error occurred.

The function is called as follows:

#include <pthread.h>

338CHAPTER 29. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

pthread_mutexattr_t mattr;

int ret;

/* destroy an attribute */

ret = pthread_mutexattr_destroy(&mattr);

29.1.3 The Scope of a Mutex

The scope of a mutex variable can be either process private (intraprocess) or
system wide (interprocess). The function pthread mutexattr setpshared()

is used to set the scope of a mutex atrribute and it is prototype as follows:

int pthread_mutexattr_setpshared(pthread_mutexattr_t *mattr, int pshared);

If the mutex is created with the pshared (POSIX) attribute set to the
PTHREAD PROCESS SHARED state, and it exists in shared memory, it can be
shared among threads from more than one process. This is equivalent to
the USYNC PROCESS flag in mutex init() in Solaris threads. If the mutex
pshared attribute is set to PTHREAD PROCESS PRIVATE, only those threads
created by the same process can operate on the mutex. This is equivalent to
the USYNC THREAD flag in mutex init() in Solaris threads.

pthread mutexattr setpshared() returns zero after completing success-
fully. Any other returned value indicates that an error occurred.

A simple example call is:

#include <pthread.h>

pthread_mutexattr_t mattr;

int ret;

ret = pthread_mutexattr_init(&mattr);

/* resetting to its default value: private */

ret = pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_PRIVATE);

The function pthread mutexattr getpshared(pthread mutexattr t *mattr,

int *pshared) may be used to obtain the scope of a current thread mutex
as follows:

29.1. MUTUAL EXCLUSION LOCKS 339

#include <pthread.h>

pthread_mutexattr_t mattr;

int pshared, ret;

/* get pshared of mutex */ ret =

pthread_mutexattr_getpshared(&mattr, &pshared);

29.1.4 Initializing a Mutex

The function pthread mutex init() to initialize the mutex, it is prototyped
by:

int pthread_mutex_init(pthread_mutex_t *mp, const pthread_mutexattr_t *mattr);

Here, pthread mutex init() initializes the mutex pointed at by mp to
its default value if mattr is NULL, or to specify mutex attributes that have
already been set with pthread mutexattr init().

A mutex lock must not be reinitialized or destroyed while other threads
might be using it. Program failure will result if either action is not done
correctly. If a mutex is reinitialized or destroyed, the application must be
sure the mutex is not currently in use. pthread mutex init() returns zero
after completing successfully. Any other returned value indicates that an
error occurred.

A simple example call is:

#include <pthread.h>

pthread_mutex_t mp = PTHREAD_MUTEX_INITIALIZER;

pthread_mutexattr_t mattr;

int ret;

/* initialize a mutex to its default value */

ret = pthread_mutex_init(&mp, NULL);

When the mutex is initialized, it is in an unlocked state. The effect of
mattr being NULL is the same as passing the address of a default mutex

340CHAPTER 29. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

attribute object, but without the memory overhead. Statically defined mu-
texes can be initialized directly to have default attributes with the macro
PTHREAD MUTEX INITIALIZER.

To initialise a mutex with non-default values do something like:

/* initialize a mutex attribute */

ret = pthread_mutexattr_init(&mattr);

/* change mattr default values with some function */

ret = pthread_mutexattr_*();

/* initialize a mutex to a non-default value */

ret = pthread_mutex_init(&mp, &mattr);

29.1.5 Locking a Mutex

The function pthread mute lock() is used to lock a mutex, it is prototyped
by:

int pthread_mutex_lock(pthread_mutex_t *mp);

pthread mute lock() locks the mutex pointed to by mp. When the mu-
tex is already locked, the calling thread blocks and the mutex waits on a
prioritized queue. When pthread mute lock() returns, the mutex is locked
and the calling thread is the owner. pthread mute lock() returns zero after
completing successfully. Any other returned value indicates that an error
occurred.

Therefor to lock a mutex mp on would do the following:

#include <pthread.h>

pthread_mutex_t mp;

int ret;

ret = pthread_mutex_lock(&mp);

To unlock a mutex use the function pthread mutex unlock() whose pro-
totype is:

29.1. MUTUAL EXCLUSION LOCKS 341

int pthread_mutex_unlock(pthread_mutex_t *mp);

Clearly, this function unlocks the mutex pointed to by mp.
The mutex must be locked and the calling thread must be the one that

last locked the mutex (i.e. the owner). When any other threads are waiting
for the mutex to become available, the thread at the head of the queue is
unblocked. pthread mutex unlock() returns zero after completing success-
fully. Any other returned value indicates that an error occurred.

A simple example call of pthread mutex unlock() is:

#include <pthread.h>

pthread_mutex_t mp;

int ret;

/* release the mutex */

ret = pthread_mutex_unlock(&mp);

Lock with a Nonblocking Mutex

The function pthread mutex trylock() to attempt to lock the mutex and
is prototyped by:

int pthread_mutex_trylock(pthread_mutex_t *mp);

This function attempts to lock the mutex pointed to by mp. pthread mutex trylock()

is a nonblocking version of pthread mutex lock(). When the mutex is al-
ready locked, this call returns with an error. Otherwise, the mutex is locked
and the calling thread is the owner. pthread mutex trylock() returns zero
after completing successfully. Any other returned value indicates that an
error occurred.

The function is called as follows:

#include <pthread.h>

pthread_mutex_t mp;

/* try to lock the mutex */

int ret; ret = pthread_ mutex_trylock(&mp);

342CHAPTER 29. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

29.1.6 Destroying a Mutex

The function pthread mutex destroy() may be used to destroy any state
associated with the mutex. It is prototyped by:

int pthread_mutex_destroy(pthread_mutex_t *mp);

and destroys a mutex pointed to by mp.
Note: that the space for storing the mutex is not freed. pthread mutex destroy()

returns zero after completing successfully. Any other returned value indicates
that an error occurred.

It is called by:

#include <pthread.h>

pthread_mutex_t mp;

int ret;

/* destroy mutex */

ret = pthread_mutex_destroy(&mp);

29.1.7 Mutex Lock Code Examples

Here are some code fragments showing mutex locking.

Mutex Lock Example

We develop two small functions that use the mutex lock for different purposes.

• The increment count function() uses the mutex lock simply to en-
sure an atomic update of the shared variable, count.

• The get count() function uses the mutex lock to guarantee that the
(long long) 64-bit quantity count is read atomically. On a 32-bit
architecture, a long long is really two 32-bit quantities.

The 2 functions are as follows:

#include <pthread.h>

pthread_mutex_t count_mutex;

long long count;

29.1. MUTUAL EXCLUSION LOCKS 343

void increment_count()

{ pthread_mutex_lock(&count_mutex);

count = count + 1;

pthread_mutex_unlock(&count_mutex);

}

long long get_count()

{ long long c;

pthread_mutex_lock(&count_mutex);

c = count;

pthread_mutex_unlock(&count_mutex);

return (c);

}

Recall that reading an integer value is an atomic operation because in-
teger is the common word size on most machines.

Using Locking Hierarchies: Avoiding Deadlock

You may occasionally want to access two resources at once. For instance,
you are using one of the resources, and then discover that the other resource
is needed as well. However, there could be a problem if two threads attempt
to claim both resources but lock the associated mutexes in different orders.

In this example, if the two threads lock mutexes 1 and 2 respectively,
then a deadlock occurs when each attempts to lock the other mutex.

Thread 1 Thread 2
/* use resource 1 */ /* use resource 2 */

pthread mutex lock(&m1); pthread mutex lock(&m2);

/* NOW use resources 2 + 1 */ /* NOW use resources 1 + 2 */

pthread mutex lock(&m2); pthread mutex lock(&m1);

pthread mutex lock(&m1); pthread mutex lock(&m2);

The best way to avoid this problem is to make sure that whenever threads
lock multiple mutexes, they do so in the same order. This technique is known

344CHAPTER 29. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

as lock hierarchies: order the mutexes by logically assigning numbers to them.
Also, honor the restriction that you cannot take a mutex that is assigned n
when you are holding any mutex assigned a number greater than n.

Note: The lock lint tool can detect the sort of deadlock problem shown
in this example.

The best way to avoid such deadlock problems is to use lock hierarchies.
When locks are always taken in a prescribed order, deadlock should not occur.
However, this technique cannot always be used :

• sometimes you must take the mutexes in an order other than prescribed.

• To prevent deadlock in such a situation, use pthread mutex trylock().
One thread must release its mutexes when it discovers that deadlock
would otherwise be inevitable.

The idea of Conditional Locking use this approach:
Thread 1:

pthread_mutex_lock(&m1);

pthread_mutex_lock(&m2);

/* no processing */

pthread_mutex_unlock(&m2);

pthread_mutex_unlock(&m1);

Thread 2:

for (; ;) {

pthread_mutex_lock(&m2);

if(pthread_mutex_trylock(&m1)==0)

/* got it! */

break;

/* didn’t get it */

pthread_mutex_unlock(&m2);

}

/* get locks; no processing */

pthread_mutex_unlock(&m1);

pthread_mutex_unlock(&m2);

29.1. MUTUAL EXCLUSION LOCKS 345

In the above example, thread 1 locks mutexes in the prescribed order,
but thread 2 takes them out of order. To make certain that there is no
deadlock, thread 2 has to take mutex 1 very carefully; if it were to block
waiting for the mutex to be released, it is likely to have just entered into
a deadlock with thread 1. To ensure this does not happen, thread 2 calls
pthread mutex trylock(), which takes the mutex if it is available. If it is
not, thread 2 returns immediately, reporting failure. At this point, thread
2 must release mutex 2, so that thread 1 can lock it, and then release both
mutex 1 and mutex 2.

29.1.8 Nested Locking with a Singly Linked List

We have met basic linked structues in Section 9.3, when using threads which
share a linked list structure the possibility of deadlock may arise.

By nesting mutex locks into the linked data structure and a simple am-
mendment of the link list code we can prevent deadlock by taking the locks
in a prescribed order.

The modified linked is as follows:

typedef struct node1 {

int value;

struct node1 *link;

pthread_mutex_t lock;

} node1_t;

Note: we simply ammend a standard singly-linked list structure so that
each node containing a mutex.

Assuming we have created a variable node1_t ListHead.

To remove a node from the list:

• first search the list starting at ListHead (which itself is never removed)
until the desired node is found.

• To protect this search from the effects of concurrent deletions, lock each
node before any of its contents are accessed.

Because all searches start at ListHead, there is never a deadlock because
the locks are always taken in list order.

346CHAPTER 29. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

• When the desired node is found, lock both the node and its predecessor
since the change involves both nodes.

Because the predecessor’s lock is always taken first, you are again pro-
tected from deadlock.

The C code to remove an item from a singly linked list with nested locking
is as follows:

node1_t *delete(int value)

{ node1_t *prev,

*current; prev = &ListHead;

pthread_mutex_lock(&prev->lock);

while ((current = prev->link) != NULL)

{ pthread_mutex_lock(¤t->lock);

if (current->value == value)

{ prev->link = current->link;

pthread_mutex_unlock(¤t->lock);

pthread_mutex_unlock(&prev->lock);

current->link = NULL; return(current);

}

pthread_mutex_unlock(&prev->lock);

prev = current;

}

pthread_mutex_unlock(&prev->lock);

return(NULL);

}

29.1.9 Solaris Mutex Locks

Similar mutual exclusion locks exist for in Solaris.

You should include the <synch.h> or <thread.h>libraries.

To initialize a mutex use int mutex init(mutex t *mp, int type, void

*arg)). mutex init() initializes the mutex pointed to by mp. The type can
be one of the following (note that arg is currently ignored).

29.2. CONDITION VARIABLE ATTRIBUTES 347

USYNC PROCESS — The mutex can be used to synchronize threads in this and
other processes.

USYNC THREAD — The mutex can be used to synchronize threads in this
process, only.

Mutexes can also be initialized by allocation in zeroed memory, in which
case a type of USYNC THREAD is assumed. Multiple threads must not initialize
the same mutex simultaneously. A mutex lock must not be reinitialized while
other threads might be using it.

The function int mutex destroy (mutex t *mp) destroys any state as-
sociated with the mutex pointed to by mp. Note that the space for storing
the mutex is not freed.

To acquire a mutex lock use the function mutex lock(mutex t *mp)

which locks the mutex pointed to by mp. When the mutex is already locked,
the calling thread blocks until the mutex becomes available (blocked threads
wait on a prioritized queue).

To release a mutex use mutex unlock(mutex t *mp) which unlocks the
mutex pointed to by mp. The mutex must be locked and the calling thread
must be the one that last locked the mutex (the owner).

To try to acquire a mutex use mutex trylock(mutex t *mp) to attempt
to lock the mutex pointed to by mp. This function is a nonblocking version
of mutex lock()

29.2 Condition Variable Attributes

Condition variables can be usedto atomically block threads until a particular
condition is true. Condition variables are always used in conjunction with
mutex locks:

• With a condition variable, a thread can atomically block until a condi-
tion is satisfied.

• The condition is tested under the protection of a mutual exclusion lock
(mutex).

– When the condition is false, a thread usually blocks on a condi-
tion variable and atomically releases the mutex waiting for the
condition to change.

348CHAPTER 29. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

– When another thread changes the condition, it can signal the asso-
ciated condition variable to cause one or more waiting threads to
wake up, acquire the mutex again, and reevaluate the condition.

Condition variables can be used to synchronize threads among processes
when they are allocated in memory that can be written to and is shared by
the cooperating processes.

The scheduling policy determines how blocking threads are awakened.
For the default SCHED OTHER, threads are awakened in priority order. The
attributes for condition variables must be set and initialized before the con-
dition variables can be used.

As with mutex locks, The condiotion variable attributes must be ini-
tialised and set (or set to NULL) before an actual condition variable may be
initialise (with appropriat attributes) and then used.

29.2.1 Initializing a Condition Variable Attribute

The function pthread condattr init() initializes attributes associated with
this object to their default values. It is prototyped by:

int pthread_condattr_init(pthread_condattr_t *cattr);

Storage for each attribute object, cattr, is allocated by the threads
system during execution. cattr is an opaque data type that contains a
system-allocated attribute object. The possible values of cattr’s scope are
PTHREAD PROCESS PRIVATE and PTHREAD PROCESS SHARED. The default value
of the pshared attribute when this function is called is PTHREAD PROCESS PRIVATE,
which means that the initialized condition variable can be used within a pro-
cess.

Before a condition variable attribute can be reused, it must first be reini-
tialized by pthread condattr destroy(). The pthread condattr init()

call returns a pointer to an opaque object. If the object is not destroyed, a
memory leak will result.

pthread condattr init() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When either of the
following conditions occurs, the function fails and returns the corresponding
value.

A simple example call of this function is :

29.2. CONDITION VARIABLE ATTRIBUTES 349

#include <pthread.h>

pthread_condattr_t cattr;

int ret;

/* initialize an attribute to default value */

ret = pthread_condattr_init(&cattr);

29.2.2 Destoying a Condition Variable Attribute

The function pthread condattr destroy() removes storage and renders the
attribute object invalid, it is prototyped by:

int pthread_condattr_destroy(pthread_condattr_t *cattr);

pthread condattr destroy() returns zero after completing successfully
and destroying the condition variable pointed to by cattr. Any other re-
turned value indicates that an error occurred. If the following condition
occurs, the function fails and returns the corresponding value.

29.2.3 The Scope of a Condition Variable

The scope of a condition variable can be either process private (intraprocess)
or system wide (interprocess), as with mutex locks. If the condition variable
is created with the pshared attribute set to the PTHREAD PROCESS SHARED

state, and it exists in shared memory, it can be shared among threads from
more than one process. This is equivalent to the USYNC PROCESS flag in
mutex init() in the original Solaris threads. If the mutex pshared attribute
is set to PTHREAD PROCESS PRIVATE (default value), only those threads cre-
ated by the same process can operate on the mutex. Using PTHREAD PROCESS PRIVATE

results in the same behavior as with the USYNC THREAD flag in the original
Solaris threads cond init() call, which is that of a local condition variable.
PTHREAD PROCESS SHARED is equivalent to a global condition variable.

The function pthread condattr setpshared() is used to set the scope
of a condition variable, it is prototyped by:

int pthread_condattr_setpshared(pthread_condattr_t *cattr, int pshared);

350CHAPTER 29. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

The condition variable attribute cattr must be initialised first and the
value of pshared is either PTHREAD PROCESS SHARED or PTHREAD PROCESS PRIVATE.

pthread condattr setpshared() returns zero after completing success-
fully. Any other returned value indicates that an error occurred.

A sample use of this function is as follows:

#include <pthread.h>

pthread_condattr_t cattr;

int ret;

/* Scope: all processes */

ret = pthread_condattr_setpshared(&cattr, PTHREAD_PROCESS_SHARED);

/* OR */

/* Scope: within a process */

ret = pthread_condattr_setpshared(&cattr, PTHREAD_PROCESS_PRIVATE);

The function int pthread condattr getpshared(const pthread condattr t

*cattr, int *pshared) may be used to obtain the scope of a given condi-
tion variable.

29.2.4 Initializing a Condition Variable

The function pthread cond init() initializes the condition variable and is
prototyped as follows:

int pthread_cond_init(pthread_cond_t *cv, const pthread_condattr_t *cattr);

The condition variable which is initialized is pointed at by cv and is set
to its default value if cattr is NULL, or to specific cattr condition variable
attributes that are already set with pthread condattr init(). The effect of
cattr being NULL is the same as passing the address of a default condition
variable attribute object, but without the memory overhead.

Statically-defined condition variables can be initialized directly to have
default attributes with the macro PTHREAD COND INITIALIZER. This has the
same effect as dynamically allocating pthread cond init() with null at-
tributes. No error checking is done. Multiple threads must not simulta-
neously initialize or reinitialize the same condition variable. If a condition

29.2. CONDITION VARIABLE ATTRIBUTES 351

variable is reinitialized or destroyed, the application must be sure the condi-
tion variable is not in use.

pthread cond init() returns zero after completing successfully. Any
other returned value indicates that an error occurred.

Sample calls of this function are:

#include <pthread.h>

pthread_cond_t cv;

pthread_condattr_t cattr;

int ret;

/* initialize a condition variable to its default value */

ret = pthread_cond_init(&cv, NULL);

/* initialize a condition variable */ ret =

pthread_cond_init(&cv, &cattr);

29.2.5 Block on a Condition Variable

The function pthread cond wait() is used to atomically release a mutex and
to cause the calling thread to block on the condition variable. It is protoyped
by:

int pthread_cond_wait(pthread_cond_t *cv,pthread_mutex_t *mutex);

The mutex that is released is pointed to by mutex and the condition
variable pointed to by cv is blocked.

pthread cond wait() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When the following
condition occurs, the function fails and returns the corresponding value.

A simple example call is:

#include <pthread.h>

pthread_cond_t cv;

pthread_mutex_t mutex;

352CHAPTER 29. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

int ret;

/* wait on condition variable */

ret = pthread_cond_wait(&cv, &mutex);

The blocked thread can be awakened by a pthread cond signal(), a
pthread cond broadcast(), or when interrupted by delivery of a signal.
Any change in the value of a condition associated with the condition variable
cannot be inferred by the return of pthread cond wait(), and any such
condition must be reevaluated. The pthread cond wait() routine always
returns with the mutex locked and owned by the calling thread, even when
returning an error. This function blocks until the condition is signaled. It
atomically releases the associated mutex lock before blocking, and atomically
acquires it again before returning. In typical use, a condition expression is
evaluated under the protection of a mutex lock. When the condition ex-
pression is false, the thread blocks on the condition variable. The condition
variable is then signaled by another thread when it changes the condition
value. This causes one or all of the threads waiting on the condition to un-
block and to try to acquire the mutex lock again. Because the condition
can change before an awakened thread returns from pthread cond wait(),
the condition that caused the wait must be retested before the mutex lock is
acquired.

The recommended test method is to write the condition check as a while
loop that calls pthread cond wait(), as follows:

pthread_mutex_lock();

while(condition_is_false)

pthread_cond_wait();

pthread_mutex_unlock();

No specific order of acquisition is guaranteed when more than one thread
blocks on the condition variable. Note also that pthread cond wait() is a
cancellation point. If a cancel is pending and the calling thread has cancella-
tion enabled, the thread terminates and begins executing its cleanup handlers
while continuing to hold the lock.

To unblock a specific thread use pthread cond signal() which is proto-
typed by:

29.2. CONDITION VARIABLE ATTRIBUTES 353

int pthread_cond_signal(pthread_cond_t *cv);

This unblocks one thread that is blocked on the condition variable pointed
to by cv. pthread cond signal() returns zero after completing successfully.
Any other returned value indicates that an error occurred.

You should always call pthread cond signal() under the protection of
the same mutex used with the condition variable being signaled. Otherwise,
the condition variable could be signaled between the test of the associated
condition and blocking in pthread cond wait(), which can cause an in-
finite wait. The scheduling policy determines the order in which blocked
threads are awakened. For SCHED OTHER, threads are awakened in priority
order. When no threads are blocked on the condition variable, then calling
pthread cond signal()l has no effect.

The folloowing code fragment illustrates how to avoid an infinite problem
described above:

pthread_mutex_t count_lock;

pthread_cond_t count_nonzero;

unsigned count;

decrement_count()

{ pthread_mutex_lock(&count_lock);

while (count == 0)

pthread_cond_wait(&count_nonzero, &count_lock);

count = count - 1;

pthread_mutex_unlock(&count_lock);

}

increment_count()

{ pthread_mutex_lock(&count_lock);

if (count == 0)

pthread_cond_signal(&count_nonzero);

count = count + 1;

pthread_mutex_unlock(&count_lock);

}

You can also block until a specified event occurs. The function pthread cond timedwait()

is used for this purpose. It is prototyped by:

354CHAPTER 29. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

int pthread_cond_timedwait(pthread_cond_t *cv,

pthread_mutex_t *mp, const struct timespec *abstime);

pthread cond timedwait() is used in a similar manner to pthread cond wait():
pthread cond timedwait() blocks until the condition is signaled or until the
time of day, specified by abstime, has passed. pthread cond timedwait()

always returns with the mutex, mp, locked and owned by the calling thread,
even when it is returning an error. pthread cond timedwait() is also a
cancellation point.

pthread cond timedwait() returns zero after completing successfully.
Any other returned value indicates that an error occurred. When either of the
following conditions occurs, the function fails and returns the corresponding
value.

An examle call of this function is:

#include <pthread.h>

#include <time.h>

pthread_timestruc_t to;

pthread_cond_t cv;

pthread_mutex_t mp;

timestruct_t abstime;

int ret;

/* wait on condition variable */

ret = pthread_cond_timedwait(&cv, &mp, &abstime);

pthread_mutex_lock(&m);

to.tv_sec = time(NULL) + TIMEOUT;

to.tv_nsec = 0;

while (cond == FALSE)

{ err = pthread_cond_timedwait(&c, &m, &to);

if (err == ETIMEDOUT)

{ /* timeout, do something */

break;

29.2. CONDITION VARIABLE ATTRIBUTES 355

}

}

pthread_mutex_unlock(&m);

All threads may be unblocked in one function: pthread cond broadcast().
This function is prototyped as follows:

int pthread_cond_broadcast(pthread_cond_t *cv);

pthread cond broadcast() unblocks all threads that are blocked on the
condition variable pointed to by cv, specified by pthread cond wait(). When
no threads are blocked on the condition variable, pthread cond broadcast()

has no effect.
pthread cond broadcast() returns zero after completing successfully.

Any other returned value indicates that an error occurred. When the follow-
ing condition occurs, the function fails and returns the corresponding value.

Since pthread cond broadcast() causes all threads blocked on the con-
dition to contend again for the mutex lock, use carefully. For example, use
pthread cond broadcast() to allow threads to contend for varying resource
amounts when resources are freed:

#include <pthread.h>

pthread_mutex_t rsrc_lock;

pthread_cond_t rsrc_add;

unsigned int resources;

get_resources(int amount)

{ pthread_mutex_lock(&rsrc_lock);

while (resources < amount)

pthread_cond_wait(&rsrc_add, &rsrc_lock);

resources -= amount;

pthread_mutex_unlock(&rsrc_lock);

}

add_resources(int amount)

{ pthread_mutex_lock(&rsrc_lock);

356CHAPTER 29. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

resources += amount;

pthread_cond_broadcast(&rsrc_add);

pthread_mutex_unlock(&rsrc_lock);

}

Note: that in add resources it does not matter whether resources is
updated first or if pthread cond broadcast() is called first inside the mutex
lock. Call pthread cond broadcast() under the protection of the same
mutex that is used with the condition variable being signaled. Otherwise,
the condition variable could be signaled between the test of the associated
condition and blocking in pthread cond wait(), which can cause an infinite
wait.

29.2.6 Destroying a Condition Variable State

The function pthread cond destroy() to destroy any state associated with
the condition variable, it is prototyped by:

int pthread_cond_destroy(pthread_cond_t *cv);

The condition variable pointed to by cv will be destroyed by this call:

#include <pthread.h>

pthread_cond_t cv;

int ret;

/* Condition variable is destroyed */

ret = pthread_cond_destroy(&cv);

Note that the space for storing the condition variable is not freed.

pthread cond destroy() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

29.2. CONDITION VARIABLE ATTRIBUTES 357

29.2.7 Solaris Condition Variables

Similar condition variables exist in Solaris. The functions are prototyped in
<thread.h>.

To initialize a condition variable use int cond init(cond t *cv, int

type, int arg) which initializes the condition variable pointed to by cv.
The type can be one of USYNC PROCESS or USYNC THREAD (See Solaris mutex
(Section 29.1.9 for more details). Note that arg is currently ignored.

Condition variables can also be initialized by allocation in zeroed memory,
in which case a type of USYNC THREAD is assumed. Multiple threads must not
initialize the same condition variable simultaneously. A condition variable
must not be reinitialized while other threads might be using it.

To destroy a condition variable use int cond destroy(cond t *cv) which
destroys a state associated with the condition variable pointed to by cv. The
space for storing the condition variable is not freed.

To wait for a condition use int cond wait(cond t *cv, mutex t *mp)

which atomically releases the mutex pointed to by mp and to cause the calling
thread to block on the condition variable pointed to by cv.

The blocked thread can be awakened by cond signal(cond t *cv), cond broadcast(cond t

*cv), or when interrupted by delivery of a signal or a fork. Use cond signal()

to unblock one thread that is blocked on the condition variable pointed to
by cv. Call this function under protection of the same mutex used with
the condition variable being signaled. Otherwise, the condition could be
signaled between its test and cond wait(), causing an infinite wait. Use
cond broadcast() to unblock all threads that are blocked on the condition
variable pointed to by cv. When no threads are blocked on the condition
variable then cond broadcast() has no effect.

Finally, to wait until the condition is signaled or for an absolute time use
int cond timedwait(cond t *cv, mutex t *mp, timestruct t abstime)

Use cond timedwait() as you would use cond wait(), except that cond timedwait()

does not block past the time of day specified by abstime. cond timedwait()

always returns with the mutex locked and owned by the calling thread even
when returning an error.

358CHAPTER 29. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

29.3 Threads and Semaphores

29.3.1 POSIX Semaphores

Chapter 24 has dealt with semaphore programming for POSIX and System
V IPC semaphores.

Semaphore operations are the same in both POSIX and Solaris. The
function names are changed from sema in Solaris to sem in pthreads. Solaris
semaphore are defined in <thread.h>.

In this section we give a brief description of Solaris thread semaphores.

29.3.2 Basic Solaris Semaphore Functions

To initialize the function int sema init(sema t *sp, unsigned int count,

int type, void *arg) is used. sema. type can be one of the following):

USYNC PROCESS — The semaphore can be used to synchronize threads in
this process and other processes. Only one process should initialize the
semaphore.

USYNC THREAD — The semaphore can be used to synchronize threads in this
process.

arg is currently unused.
Multiple threads must not initialize the same semaphore simultaneously.

A semaphore must not be reinitialized while other threads may be using it.
To increment a Semaphore use the function int sema post(sema t *sp).

sema post atomically increments the semaphore pointed to by sp. When any
threads are blocked on the semaphore, one is unblocked.

To block on a Semaphore use int sema wait(sema t *sp). sema wait()

to block the calling thread until the count in the semaphore pointed to by
sp becomes greater than zero, then atomically decrement it.

To decrement a Semaphore count use int sema trywait(sema t *sp).
sema trywait() atomically decrements the count in the semaphore pointed
to by sp when the count is greater than zero. This function is a nonblocking
version of sema wait().

To destroy the Semaphore state call the function sema destroy(sema t

*sp). sema destroy() to destroy any state associated with the semaphore
pointed to by sp. The space for storing the semaphore is not freed.

Chapter 30

Thread programming examples

This chapter gives some full code examples of thread programs. These ex-
amles are taken from a variety of sources:

• The sun workshop developers web page http://www.sun.com/workshop/threads/share-
code/ on threads is an excelleny source

• The web page http://www.sun.com/workshop/threads/Berg-Lewis/examples.html
where example from the Threads Primer Book by D. Berg anD B. Lewis
are also a major resource.

30.1 Using thr create() and thr join()

This example exercises the thr create() and thr join() calls. There is not
a parent/child relationship between threads as there is for processes. This
can easily be seen in this example, because threads are created and joined by
many different threads in the process. The example also shows how threads
behave when created with different attributes and options.

Threads can be created by any thread and joined by any other.
The main thread: In this example the main thread’s sole purpose is to

create new threads. Threads A, B, and C are created by the main thread.
Notice that thread B is created suspended. After creating the new threads,
the main thread exits. Also notice that the main thread exited by calling
�thr exit(). If the main thread had used the exit() call, the whole process
would have exited. The main thread’s exit status and resources are held
until it is joined by thread C.

359

360 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

Thread A: The first thing thread A does after it is created is to create
thread D. Thread A then simulates some processing and then exits, using
thr exit(). Notice that thread A was created with the THR DETACHED flag,
so thread A’s resources will be immediately reclaimed upon its exit. There
is no way for thread A’s exit status to be collected by a thr join() call.

Thread B: Thread B was created in a suspended state, so it is not able to
run until thread D continues it by making the thr continue() call. After
thread B is continued, it simulates some processing and then exits. Thread
B’s exit status and thread resources are held until joined by thread E.

Thread C: The first thing that thread C does is to create thread F. Thread
C then joins the main thread. This action will collect the main thread’s exit
status and allow the main thread’s resources to be reused by another thread.
Thread C will block, waiting for the main thread to exit, if the main thread
has not yet called thr exit(). After joining the main thread, thread C will
simulate some processing and then exit. Again, the exit status and thread
resources are held until joined by thread E.

Thread D: Thread D immediately creates thread E. After creating thread
E, thread D continues thread B by making the thr continue() call. This
call will allow thread B to start its execution. Thread D then tries to join
thread E, blocking until thread E has exited. Thread D then simulates some
processing and exits. If all went well, thread D should be the last nondaemon
thread running. When thread D exits, it should do two things: stop the
execution of any daemon threads and stop the execution of the process.

Thread E: Thread E starts by joining two threads, threads B and C.
Thread E will block, waiting for each of these thread to exit. Thread E
will then simulate some processing and will exit. Thread E’s exit status and
thread resources are held by the operating system until joined by thread D.

Thread F: Thread F was created as a bound, daemon thread by using
the THR BOUND and THR DAEMON flags in the thr create() call. This means
that it will run on its own LWP until all the nondaemon threads have exited
the process. This type of thread can be used when you want some type of
”background” processing to always be running, except when all the ”regular”
threads have exited the process. If thread F was created as a non-daemon
thread, then it would continue to run forever, because a process will continue
while there is at least one thread still running. Thread F will exit when all
the nondaemon threads have exited. In this case, thread D should be the
last nondaemon thread running, so when thread D exits, it will also cause
thread F to exit.

30.1. USING THR CREATE() AND THR JOIN() 361

This example, however trivial, shows how threads behave differently,
based on their creation options. It also shows what happens on the exit
of a thread, again based on how it was created. If you understand this ex-
ample and how it flows, you should have a good understanding of how to use
thr create() and thr join() in your own programs. Hopefully you can
also see how easy it is to create and join threads.

The source to multi thr.c:

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

/* Function prototypes for thread routines */

void *sub_a(void *);

void *sub_b(void *);

void *sub_c(void *);

void *sub_d(void *);

void *sub_e(void *);

void *sub_f(void *);

thread_t thr_a, thr_b, thr_c;

void main()

{

thread_t main_thr;

main_thr = thr_self();

printf("Main thread = %d\n", main_thr);

if (thr_create(NULL, 0, sub_b, NULL, THR_SUSPENDED|THR_NEW_LWP, &thr_b))

fprintf(stderr,"Can’t create thr_b\n"), exit(1);

if (thr_create(NULL, 0, sub_a, (void *)thr_b, THR_NEW_LWP, &thr_a))

fprintf(stderr,"Can’t create thr_a\n"), exit(1);

if (thr_create(NULL, 0, sub_c, (void *)main_thr, THR_NEW_LWP, &thr_c))

fprintf(stderr,"Can’t create thr_c\n"), exit(1);

362 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

printf("Main Created threads A:%d B:%d C:%d\n", thr_a, thr_b, thr_c);

printf("Main Thread exiting...\n");

thr_exit((void *)main_thr);

}

void *sub_a(void *arg)

{

thread_t thr_b = (thread_t) arg;

thread_t thr_d;

int i;

printf("A: In thread A...\n");

if (thr_create(NULL, 0, sub_d, (void *)thr_b, THR_NEW_LWP, &thr_d))

fprintf(stderr, "Can’t create thr_d\n"), exit(1);

printf("A: Created thread D:%d\n", thr_d);

/* process

*/

for (i=0;i<1000000*(int)thr_self();i++);

printf("A: Thread exiting...\n");

thr_exit((void *)77);

}

void * sub_b(void *arg)

{

int i;

printf("B: In thread B...\n");

/* process

*/

for (i=0;i<1000000*(int)thr_self();i++);

printf("B: Thread exiting...\n");

thr_exit((void *)66);

}

30.1. USING THR CREATE() AND THR JOIN() 363

void * sub_c(void *arg)

{

void *status;

int i;

thread_t main_thr, ret_thr;

main_thr = (thread_t)arg;

printf("C: In thread C...\n");

if (thr_create(NULL, 0, sub_f, (void *)0, THR_BOUND|THR_DAEMON, NULL))

fprintf(stderr, "Can’t create thr_f\n"), exit(1);

printf("C: Join main thread\n");

if (thr_join(main_thr,(thread_t *)&ret_thr, &status))

fprintf(stderr, "thr_join Error\n"), exit(1);

printf("C: Main thread (%d) returned thread (%d) w/status %d\n", main_thr, ret_thr, (int) status);

/* process

*/

for (i=0;i<1000000*(int)thr_self();i++);

printf("C: Thread exiting...\n");

thr_exit((void *)88);

}

void * sub_d(void *arg)

{

thread_t thr_b = (thread_t) arg;

int i;

thread_t thr_e, ret_thr;

void *status;

printf("D: In thread D...\n");

364 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

if (thr_create(NULL, 0, sub_e, NULL, THR_NEW_LWP, &thr_e))

fprintf(stderr,"Can’t create thr_e\n"), exit(1);

printf("D: Created thread E:%d\n", thr_e);

printf("D: Continue B thread = %d\n", thr_b);

thr_continue(thr_b);

printf("D: Join E thread\n");

if(thr_join(thr_e,(thread_t *)&ret_thr, &status))

fprintf(stderr,"thr_join Error\n"), exit(1);

printf("D: E thread (%d) returned thread (%d) w/status %d\n", thr_e,

ret_thr, (int) status);

/* process

*/

for (i=0;i<1000000*(int)thr_self();i++);

printf("D: Thread exiting...\n");

thr_exit((void *)55);

}

void * sub_e(void *arg)

{

int i;

thread_t ret_thr;

void *status;

printf("E: In thread E...\n");

printf("E: Join A thread\n");

if(thr_join(thr_a,(thread_t *)&ret_thr, &status))

fprintf(stderr,"thr_join Error\n"), exit(1);

printf("E: A thread (%d) returned thread (%d) w/status %d\n", ret_thr, ret_thr, (int) status);

30.2. ARRAYS 365

printf("E: Join B thread\n");

if(thr_join(thr_b,(thread_t *)&ret_thr, &status))

fprintf(stderr,"thr_join Error\n"), exit(1);

printf("E: B thread (%d) returned thread (%d) w/status %d\n", thr_b, ret_thr, (int) status);

printf("E: Join C thread\n");

if(thr_join(thr_c,(thread_t *)&ret_thr, &status))

fprintf(stderr,"thr_join Error\n"), exit(1);

printf("E: C thread (%d) returned thread (%d) w/status %d\n", thr_c, ret_thr, (int) status);

for (i=0;i<1000000*(int)thr_self();i++);

printf("E: Thread exiting...\n");

thr_exit((void *)44);

}

void *sub_f(void *arg)

{

int i;

printf("F: In thread F...\n");

while (1) {

for (i=0;i<10000000;i++);

printf("F: Thread F is still running...\n");

}

}

30.2 Arrays

This example uses a data structure that contains multiple arrays of data.
Multiple threads will concurrently vie for access to the arrays. To control
this access, a mutex variable is used within the data structure to lock the

366 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

entire array and serialize the access to the data.
The main thread first initializes the data structure and the mutex vari-

able. It then sets a level of concurrency and creates the worker threads. The
main thread then blocks by joining all the threads. When all the threads
have exited, the main thread prints the results.

The worker threads modify the shared data structure from within a loop.
Each time the threads need to modify the shared data, they lock the mutex
variable associated with the shared data. After modifying the data, the
threads unlock the mutex, allowing another thread access to the data.

This example may look quite simple, but it shows how important it is to
control access to a simple, shared data structure. The results can be quite
different if the mutex variable is not used.

The source to array.c:

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

/* sample array data structure */

struct {

mutex_t data_lock[5];

int int_val[5];

float float_val[5];

} Data;

/* thread function */

void *Add_to_Value();

main()

{

int i;

/* initialize the mutexes and data */

for (i=0; i<5; i++) {

mutex_init(&Data.data_lock[i], USYNC_THREAD, 0);

Data.int_val[i] = 0;

Data.float_val[i] = 0;

}

30.2. ARRAYS 367

/* set concurrency and create the threads */

thr_setconcurrency(4);

for (i=0; i<5; i++)

thr_create(NULL, 0, Add_to_Value, (void *)(2*i), 0, NULL);

/* wait till all threads have finished */

for (i=0; i<5; i++)

thr_join(0,0,0);

/* print the results */

printf("Final Values.....\n");

for (i=0; i<5; i++) {

printf("integer value[%d] =\t%d\n", i, Data.int_val[i]);

printf("float value[%d] =\t%.0f\n\n", i, Data.float_val[i]);

}

return(0);

}

/* Threaded routine */

void *Add_to_Value(void *arg)

{

int inval = (int) arg;

int i;

for (i=0;i<10000;i++){

mutex_lock(&Data.data_lock[i%5]);

Data.int_val[i%5] += inval;

Data.float_val[i%5] += (float) 1.5 * inval;

mutex_unlock(&Data.data_lock[i%5]);

}

return((void *)0);

}

368 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

30.3 Deadlock

This example demonstrates how a deadlock can occur in multithreaded pro-
grams that use synchronization variables. In this example a thread is created
that continually adds a value to a global variable. The thread uses a mutex
lock to protect the global data.

The main thread creates the counter thread and then loops, waiting for
user input. When the user presses the Return key, the main thread suspends
the counter thread and then prints the value of the global variable. The main
thread prints the value of the global variable under the protection of a mutex
lock.

The problem arises in this example when the main thread suspends the
counter thread while the counter thread is holding the mutex lock. After the
main thread suspends the counter thread, it tries to lock the mutex variable.
Since the mutex variable is already held by the counter thread, which is
suspended, the main thread deadlocks.

This example may run fine for a while, as long as the counter thread
just happens to be suspended when it is not holding the mutex lock. The
example demonstrates how tricky some programming issues can be when you
deal with threads.

The source to susp lock.c

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

/* Prototype for thread subroutine */

void *counter(void *);

int count;

mutex_t count_lock;

main()

{

char str[80];

thread_t ctid;

/* create the thread counter subroutine */

30.3. DEADLOCK 369

thr_create(NULL, 0, counter, 0, THR_NEW_LWP|THR_DETACHED, &ctid);

while(1) {

gets(str);

thr_suspend(ctid);

mutex_lock(&count_lock);

printf("\n\nCOUNT = %d\n\n", count);

mutex_unlock(&count_lock);

thr_continue(ctid);

}

return(0);

}

void *counter(void *arg)

{

int i;

while (1) {

printf("."); fflush(stdout);

mutex_lock(&count_lock);

count++;

for (i=0;i<50000;i++);

mutex_unlock(&count_lock);

for (i=0;i<50000;i++);

}

return((void *)0);

}

370 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

30.4 Signal Handler

This example shows how easy it is to handle signals in multithreaded pro-
grams. In most programs, a different signal handler would be needed to
service each type of signal that you wanted to catch. Writing each of the
signal handlers can be time consuming and can be a real pain to debug.

This example shows how you can implement a signal handler thread that
will service all asynchronous signals that are sent to your process. This is an
easy way to deal with signals, because only one thread is needed to handle
all the signals. It also makes it easy when you create new threads within the
process, because you need not worry about signals in any of the threads.

First, in the main thread, mask out all signals and then create a signal
handling thread. Since threads inherit the signal mask from their creator,
any new threads created after the new signal mask will also mask all signals.
This idea is key, because the only thread that will receive signals is the one
thread that does not block all the signals.

The signal handler thread waits for all incoming signals with the sigwait()
call. This call unmasks the signals given to it and then blocks until a signal
arrives. When a signal arrives, sigwait() masks the signals again and then
returns with the signal ID of the incoming signal.

You can extend this example for use in your application code to handle
all your signals. Notice also that this signal concept could be added in your
existing nonthreaded code as a simpler way to deal with signals.

The source to thr sig.c

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

#include <signal.h>

#include <sys/types.h>

void *signal_hand(void *);

main()

{

sigset_t set;

/* block all signals in main thread. Any other threads that are

30.4. SIGNAL HANDLER 371

created after this will also block all signals */

sigfillset(&set);

thr_sigsetmask(SIG_SETMASK, &set, NULL);

/* create a signal handler thread. This thread will catch all

signals and decide what to do with them. This will only

catch nondirected signals. (I.e., if a thread causes a SIGFPE

then that thread will get that signal. */

thr_create(NULL, 0, signal_hand, 0, THR_NEW_LWP|THR_DAEMON|THR_DETACHED, NULL);

while (1) {

/*

Do your normal processing here....

*/

} /* end of while */

return(0);

}

void *signal_hand(void *arg)

{

sigset_t set;

int sig;

sigfillset(&set); /* catch all signals */

while (1) {

/* wait for a signal to arrive */

switch (sig=sigwait(&set)) {

/* here you would add whatever signal you needed to catch */

case SIGINT : {

printf("Interrupted with signal %d, exiting...\n", sig);

exit(0);

372 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

}

default : printf("GOT A SIGNAL = %d\n", sig);

} /* end of switch */

} /* end of while */

return((void *)0);

} /* end of signal_hand */

Another example of a signal handler, sig kill.c:

/*

* Multithreaded Demo Source

*

* Copyright (C) 1995 by Sun Microsystems, Inc.

* All rights reserved.

*

* This file is a product of SunSoft, Inc. and is provided for

* unrestricted use provided that this legend is included on all

* media and as a part of the software program in whole or part.

* Users may copy, modify or distribute this file at will.

*

* THIS FILE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING

* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR

* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.

*

* This file is provided with no support and without any obligation on the

* part of SunSoft, Inc. to assist in its use, correction, modification or

* enhancement.

*

* SUNSOFT AND SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT

* TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS

* FILE OR ANY PART THEREOF.

*

* IN NO EVENT WILL SUNSOFT OR SUN MICROSYSTEMS, INC. BE LIABLE FOR ANY

* LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL

* DAMAGES, EVEN IF THEY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH

30.4. SIGNAL HANDLER 373

* DAMAGES.

*

* SunSoft, Inc.

* 2550 Garcia Avenue

* Mountain View, California 94043

*/

/*

* Rich Schiavi writes: Sept 11, 1994

*

* I believe the recommended way to kill certain threads is

* using a signal handler which then will exit that particular

* thread properly. I’m not sure the exact reason (I can’t remember), but

* if you take out the signal_handler routine in my example, you will see what

* you describe, as the main process dies even if you send the

* thr_kill to the specific thread.

* I whipped up a real quick simple example which shows this using

* some sleep()s to get a good simulation.

*/

#include <stdio.h>

#include <thread.h>

#include <signal.h>

static thread_t one_tid, two_tid, main_thread;

static void *first_thread();

static void *second_thread();

void ExitHandler(int);

static mutex_t first_mutex, second_mutex;

int first_active = 1 ;

int second_active = 1;

main()

{

int i;

374 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

struct sigaction act;

act.sa_handler = ExitHandler;

(void) sigemptyset(&act.sa_mask);

(void) sigaction(SIGTERM, &act, NULL);

mutex_init(&first_mutex, 0 , 0);

mutex_init(&second_mutex, 0 , 0);

main_thread = thr_self();

thr_create(NULL,0,first_thread,0,THR_NEW_LWP,&one_tid);

thr_create(NULL,0,second_thread,0,THR_NEW_LWP,&two_tid);

for (i = 0; i < 10; i++){

fprintf(stderr, "main loop: %d\n", i);

if (i == 5) {

thr_kill(one_tid, SIGTERM);

}

sleep(3);

}

thr_kill(two_tid, SIGTERM);

sleep(5);

fprintf(stderr, "main exit\n");

}

static void *first_thread()

{

int i = 0;

fprintf(stderr, "first_thread id: %d\n", thr_self());

while (first_active){

fprintf(stderr, "first_thread: %d\n", i++);

sleep(2);

}

fprintf(stderr, "first_thread exit\n");

}

static void *second_thread()

30.5. INTERPROCESS SYNCHRONIZATION 375

{

int i = 0;

fprintf(stderr, "second_thread id: %d\n", thr_self());

while (second_active){

fprintf(stderr, "second_thread: %d\n", i++);

sleep(3);

}

fprintf(stderr, "second_thread exit\n");

}

void ExitHandler(int sig)

{

thread_t id;

id = thr_self();

fprintf(stderr, "ExitHandler thread id: %d\n", id);

thr_exit(0);

}

30.5 Interprocess Synchronization

This example uses some of the synchronization variables available in the
threads library to synchronize access to a resource shared between two pro-
cesses. The synchronization variables used in the threads library are an
advantage over standard IPC synchronization mechanisms because of their
speed. The synchronization variables in the threads libraries have been tuned
to be very lightweight and very fast. This speed can be an advantage when
your application is spending time synchronizing between processes.

This example shows how semaphores from the threads library can be used
between processes. Note that this program does not use threads; it is just
using the lightweight semaphores available from the threads library.

When using synchronization variables between processes, it is important

376 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

to make sure that only one process initializes the variable. If both processes
try to initialize the synchronization variable, then one of the processes will
overwrite the state of the variable set by the other process.

The source to ipc.c

#include <stdio.h>

#include <fcntl.h>

#include <sys/mman.h>

#include <synch.h>

#include <sys/types.h>

#include <unistd.h>

/* a structure that will be used between processes */

typedef struct {

sema_t mysema;

int num;

} buf_t;

main()

{

int i, j, fd;

buf_t *buf;

/* open a file to use in a memory mapping */

fd = open("/dev/zero", O_RDWR);

/* create a shared memory map with the open file for the data

structure that will be shared between processes */

buf=(buf_t *)mmap(NULL, sizeof(buf_t), PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

/* initialize the semaphore -- note the USYNC_PROCESS flag; this makes

the semaphore visible from a process level */

sema_init(&buf->mysema, 0, USYNC_PROCESS, 0);

/* fork a new process */

if (fork() == 0) {

/* The child will run this section of code */

for (j=0;j<5;j++)

30.5. INTERPROCESS SYNCHRONIZATION 377

{

/* have the child "wait" for the semaphore */

printf("Child PID(%d): waiting...\n", getpid());

sema_wait(&buf->mysema);

/* the child decremented the semaphore */

printf("Child PID(%d): decrement semaphore.\n", getpid());

}

/* exit the child process */

printf("Child PID(%d): exiting...\n", getpid());

exit(0);

}

/* The parent will run this section of code */

/* give the child a chance to start running */

sleep(2);

for (i=0;i<5;i++)

{

/* increment (post) the semaphore */

printf("Parent PID(%d): posting semaphore.\n", getpid());

sema_post(&buf->mysema);

/* wait a second */

sleep(1);

}

/* exit the parent process */

printf("Parent PID(%d): exiting...\n", getpid());

return(0);

}

378 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

30.6 The Producer / Consumer Problem

This example will show how condition variables can be used to control access
of reads and writes to a buffer. This example can also be thought as a
producer/consumer problem, where the producer adds items to the buffer
and the consumer removes items from the buffer.

Two condition variables control access to the buffer. One condition vari-
able is used to tell if the buffer is full, and the other is used to tell if the buffer
is empty. When the producer wants to add an item to the buffer, it checks
to see if the buffer is full; if it is full the producer blocks on the cond wait()

call, waiting for an item to be removed from the buffer. When the consumer
removes an item from the buffer, the buffer is no longer full, so the producer
is awakened from the cond wait() call. The producer is then allowed to add
another item to the buffer.

The consumer works, in many ways, the same as the producer. The
consumer uses the other condition variable to determine if the buffer is empty.
When the consumer wants to remove an item from the buffer, it checks to
see if it is empty. If the buffer is empty, the consumer then blocks on the
cond wait() call, waiting for an item to be added to the buffer. When the
producer adds an item to the buffer, the consumer’s condition is satisfied, so
it can then remove an item from the buffer.

The example copies a file by reading data into a shared buffer (producer)
and then writing data out to the new file (consumer). The Buf data structure
is used to hold both the buffered data and the condition variables that control
the flow of the data.

The main thread opens both files, initializes the Buf data structure, cre-
ates the consumer thread, and then assumes the role of the producer. The
producer reads data from the input file, then places the data into an open
buffer position. If no buffer positions are available, then the producer waits
via the cond wait() call. After the producer has read all the data from the
input file, it closes the file and waits for (joins) the consumer thread.

The consumer thread reads from a shared buffer and then writes the data
to the output file. If no buffers positions are available, then the consumer
waits for the producer to fill a buffer position. After the consumer has read
all the data, it closes the output file and exits.

If the input file and the output file were residing on different physical
disks, then this example could execute the reads and writes in parallel.
This parallelism would significantly increase the throughput of the exam-

30.6. THE PRODUCER / CONSUMER PROBLEM 379

ple through the use of threads.
The source to prod cons.c:

#define _REEENTRANT

#include <stdio.h>

#include <thread.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <sys/uio.h>

#define BUFSIZE 512

#define BUFCNT 4

/* this is the data structure that is used between the producer

and consumer threads */

struct {

char buffer[BUFCNT][BUFSIZE];

int byteinbuf[BUFCNT];

mutex_t buflock;

mutex_t donelock;

cond_t adddata;

cond_t remdata;

int nextadd, nextrem, occ, done;

} Buf;

/* function prototype */

void *consumer(void *);

main(int argc, char **argv)

{

int ifd, ofd;

thread_t cons_thr;

/* check the command line arguments */

if (argc != 3)

380 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

printf("Usage: %s <infile> <outfile>\n", argv[0]), exit(0);

/* open the input file for the producer to use */

if ((ifd = open(argv[1], O_RDONLY)) == -1)

{

fprintf(stderr, "Can’t open file %s\n", argv[1]);

exit(1);

}

/* open the output file for the consumer to use */

if ((ofd = open(argv[2], O_WRONLY|O_CREAT, 0666)) == -1)

{

fprintf(stderr, "Can’t open file %s\n", argv[2]);

exit(1);

}

/* zero the counters */

Buf.nextadd = Buf.nextrem = Buf.occ = Buf.done = 0;

/* set the thread concurrency to 2 so the producer and consumer can

run concurrently */

thr_setconcurrency(2);

/* create the consumer thread */

thr_create(NULL, 0, consumer, (void *)ofd, NULL, &cons_thr);

/* the producer ! */

while (1) {

/* lock the mutex */

mutex_lock(&Buf.buflock);

/* check to see if any buffers are empty */

/* If not then wait for that condition to become true */

while (Buf.occ == BUFCNT)

cond_wait(&Buf.remdata, &Buf.buflock);

30.6. THE PRODUCER / CONSUMER PROBLEM 381

/* read from the file and put data into a buffer */

Buf.byteinbuf[Buf.nextadd] = read(ifd,Buf.buffer[Buf.nextadd],BUFSIZE);

/* check to see if done reading */

if (Buf.byteinbuf[Buf.nextadd] == 0) {

/* lock the done lock */

mutex_lock(&Buf.donelock);

/* set the done flag and release the mutex lock */

Buf.done = 1;

mutex_unlock(&Buf.donelock);

/* signal the consumer to start consuming */

cond_signal(&Buf.adddata);

/* release the buffer mutex */

mutex_unlock(&Buf.buflock);

/* leave the while looop */

break;

}

/* set the next buffer to fill */

Buf.nextadd = ++Buf.nextadd % BUFCNT;

/* increment the number of buffers that are filled */

Buf.occ++;

/* signal the consumer to start consuming */

cond_signal(&Buf.adddata);

/* release the mutex */

mutex_unlock(&Buf.buflock);

}

382 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

close(ifd);

/* wait for the consumer to finish */

thr_join(cons_thr, 0, NULL);

/* exit the program */

return(0);

}

/* The consumer thread */

void *consumer(void *arg)

{

int fd = (int) arg;

/* check to see if any buffers are filled or if the done flag is set */

while (1) {

/* lock the mutex */

mutex_lock(&Buf.buflock);

if (!Buf.occ && Buf.done) {

mutex_unlock(&Buf.buflock);

break;

}

/* check to see if any buffers are filled */

/* if not then wait for the condition to become true */

while (Buf.occ == 0 && !Buf.done)

cond_wait(&Buf.adddata, &Buf.buflock);

/* write the data from the buffer to the file */

write(fd, Buf.buffer[Buf.nextrem], Buf.byteinbuf[Buf.nextrem]);

/* set the next buffer to write from */

Buf.nextrem = ++Buf.nextrem % BUFCNT;

30.7. A SOCKET SERVER 383

/* decrement the number of buffers that are full */

Buf.occ--;

/* signal the producer that a buffer is empty */

cond_signal(&Buf.remdata);

/* release the mutex */

mutex_unlock(&Buf.buflock);

}

/* exit the thread */

thr_exit((void *)0);

}

30.7 A Socket Server

The socket server example uses threads to implement a ”standard” socket
port server. The example shows how easy it is to use thr create() calls in
the place of fork() calls in existing programs.

A standard socket server should listen on a socket port and, when a
message arrives, fork a process to service the request. Since a fork() system
call would be used in a nonthreaded program, any communication between
the parent and child would have to be done through some sort of interprocess
communication.

We can replace the fork() call with a thr create() call. Doing so of-
fers a few advantages: thr create() can create a thread much faster then
a fork() could create a new process, and any communication between the
server and the new thread can be done with common variables. This tech-
nique makes the implementation of the socket server much easier to under-
stand and should also make it respond much faster to incoming requests.

The server program first sets up all the needed socket information. This
is the basic setup for most socket servers. The server then enters an endless
loop, waiting to service a socket port. When a message is sent to the socket
port, the server wakes up and creates a new thread to handle the request.
Notice that the server creates the new thread as a detached thread and also
passes the socket descriptor as an argument to the new thread.

The newly created thread can then read or write, in any fashion it wants,

384 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

to the socket descriptor that was passed to it. At this point the server could
be creating a new thread or waiting for the next message to arrive. The key
is that the server thread does not care what happens to the new thread after
it creates it.

In our example, the created thread reads from the socket descriptor and
then increments a global variable. This global variable keeps track of the
number of requests that were made to the server. Notice that a mutex lock
is used to protect access to the shared global variable. The lock is needed
because many threads might try to increment the same variable at the same
time. The mutex lock provides serial access to the shared variable. See how
easy it is to share information among the new threads! If each of the threads
were a process, then a significant effort would have to be made to share this
information among the processes.

The client piece of the example sends a given number of messages to the
server. This client code could also be run from different machines by multiple
users, thus increasing the need for concurrency in the server process.

The source code to soc server.c:

#define _REENTRANT

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#include <sys/uio.h>

#include <unistd.h>

#include <thread.h>

/* the TCP port that is used for this example */

#define TCP_PORT 6500

/* function prototypes and global variables */

void *do_chld(void *);

mutex_t lock;

int service_count;

main()

{

30.7. A SOCKET SERVER 385

int sockfd, newsockfd, clilen;

struct sockaddr_in cli_addr, serv_addr;

thread_t chld_thr;

if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

fprintf(stderr,"server: can’t open stream socket\n"), exit(0);

memset((char *) &serv_addr, 0, sizeof(serv_addr));

serv_addr.sin_family = AF_INET;

serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);

serv_addr.sin_port = htons(TCP_PORT);

if(bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) <

0)

fprintf(stderr,"server: can’t bind local address\n"), exit(0);

/* set the level of thread concurrency we desire */

thr_setconcurrency(5);

listen(sockfd, 5);

for(;;){

clilen = sizeof(cli_addr);

newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr,

&clilen);

if(newsockfd < 0)

fprintf(stderr,"server: accept error\n"), exit(0);

/* create a new thread to process the incomming request */

thr_create(NULL, 0, do_chld, (void *) newsockfd, THR_DETACHED,

&chld_thr);

/* the server is now free to accept another socket request */

}

return(0);

}

386 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

/*

This is the routine that is executed from a new thread

*/

void *do_chld(void *arg)

{

int mysocfd = (int) arg;

char data[100];

int i;

printf("Child thread [%d]: Socket number = %d\n", thr_self(), mysocfd);

/* read from the given socket */

read(mysocfd, data, 40);

printf("Child thread [%d]: My data = %s\n", thr_self(), data);

/* simulate some processing */

for (i=0;i<1000000*thr_self();i++);

printf("Child [%d]: Done Processing...\n", thr_self());

/* use a mutex to update the global service counter */

mutex_lock(&lock);

service_count++;

mutex_unlock(&lock);

printf("Child thread [%d]: The total sockets served = %d\n", thr_self(), service_count);

/* close the socket and exit this thread */

close(mysocfd);

thr_exit((void *)0);

}

30.8. USING MANY THREADS 387

30.8 Using Many Threads

This example that shows how easy it is to create many threads of execution in
Solaris. Because of the lightweight nature of threads, it is possible to create
literally thousands of threads. Most applications may not need a very large
number of threads, but this example shows just how lightweight the threads
can be.

We have said before that anything you can do with threads, you can do
without them. This may be a case where it would be very hard to do without
threads. If you have some spare time (and lots of memory), try implementing
this program by using processes, instead of threads. If you try this, you will
see why threads can have an advantage over processes.

This program takes as an argument the number of threads to create. No-
tice that all the threads are created with a user-defined stack size, which
limits the amount of memory that the threads will need for execution. The
stack size for a given thread can be hard to calculate, so some testing usu-
ally needs to be done to see if the chosen stack size will work. You may
want to change the stack size in this program and see how much you can
lower it before things stop working. The Solaris threads library provides the
thr min stack() call, which returns the minimum allowed stack size. Take
care when adjusting the size of a threads stack. A stack overflow can happen
quite easily to a thread with a small stack.

After each thread is created, it blocks, waiting on a mutex variable. This
mutex variable was locked before any of the threads were created, which
prevents the threads from proceeding in their execution. When all of the
threads have been created and the user presses Return, the mutex variable
is unlocked, allowing all the threads to proceed.

After the main thread has created all the threads, it waits for user input
and then tries to join all the threads. Notice that the thr join() call does
not care what thread it joins; it is just counting the number of joins it makes.

This example is rather trivial and does not serve any real purpose except
to show that it is possible to create a lot of threads in one process. However,
there are situations when many threads are needed in an application. An
example might be a network port server, where a thread is created each time
an incoming or outgoing request is made.

The source to many thr.c:

#define _REENTRANT

388 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

#include <stdio.h>

#include <stdlib.h>

#include <thread.h>

/* function prototypes and global varaibles */

void *thr_sub(void *);

mutex_t lock;

main(int argc, char **argv)

{

int i, thr_count = 100;

char buf;

/* check to see if user passed an argument

-- if so, set the number of threads to the value

passed to the program */

if (argc == 2) thr_count = atoi(argv[1]);

printf("Creating %d threads...\n", thr_count);

/* lock the mutex variable -- this mutex is being used to

keep all the other threads created from proceeding */

mutex_lock(&lock);

/* create all the threads -- Note that a specific stack size is

given. Since the created threads will not use all of the

default stack size, we can save memory by reducing the threads’

stack size */

for (i=0;i<thr_count;i++) {

thr_create(NULL,2048,thr_sub,0,0,NULL);

}

printf("%d threads have been created and are running!\n", i);

printf("Press <return> to join all the threads...\n", i);

30.8. USING MANY THREADS 389

/* wait till user presses return, then join all the threads */

gets(&buf);

printf("Joining %d threads...\n", thr_count);

/* now unlock the mutex variable, to let all the threads proceed */

mutex_unlock(&lock);

/* join the threads */

for (i=0;i<thr_count;i++)

thr_join(0,0,0);

printf("All %d threads have been joined, exiting...\n", thr_count);

return(0);

}

/* The routine that is executed by the created threads */

void *thr_sub(void *arg)

{

/* try to lock the mutex variable -- since the main thread has

locked the mutex before the threads were created, this thread

will block until the main thread unlock the mutex */

mutex_lock(&lock);

printf("Thread %d is exiting...\n", thr_self());

/* unlock the mutex to allow another thread to proceed */

mutex_unlock(&lock);

/* exit the thread */

return((void *)0);

}

390 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

30.9 Real-time Thread Example

This example uses the Solaris real-time extensions to make a single bound
thread within a process run in the real-time scheduling class. Using a thread
in the real-time class is more desirable than running a whole process in the
real-time class, because of the many problems that can arise with a process
in a real-time state. For example, it would not be desirable for a process
to perform any I/O or large memory operations while in realtime, because
a real-time process has priority over system-related processes; if a real-time
process requests a page fault, it can starve, waiting for the system to fault
in a new page. We can limit this exposure by using threads to execute only
the instructions that need to run in realtime.

Since this book does not cover the concerns that arise with real-time
programming, we have included this code only as an example of how to
promote a thread into the real-time class. You must be very careful when
you use real-time threads in your applications. For more information on
real-time programming, see the Solaris documentation.

This example should be safe from the pitfalls of real-time programs be-
cause of its simplicity. However, changing this code in any way could have
adverse affects on your system.

The example creates a new thread from the main thread. This new thread
is then promoted to the real-time class by looking up the real-time class ID
and then setting a real-time priority for the thread. After the thread is
running in realtime, it simulates some processing. Since a thread in the real-
time class can have an infinite time quantum, the process is allowed to stay
on a CPU as long as it likes. The time quantum is the amount of time a
thread is allowed to stay running on a CPU. For the timesharing class, the
time quantum (time-slice) is 1/100th of a second by default.

In this example, we set the time quantum for the real-time thread to in-
finity. That is, it can stay running as long as it likes; it will not be preempted
or scheduled off the CPU. If you run this example on a UP machine, it will
have the effect of stopping your system for a few seconds while the thread
simulates its processing. The system does not actually stop, it is just working
in the real-time thread. When the real-time thread finishes its processing, it
exits and the system returns to normal.

Using real-time threads can be quite useful when you need an extremely
high priority and response time but can also cause big problems if it not
used properly. Also note that this example must be run as root or have root

30.9. REAL-TIME THREAD EXAMPLE 391

execute permissions.
The source to rt thr.c:

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

#include <string.h>

#include <sys/priocntl.h>

#include <sys/rtpriocntl.h>

/* thread prototype */

void *rt_thread(void *);

main()

{

/* create the thread that will run in realtime */

thr_create(NULL, 0, rt_thread, 0, THR_DETACHED, 0);

/* loop here forever, this thread is the TS scheduling class */

while (1) {

printf("MAIN: In time share class... running\n");

sleep(1);

}

return(0);

}

/*

This is the routine that is called by the created thread

*/

void *rt_thread(void *arg)

{

pcinfo_t pcinfo;

pcparms_t pcparms;

int i;

392 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

/* let the main thread run for a bit */

sleep(4);

/* get the class ID for the real-time class */

strcpy(pcinfo.pc_clname, "RT");

if (priocntl(0, 0, PC_GETCID, (caddr_t)&pcinfo) == -1)

fprintf(stderr, "getting RT class id\n"), exit(1);

/* set up the real-time parameters */

pcparms.pc_cid = pcinfo.pc_cid;

((rtparms_t *)pcparms.pc_clparms)->rt_pri = 10;

((rtparms_t *)pcparms.pc_clparms)->rt_tqnsecs = 0;

/* set an infinite time quantum */

((rtparms_t *)pcparms.pc_clparms)->rt_tqsecs = RT_TQINF;

/* move this thread to the real-time scheduling class */

if (priocntl(P_LWPID, P_MYID, PC_SETPARMS, (caddr_t)&pcparms) == -1)

fprintf(stderr, "Setting RT mode\n"), exit(1);

/* simulate some processing */

for (i=0;i<100000000;i++);

printf("RT_THREAD: NOW EXITING...\n");

thr_exit((void *)0);

}

30.10 POSIX Cancellation

This example uses the POSIX thread cancellation capability to kill a thread
that is no longer needed. Random termination of a thread can cause prob-
lems in threaded applications, because a thread may be holding a critical
lock when it is terminated. Since the lock was help before the thread was
terminated, another thread may deadlock, waiting for that same lock. The
thread cancellation capability enables you to control when a thread can be

30.10. POSIX CANCELLATION 393

terminated. The example also demonstrates the capabilities of the POSIX
thread library in implementing a program that performs a multithreaded
search.

This example simulates a multithreaded search for a given number by
taking random guesses at a target number. The intent here is to simulate
the same type of search that a database might execute. For example, a
database might create threads to start searching for a data item; after some
amount of time, one or more threads might return with the target data item.

If a thread guesses the number correctly, there is no need for the other
threads to continue their search. This is where thread cancellation can help.
The thread that finds the number first should cancel the other threads that
are still searching for the item and then return the results of the search.

The threads involved in the search can call a cleanup function that can
clean up the threads resources before it exits. In this case, the cleanup
function prints the progress of the thread when it was cancelled.

The source to posix cancel.c:

#define _REENTRANT

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/types.h>

#include <pthread.h>

/* defines the number of searching threads */

#define NUM_THREADS 25

/* function prototypes */

void *search(void *);

void print_it(void *);

/* global variables */

pthread_t threads[NUM_THREADS];

pthread_mutex_t lock;

int tries;

main()

{

394 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

int i;

int pid;

/* create a number to search for */

pid = getpid();

/* initialize the mutex lock */

pthread_mutex_init(&lock, NULL);

printf("Searching for the number = %d...\n", pid);

/* create the searching threads */

for (i=0;i<NUM_THREADS;i++)

pthread_create(&threads[i], NULL, search, (void *)pid);

/* wait for (join) all the searching threads */

for (i=0;i<NUM_THREADS;i++)

pthread_join(threads[i], NULL);

printf("It took %d tries to find the number.\n", tries);

/* exit this thread */

pthread_exit((void *)0);

}

/*

This is the cleanup function that is called when

the threads are cancelled

*/

void print_it(void *arg)

{

int *try = (int *) arg;

pthread_t tid;

/* get the calling thread’s ID */

tid = pthread_self();

/* print where the thread was in its search when it was cancelled */

30.10. POSIX CANCELLATION 395

printf("Thread %d was canceled on its %d try.\n", tid, *try);

}

/*

This is the search routine that is executed in each thread

*/

void *search(void *arg)

{

int num = (int) arg;

int i=0, j;

pthread_t tid;

/* get the calling thread ID */

tid = pthread_self();

/* use the thread ID to set the seed for the random number generator */

srand(tid);

/* set the cancellation parameters --

- Enable thread cancellation

- Defer the action of the cancellation

*/

pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);

pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);

/* push the cleanup routine (print_it) onto the thread

cleanup stack. This routine will be called when the

thread is cancelled. Also note that the pthread_cleanup_push

call must have a matching pthread_cleanup_pop call. The

push and pop calls MUST be at the same lexical level

within the code */

/* pass address of ‘i’ since the current value of ‘i’ is not

the one we want to use in the cleanup function */

pthread_cleanup_push(print_it, (void *)&i);

396 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

/* loop forever */

while (1) {

i++;

/* does the random number match the target number? */

if (num == rand()) {

/* try to lock the mutex lock --

if locked, check to see if the thread has been cancelled

if not locked then continue */

while (pthread_mutex_trylock(&lock) == EBUSY)

pthread_testcancel();

/* set the global variable for the number of tries */

tries = i;

printf("thread %d found the number!\n", tid);

/* cancel all the other threads */

for (j=0;j<NUM_THREADS;j++)

if (threads[j] != tid) pthread_cancel(threads[j]);

/* break out of the while loop */

break;

}

/* every 100 tries check to see if the thread has been cancelled

if the thread has not been cancelled then yield the thread’s

LWP to another thread that may be able to run */

if (i%100 == 0) {

pthread_testcancel();

sched_yield();

}

}

30.11. SOFTWARE RACE CONDITION 397

/* The only way we can get here is when the thread breaks out

of the while loop. In this case the thread that makes it here

has found the number we are looking for and does not need to run

the thread cleanup function. This is why the pthread_cleanup_pop

function is called with a 0 argument; this will pop the cleanup

function off the stack without executing it */

pthread_cleanup_pop(0);

return((void *)0);

}

30.11 Software Race Condition

This example shows a trivial software race condition. A software race con-
dition occurs when the execution of a program is affected by the order and
timing of a threads execution. Most software race conditions can be allevi-
ated by using synchronization variables to control the threads’ timing and
access of shared resources. If a program depends on order of execution, then
threading that program may not be a good solution, because the order in
which threads execute is nondeterministic.

In the example, thr continue() and thr suspend() calls continue and
suspend a given thread, respectively. Although both of these calls are valid,
use caution when implementing them. It is very hard to determine where
a thread is in its execution. Because of this, you may not be able to tell
where the thread will suspend when the call to thr suspend() is made.
This behavior can cause problems in threaded code if not used properly.

The following example uses thr continue() and thr suspend() to try
to control when a thread starts and stops. The example looks trivial, but,
as you will see, can cause a big problem.

Do you see the problem? If you guessed that the program would even-
tually suspend itself, you were correct! The example attempts to flip-flop
between the main thread and a subroutine thread. Each thread continues
the other thread and then suspends itself.

Thread A continues thread B and then suspends thread A; now the con-
tinued thread B can continue thread A and then suspend itself. This should

398 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

continue back and forth all day long, right? Wrong! We can’t guarantee
that each thread will continue the other thread and then suspend itself in
one atomic action, so a software race condition could be created. Calling
thr continue() on a running thread and calling thr suspend() on a sus-
pended thread has no effect, so we don’t know if a thread is already running
or suspended.

If thread A continues thread B and if between the time thread A sus-
pends itself, thread B continues thread A, then both of the threads will call
thr suspend(). This is the race condition in this program that will cause
the whole process to become suspended.

It is very hard to use these calls, because you never really know the state
of a thread. If you don’t know exactly where a thread is in its execution,
then you don’t know what locks it holds and where it will stop when you
suspend it.

The source to sw race.c

30.12 Tgrep: Threadeds version of UNIX grep

Tgrep is a multi-threaded version of grep. Tgrep supports all but the -w
(word search) options of the normal grep command, and a few options that
are only avaliable to Tgrep. The real change from grep, is that Tgrep will
recurse down through sub-directories and search all files for the target string.
Tgrep searches files like the following command:

find <start path> -name "<file/directory pattern>" -exec \ (Line wrapped)

grep <options> <target> /dev/null {} \;

An example of this would be (run from this Tgrep directory)

% find . -exec grep thr_create /dev/null {} \;

./Solaris/main.c: if (thr_create(NULL,0,SigThread,NULL,THR_DAEMON,NULL)) {

./Solaris/main.c: err = thr_create(NULL,0,cascade,(void *)work,

./Solaris/main.c: err = thr_create(NULL,0,search_thr,(void *)work,

%

Running the same command with timex:

real 4.26

user 0.64

sys 2.81

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 399

The same search run with Tgrep would be

% {\tt Tgrep} thr_create

./Solaris/main.c: if (thr_create(NULL,0,SigThread,NULL,THR_DAEMON,NULL)) {

./Solaris/main.c: err = thr_create(NULL,0,cascade,(void *)work,

./Solaris/main.c: err = thr_create(NULL,0,search_thr,(void *)work,

%

Running the same command with timex:

real 0.79

user 0.62

sys 1.50

Tgrep gets the results almost four times faster. The numbers above where
gathered on a SS20 running 5.5 (build 18) with 4 50MHz CPUs.

You can also filter the files that you want Tgrep to search like you can
with find. The next two commands do the same thing, just Tgrep gets it
done faster.

find . -name "*.c" -exec grep thr_create /dev/null {} \;

and

{\tt Tgrep} -p ’.*\.c$’ thr_create

The -p option will allow Tgrep to search only files that match the ”regular
expression” file pattern string. This option does NOT use shell expression,
so to stop Tgrep from seeing a file named foobar.cỹou must add the ”$” meta
character to the pattern and escape the real “.” character.

Some of the other Tgrep only options are -r, -C, -P, -e, -B, -S and -Z.
The -r option stops Tgrep from searching any sub-directories, in other words,
search only the local directory, but -l was taken. The -C option will search
for and print ”continued” lines like you find in Makefile. Note the differences
in the results of grep and Tgrep run in the current directory.

The Tgrep output prints the continued lines that ended with the ”c̈haracter.
In the case of grep I would not have seen the three values assigned to SUB-
DIRS, but Tgrep shows them to me (Common, Solaris, Posix).

The -P option I use when I am sending the output of a long search to a
file and want to see the ”progress” of the search. The -P option will print a
”.” (dot) on stderr for every file (or groups of files depending on the value of
the -P argument) Tgrep searches.

400 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

The -e option will change the way Tgrep uses the target string. Tgrep

uses two different patter matching systems. The first (with out the -e option)
is a literal string match call Boyer-Moore. If the -e option is used, then a
MT-Safe PD version of regular expression is used to search for the target
string as a regexp with meta characters in it. The regular expression method
is slower, but Tgrep needed the functionality. The -Z option will print help
on the meta characters Tgrep uses.

The -B option tells Tgrep to use the value of the environment variable
called TGLIMIT to limit the number of threads it will use during a search.
This option has no affect if TGLIMIT is not set. Tgrep can ”eat” a system
alive, so the -B option was a way to run Tgrep on a system with out having
other users scream at you.

The last new option is -S. If you want to see how things went while Tgrep
was searching, you can use this option to print statistic about the number of
files, lines, bytes, matches, threads created, etc.

Here is an example of the -S options output. (again run in the current
directory)

% {\tt Tgrep} -S zimzap

----------------- {\tt Tgrep} Stats. --------------------

Number of directories searched: 7

Number of files searched: 37

Number of lines searched: 9504

Number of matching lines to target: 0

Number of cascade threads created: 7

Number of search threads created: 20

Number of search threads from pool: 17

Search thread pool hit rate: 45.95%

Search pool overall size: 20

Search pool size limit: 58

Number of search threads destroyed: 0

Max # of threads running concurrenly: 20

Total run time, in seconds. 1

Work stopped due to no FD’s: (058) 0 Times, 0.00%

Work stopped due to no work on Q: 19 Times, 43.18%

Work stopped due to TGLIMITS: (Unlimited) 0 Times, 0.00%

--

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 401

%

For more information on the usage and options, see the man page Tgrep

The Tgrep.c source code is:

/* Copyright (c) 1993, 1994 Ron Winacott */

/* This program may be used, copied, modified, and redistributed freely */

/* for ANY purpose, so long as this notice remains intact. */

#define _REENTRANT

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

#include <assert.h>

#include <errno.h>

#include <signal.h>

#include <ctype.h>

#include <sys/types.h>

#include <time.h>

#include <sys/stat.h>

#ifdef __sparc

#include <note.h> /* warlock/locklint */

#else

#define NOTE(s)

#endif

#include <dirent.h>

#include <fcntl.h>

#include <sys/uio.h>

#include <thread.h>

#include <synch.h>

#include "version.h"

#include "pmatch.h"

#include "debug.h"

402 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

#define PATH_MAX 1024 /* max # of characters in a path name */

#define HOLD_FDS 6 /* stdin,out,err and a buffer */

#define UNLIMITED 99999 /* The default tglimit */

#define MAXREGEXP 10 /* max number of -e options */

#define FB_BLOCK 0x00001

#define FC_COUNT 0x00002

#define FH_HOLDNAME 0x00004

#define FI_IGNCASE 0x00008

#define FL_NAMEONLY 0x00010

#define FN_NUMBER 0x00020

#define FS_NOERROR 0x00040

#define FV_REVERSE 0x00080

#define FW_WORD 0x00100

#define FR_RECUR 0x00200

#define FU_UNSORT 0x00400

#define FX_STDIN 0x00800

#define TG_BATCH 0x01000

#define TG_FILEPAT 0x02000

#define FE_REGEXP 0x04000

#define FS_STATS 0x08000

#define FC_LINE 0x10000

#define TG_PROGRESS 0x20000

#define FILET 1

#define DIRT 2

#define ALPHASIZ 128

/*

* New data types

*/

typedef struct work_st {

char *path;

int tp;

struct work_st *next;

} work_t;

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 403

typedef struct out_st {

char *line;

int line_count;

long byte_count;

struct out_st *next;

} out_t;

typedef struct bm_pattern { /* Boyer - Moore pattern */

short p_m; /* length of pattern string */

short p_r[ALPHASIZ]; /* "r" vector */

short *p_R; /* "R" vector */

char *p_pat; /* pattern string */

} BM_PATTERN;

/*

* Prototypes

*/

/* bmpmatch.c */

extern BM_PATTERN *bm_makepat(char *);

extern char *bm_pmatch(BM_PATTERN *, register char *);

extern void bm_freepat(BM_PATTERN *);

/* pmatch.c */

extern char *pmatch(register PATTERN *, register char *, int *);

extern PATTERN *makepat(char *string, char *);

extern void freepat(register PATTERN *);

extern void printpat(PATTERN *);

#include "proto.h" /* function prototypes of main.c */

void *SigThread(void *arg);

void sig_print_stats(void);

/*

* Global data

*/

404 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

BM_PATTERN *bm_pat; /* the global target read only after main */

NOTE(READ_ONLY_DATA(bm_pat))

PATTERN *pm_pat[MAXREGEXP]; /* global targets read only for pmatch */

NOTE(READ_ONLY_DATA(pm_pat))

mutex_t global_count_lk;

int global_count = 0;

NOTE(MUTEX_PROTECTS_DATA(global_count_lk, global_count))

NOTE(DATA_READABLE_WITHOUT_LOCK(global_count)) /* see prnt_stats() */

work_t *work_q = NULL;

cond_t work_q_cv;

mutex_t work_q_lk;

int all_done = 0;

int work_cnt = 0;

int current_open_files = 0;

int tglimit = UNLIMITED; /* if -B limit the number of threads */

NOTE(MUTEX_PROTECTS_DATA(work_q_lk, work_q all_done work_cnt \

current_open_files tglimit))

work_t *search_q = NULL;

mutex_t search_q_lk;

cond_t search_q_cv;

int search_pool_cnt = 0; /* the count in the pool now */

int search_thr_limit = 0; /* the max in the pool */

NOTE(MUTEX_PROTECTS_DATA(search_q_lk, search_q search_pool_cnt))

NOTE(DATA_READABLE_WITHOUT_LOCK(search_pool_cnt)) /* see prnt_stats() */

NOTE(READ_ONLY_DATA(search_thr_limit))

work_t *cascade_q = NULL;

mutex_t cascade_q_lk;

cond_t cascade_q_cv;

int cascade_pool_cnt = 0;

int cascade_thr_limit = 0;

NOTE(MUTEX_PROTECTS_DATA(cascade_q_lk, cascade_q cascade_pool_cnt))

NOTE(DATA_READABLE_WITHOUT_LOCK(cascade_pool_cnt)) /* see prnt_stats() */

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 405

NOTE(READ_ONLY_DATA(cascade_thr_limit))

int running = 0;

mutex_t running_lk;

NOTE(MUTEX_PROTECTS_DATA(running_lk, running))

sigset_t set, oldset;

NOTE(READ_ONLY_DATA(set oldset))

mutex_t stat_lk;

time_t st_start = 0;

int st_dir_search = 0;

int st_file_search = 0;

int st_line_search = 0;

int st_cascade = 0;

int st_cascade_pool = 0;

int st_cascade_destroy = 0;

int st_search = 0;

int st_pool = 0;

int st_maxrun = 0;

int st_worknull = 0;

int st_workfds = 0;

int st_worklimit = 0;

int st_destroy = 0;

NOTE(MUTEX_PROTECTS_DATA(stat_lk, st_start st_dir_search st_file_search \

st_line_search st_cascade st_cascade_pool \

st_cascade_destroy st_search st_pool st_maxrun \

st_worknull st_workfds st_worklimit st_destroy))

int progress_offset = 1;

NOTE(READ_ONLY_DATA(progress_offset))

mutex_t output_print_lk;

/* output_print_lk used to print multi-line output only */

int progress = 0;

NOTE(MUTEX_PROTECTS_DATA(output_print_lk, progress))

unsigned int flags = 0;

406 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

int regexp_cnt = 0;

char *string[MAXREGEXP];

int debug = 0;

int use_pmatch = 0;

char file_pat[255]; /* file patten match */

PATTERN *pm_file_pat; /* compiled file target string (pmatch()) */

NOTE(READ_ONLY_DATA(flags regexp_cnt string debug use_pmatch \

file_pat pm_file_pat))

/*

* Locking ording.

*/

NOTE(LOCK_ORDER(output_print_lk stat_lk))

/*

* Main: This is where the fun starts

*/

int

main(int argc, char **argv)

{

int c,out_thr_flags;

long max_open_files = 0l, ncpus = 0l;

extern int optind;

extern char *optarg;

NOTE(READ_ONLY_DATA(optind optarg))

int prio = 0;

struct stat sbuf;

thread_t tid,dtid;

void *status;

char *e = NULL, *d = NULL; /* for debug flags */

int debug_file = 0;

int err = 0, i = 0, pm_file_len = 0;

work_t *work;

int restart_cnt = 10;

flags = FR_RECUR; /* the default */

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 407

thr_setprio(thr_self(),127); /* set me up HIGH */

while ((c = getopt(argc, argv, "d:e:bchilnsvwruf:p:BCSZzHP:")) != EOF) {

switch (c) {

#ifdef DEBUG

case ’d’:

debug = atoi(optarg);

if (debug == 0)

debug_usage();

d = optarg;

fprintf(stderr,"tgrep: Debug on at level(s) ");

while (*d) {

for (i=0; i<9; i++)

if (debug_set[i].level == *d) {

debug_levels |= debug_set[i].flag;

fprintf(stderr,"%c ",debug_set[i].level);

break;

}

d++;

}

fprintf(stderr,"\n");

break;

case ’f’:

debug_file = atoi(optarg);

break;

#endif /* DEBUG */

case ’B’:

flags |= TG_BATCH;

if ((e = getenv("TGLIMIT"))) {

tglimit = atoi(e);

}

else {

if (!(flags & FS_NOERROR)) /* order dependent! */

fprintf(stderr,"env TGLIMIT not set, overriding -B\n");

flags &= ~TG_BATCH;

}

break;

408 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

case ’p’:

flags |= TG_FILEPAT;

strcpy(file_pat,optarg);

pm_file_pat = makepat(file_pat,NULL);

break;

case ’P’:

flags |= TG_PROGRESS;

progress_offset = atoi(optarg);

break;

case ’S’: flags |= FS_STATS; break;

case ’b’: flags |= FB_BLOCK; break;

case ’c’: flags |= FC_COUNT; break;

case ’h’: flags |= FH_HOLDNAME; break;

case ’i’: flags |= FI_IGNCASE; break;

case ’l’: flags |= FL_NAMEONLY; break;

case ’n’: flags |= FN_NUMBER; break;

case ’s’: flags |= FS_NOERROR; break;

case ’v’: flags |= FV_REVERSE; break;

case ’w’: flags |= FW_WORD; break;

case ’r’: flags &= ~FR_RECUR; break;

case ’C’: flags |= FC_LINE; break;

case ’e’:

if (regexp_cnt == MAXREGEXP) {

fprintf(stderr,"Max number of regexp’s (%d) exceeded!\n",

MAXREGEXP);

exit(1);

}

flags |= FE_REGEXP;

if ((string[regexp_cnt] =(char *)malloc(strlen(optarg)+1))==NULL){

fprintf(stderr,"tgrep: No space for search string(s)\n");

exit(1);

}

memset(string[regexp_cnt],0,strlen(optarg)+1);

strcpy(string[regexp_cnt],optarg);

regexp_cnt++;

break;

case ’z’:

case ’Z’: regexp_usage();

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 409

break;

case ’H’:

case ’?’:

default : usage();

}

}

if (!(flags & FE_REGEXP)) {

if (argc - optind < 1) {

fprintf(stderr,"tgrep: Must supply a search string(s) "

"and file list or directory\n");

usage();

}

if ((string[0]=(char *)malloc(strlen(argv[optind])+1))==NULL){

fprintf(stderr,"tgrep: No space for search string(s)\n");

exit(1);

}

memset(string[0],0,strlen(argv[optind])+1);

strcpy(string[0],argv[optind]);

regexp_cnt=1;

optind++;

}

if (flags & FI_IGNCASE)

for (i=0; i<regexp_cnt; i++)

uncase(string[i]);

#ifdef __lock_lint

/*

** This is NOT somthing you really want to do. This

** function calls are here ONLY for warlock/locklint !!!

*/

pm_pat[i] = makepat(string[i],NULL);

bm_pat = bm_makepat(string[0]);

bm_freepat(bm_pat); /* stop it from becomming a root */

#else

if (flags & FE_REGEXP) {

for (i=0; i<regexp_cnt; i++)

410 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

pm_pat[i] = makepat(string[i],NULL);

use_pmatch = 1;

}

else {

bm_pat = bm_makepat(string[0]); /* only one allowed */

}

#endif

flags |= FX_STDIN;

max_open_files = sysconf(_SC_OPEN_MAX);

ncpus = sysconf(_SC_NPROCESSORS_ONLN);

if ((max_open_files - HOLD_FDS - debug_file) < 1) {

fprintf(stderr,"tgrep: You MUST have at lest ONE fd "

"that can be used, check limit (>10)\n");

exit(1);

}

search_thr_limit = max_open_files - HOLD_FDS - debug_file;

cascade_thr_limit = search_thr_limit / 2;

/* the number of files that can by open */

current_open_files = search_thr_limit;

mutex_init(&stat_lk,USYNC_THREAD,"stat");

mutex_init(&global_count_lk,USYNC_THREAD,"global_cnt");

mutex_init(&output_print_lk,USYNC_THREAD,"output_print");

mutex_init(&work_q_lk,USYNC_THREAD,"work_q");

mutex_init(&running_lk,USYNC_THREAD,"running");

cond_init(&work_q_cv,USYNC_THREAD,"work_q");

mutex_init(&search_q_lk,USYNC_THREAD,"search_q");

cond_init(&search_q_cv,USYNC_THREAD,"search_q");

mutex_init(&cascade_q_lk,USYNC_THREAD,"cascade_q");

cond_init(&cascade_q_cv,USYNC_THREAD,"cascade_q");

if ((argc == optind) && ((flags & TG_FILEPAT) || (flags & FR_RECUR))) {

add_work(".",DIRT);

flags = (flags & ~FX_STDIN);

}

for (; optind < argc; optind++) {

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 411

restart_cnt = 10;

flags = (flags & ~FX_STDIN);

STAT_AGAIN:

if (stat(argv[optind], &sbuf)) {

if (errno == EINTR) { /* try again !, restart */

if (--restart_cnt)

goto STAT_AGAIN;

}

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Can’t stat file/dir %s, %s\n",

argv[optind], strerror(errno));

continue;

}

switch (sbuf.st_mode & S_IFMT) {

case S_IFREG :

if (flags & TG_FILEPAT) {

if (pmatch(pm_file_pat, argv[optind], &pm_file_len))

add_work(argv[optind],FILET);

}

else {

add_work(argv[optind],FILET);

}

break;

case S_IFDIR :

if (flags & FR_RECUR) {

add_work(argv[optind],DIRT);

}

else {

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Can’t search directory %s, "

"-r option is on. Directory ignored.\n",

argv[optind]);

}

break;

}

}

NOTE(COMPETING_THREADS_NOW) /* we are goinf threaded */

412 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_start = time(NULL);

mutex_unlock(&stat_lk);

#ifdef SIGNAL_HAND

/*

** setup the signal thread so the first call to SIGINT will

** only print stats, the second will interupt.

*/

sigfillset(&set);

thr_sigsetmask(SIG_SETMASK, &set, &oldset);

if (thr_create(NULL,0,SigThread,NULL,THR_DAEMON,NULL)) {

thr_sigsetmask(SIG_SETMASK,&oldset,NULL);

fprintf(stderr,"SIGINT for stats NOT setup\n");

}

thr_yield(); /* give the other thread time */

#endif /* SIGNAL_HAND */

}

thr_setconcurrency(3);

if (flags & FX_STDIN) {

fprintf(stderr,"tgrep: stdin option is not coded at this time\n");

exit(0); /* XXX Need to fix this SOON */

search_thr(NULL); /* NULL is not understood in search_thr() */

if (flags & FC_COUNT) {

mutex_lock(&global_count_lk);

printf("%d\n",global_count);

mutex_unlock(&global_count_lk);

}

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

prnt_stats();

mutex_unlock(&stat_lk);

}

exit(0);

}

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 413

mutex_lock(&work_q_lk);

if (!work_q) {

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: No files to search.\n");

exit(0);

}

mutex_unlock(&work_q_lk);

DP(DLEVEL1,("Starting to loop through the work_q for work\n"));

/* OTHER THREADS ARE RUNNING */

while (1) {

mutex_lock(&work_q_lk);

while ((work_q == NULL || current_open_files == 0 || tglimit <= 0) &&

all_done == 0) {

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

if (work_q == NULL)

st_worknull++;

if (current_open_files == 0)

st_workfds++;

if (tglimit <= 0)

st_worklimit++;

mutex_unlock(&stat_lk);

}

cond_wait(&work_q_cv,&work_q_lk);

}

if (all_done != 0) {

mutex_unlock(&work_q_lk);

DP(DLEVEL1,("All_done was set to TRUE\n"));

goto OUT;

}

work = work_q;

work_q = work->next; /* maybe NULL */

work->next = NULL;

current_open_files--;

mutex_unlock(&work_q_lk);

414 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

tid = 0;

switch (work->tp) {

case DIRT:

mutex_lock(&cascade_q_lk);

if (cascade_pool_cnt) {

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_cascade_pool++;

mutex_unlock(&stat_lk);

}

work->next = cascade_q;

cascade_q = work;

cond_signal(&cascade_q_cv);

mutex_unlock(&cascade_q_lk);

DP(DLEVEL2,("Sent work to cascade pool thread\n"));

}

else {

mutex_unlock(&cascade_q_lk);

err = thr_create(NULL,0,cascade,(void *)work,

THR_DETACHED|THR_DAEMON|THR_NEW_LWP

,&tid);

DP(DLEVEL2,("Sent work to new cascade thread\n"));

thr_setprio(tid,64); /* set cascade to middle */

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_cascade++;

mutex_unlock(&stat_lk);

}

}

break;

case FILET:

mutex_lock(&search_q_lk);

if (search_pool_cnt) {

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_pool++;

mutex_unlock(&stat_lk);

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 415

}

work->next = search_q; /* could be null */

search_q = work;

cond_signal(&search_q_cv);

mutex_unlock(&search_q_lk);

DP(DLEVEL2,("Sent work to search pool thread\n"));

}

else {

mutex_unlock(&search_q_lk);

err = thr_create(NULL,0,search_thr,(void *)work,

THR_DETACHED|THR_DAEMON|THR_NEW_LWP

,&tid);

thr_setprio(tid,0); /* set search to low */

DP(DLEVEL2,("Sent work to new search thread\n"));

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_search++;

mutex_unlock(&stat_lk);

}

}

break;

default:

fprintf(stderr,"tgrep: Internal error, work_t->tp no valid\n");

exit(1);

}

if (err) { /* NEED TO FIX THIS CODE. Exiting is just wrong */

fprintf(stderr,"Cound not create new thread!\n");

exit(1);

}

}

OUT:

if (flags & TG_PROGRESS) {

if (progress)

fprintf(stderr,".\n");

else

fprintf(stderr,"\n");

}

416 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

/* we are done, print the stuff. All other threads ar parked */

if (flags & FC_COUNT) {

mutex_lock(&global_count_lk);

printf("%d\n",global_count);

mutex_unlock(&global_count_lk);

}

if (flags & FS_STATS)

prnt_stats();

return(0); /* should have a return from main */

}

/*

* Add_Work: Called from the main thread, and cascade threads to add file

* and directory names to the work Q.

*/

int

add_work(char *path,int tp)

{

work_t *wt,*ww,*wp;

if ((wt = (work_t *)malloc(sizeof(work_t))) == NULL)

goto ERROR;

if ((wt->path = (char *)malloc(strlen(path)+1)) == NULL)

goto ERROR;

strcpy(wt->path,path);

wt->tp = tp;

wt->next = NULL;

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

if (wt->tp == DIRT)

st_dir_search++;

else

st_file_search++;

mutex_unlock(&stat_lk);

}

mutex_lock(&work_q_lk);

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 417

work_cnt++;

wt->next = work_q;

work_q = wt;

cond_signal(&work_q_cv);

mutex_unlock(&work_q_lk);

return(0);

ERROR:

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Could not add %s to work queue. Ignored\n",

path);

return(-1);

}

/*

* Search thread: Started by the main thread when a file name is found

* on the work Q to be serached. If all the needed resources are ready

* a new search thread will be created.

*/

void *

search_thr(void *arg) /* work_t *arg */

{

FILE *fin;

char fin_buf[(BUFSIZ*4)]; /* 4 Kbytes */

work_t *wt,std;

int line_count;

char rline[128];

char cline[128];

char *line;

register char *p,*pp;

int pm_len;

int len = 0;

long byte_count;

long next_line;

int show_line; /* for the -v option */

register int slen,plen,i;

out_t *out = NULL; /* this threads output list */

thr_setprio(thr_self(),0); /* set search to low */

418 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

thr_yield();

wt = (work_t *)arg; /* first pass, wt is passed to use. */

/* len = strlen(string);*/ /* only set on first pass */

while (1) { /* reuse the search threads */

/* init all back to zero */

line_count = 0;

byte_count = 0l;

next_line = 0l;

show_line = 0;

mutex_lock(&running_lk);

running++;

mutex_unlock(&running_lk);

mutex_lock(&work_q_lk);

tglimit--;

mutex_unlock(&work_q_lk);

DP(DLEVEL5,("searching file (STDIO) %s\n",wt->path));

if ((fin = fopen(wt->path,"r")) == NULL) {

if (!(flags & FS_NOERROR)) {

fprintf(stderr,"tgrep: %s. File \"%s\" not searched.\n",

strerror(errno),wt->path);

}

goto ERROR;

}

setvbuf(fin,fin_buf,_IOFBF,(BUFSIZ*4)); /* XXX */

DP(DLEVEL5,("Search thread has opened file %s\n",wt->path));

while ((fgets(rline,127,fin)) != NULL) {

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_line_search++;

mutex_unlock(&stat_lk);

}

slen = strlen(rline);

next_line += slen;

line_count++;

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 419

if (rline[slen-1] == ’\n’)

rline[slen-1] = ’\0’;

/*

** If the uncase flag is set, copy the read in line (rline)

** To the uncase line (cline) Set the line pointer to point at

** cline.

** If the case flag is NOT set, then point line at rline.

** line is what is compared, rline is waht is printed on a

** match.

*/

if (flags & FI_IGNCASE) {

strcpy(cline,rline);

uncase(cline);

line = cline;

}

else {

line = rline;

}

show_line = 1; /* assume no match, if -v set */

/* The old code removed */

if (use_pmatch) {

for (i=0; i<regexp_cnt; i++) {

if (pmatch(pm_pat[i], line, &pm_len)) {

if (!(flags & FV_REVERSE)) {

add_output_local(&out,wt,line_count,

byte_count,rline);

continue_line(rline,fin,out,wt,

&line_count,&byte_count);

}

else {

show_line = 0;

} /* end of if -v flag if / else block */

/*

** if we get here on ANY of the regexp targets

** jump out of the loop, we found a single

** match so, do not keep looking!

** If name only, do not keep searcthing the same

** file, we found a single match, so close the file,

420 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

** print the file name and move on to the next file.

*/

if (flags & FL_NAMEONLY)

goto OUT_OF_LOOP;

else

goto OUT_AND_DONE;

} /* end found a match if block */

} /* end of the for pat[s] loop */

}

else {

if (bm_pmatch(bm_pat, line)) {

if (!(flags & FV_REVERSE)) {

add_output_local(&out,wt,line_count,byte_count,rline);

continue_line(rline,fin,out,wt,

&line_count,&byte_count);

}

else {

show_line = 0;

}

if (flags & FL_NAMEONLY)

goto OUT_OF_LOOP;

}

}

OUT_AND_DONE:

if ((flags & FV_REVERSE) && show_line) {

add_output_local(&out,wt,line_count,byte_count,rline);

show_line = 0;

}

byte_count = next_line;

}

OUT_OF_LOOP:

fclose(fin);

/*

** The search part is done, but before we give back the FD,

** and park this thread in the search thread pool, print the

** local output we have gathered.

*/

print_local_output(out,wt); /* this also frees out nodes */

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 421

out = NULL; /* for the next time around, if there is one */

ERROR:

DP(DLEVEL5,("Search done for %s\n",wt->path));

free(wt->path);

free(wt);

notrun();

mutex_lock(&search_q_lk);

if (search_pool_cnt > search_thr_limit) {

mutex_unlock(&search_q_lk);

DP(DLEVEL5,("Search thread exiting\n"));

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_destroy++;

mutex_unlock(&stat_lk);

}

return(0);

}

else {

search_pool_cnt++;

while (!search_q)

cond_wait(&search_q_cv,&search_q_lk);

search_pool_cnt--;

wt = search_q; /* we have work to do! */

if (search_q->next)

search_q = search_q->next;

else

search_q = NULL;

mutex_unlock(&search_q_lk);

}

}

/*NOTREACHED*/

}

/*

* Continue line: Speacial case search with the -C flag set. If you are

* searching files like Makefiles, some lines may have escape char’s to

* contine the line on the next line. So the target string can be found, but

422 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

* no data is displayed. This function continues to print the escaped line

* until there are no more "\" chars found.

*/

int

continue_line(char *rline, FILE *fin, out_t *out, work_t *wt,

int *lc, long *bc)

{

int len;

int cnt = 0;

char *line;

char nline[128];

if (!(flags & FC_LINE))

return(0);

line = rline;

AGAIN:

len = strlen(line);

if (line[len-1] == ’\\’) {

if ((fgets(nline,127,fin)) == NULL) {

return(cnt);

}

line = nline;

len = strlen(line);

if (line[len-1] == ’\n’)

line[len-1] = ’\0’;

*bc = *bc + len;

*lc++;

add_output_local(&out,wt,*lc,*bc,line);

cnt++;

goto AGAIN;

}

return(cnt);

}

/*

* cascade: This thread is started by the main thread when directory names

* are found on the work Q. The thread reads all the new file, and directory

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 423

* names from the directory it was started when and adds the names to the

* work Q. (it finds more work!)

*/

void *

cascade(void *arg) /* work_t *arg */

{

char fullpath[1025];

int restart_cnt = 10;

DIR *dp;

char dir_buf[sizeof(struct dirent) + PATH_MAX];

struct dirent *dent = (struct dirent *)dir_buf;

struct stat sbuf;

char *fpath;

work_t *wt;

int fl = 0, dl = 0;

int pm_file_len = 0;

thr_setprio(thr_self(),64); /* set search to middle */

thr_yield(); /* try toi give control back to main thread */

wt = (work_t *)arg;

while(1) {

fl = 0;

dl = 0;

restart_cnt = 10;

pm_file_len = 0;

mutex_lock(&running_lk);

running++;

mutex_unlock(&running_lk);

mutex_lock(&work_q_lk);

tglimit--;

mutex_unlock(&work_q_lk);

if (!wt) {

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Bad work node passed to cascade\n");

424 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

goto DONE;

}

fpath = (char *)wt->path;

if (!fpath) {

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Bad path name passed to cascade\n");

goto DONE;

}

DP(DLEVEL3,("Cascading on %s\n",fpath));

if ((dp = opendir(fpath)) == NULL) {

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Can’t open dir %s, %s. Ignored.\n",

fpath,strerror(errno));

goto DONE;

}

while ((readdir_r(dp,dent)) != NULL) {

restart_cnt = 10; /* only try to restart the interupted 10 X */

if (dent->d_name[0] == ’.’) {

if (dent->d_name[1] == ’.’ && dent->d_name[2] == ’\0’)

continue;

if (dent->d_name[1] == ’\0’)

continue;

}

fl = strlen(fpath);

dl = strlen(dent->d_name);

if ((fl + 1 + dl) > 1024) {

fprintf(stderr,"tgrep: Path %s/%s is too long. "

"MaxPath = 1024\n",

fpath, dent->d_name);

continue; /* try the next name in this directory */

}

strcpy(fullpath,fpath);

strcat(fullpath,"/");

strcat(fullpath,dent->d_name);

RESTART_STAT:

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 425

if (stat(fullpath,&sbuf)) {

if (errno == EINTR) {

if (--restart_cnt)

goto RESTART_STAT;

}

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Can’t stat file/dir %s, %s. "

"Ignored.\n",

fullpath,strerror(errno));

goto ERROR;

}

switch (sbuf.st_mode & S_IFMT) {

case S_IFREG :

if (flags & TG_FILEPAT) {

if (pmatch(pm_file_pat, dent->d_name, &pm_file_len)) {

DP(DLEVEL3,("file pat match (cascade) %s\n",

dent->d_name));

add_work(fullpath,FILET);

}

}

else {

add_work(fullpath,FILET);

DP(DLEVEL3,("cascade added file (MATCH) %s to Work Q\n",

fullpath));

}

break;

case S_IFDIR :

DP(DLEVEL3,("cascade added dir %s to Work Q\n",fullpath));

add_work(fullpath,DIRT);

break;

}

}

ERROR:

closedir(dp);

DONE:

free(wt->path);

426 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

free(wt);

notrun();

mutex_lock(&cascade_q_lk);

if (cascade_pool_cnt > cascade_thr_limit) {

mutex_unlock(&cascade_q_lk);

DP(DLEVEL5,("Cascade thread exiting\n"));

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_cascade_destroy++;

mutex_unlock(&stat_lk);

}

return(0); /* thr_exit */

}

else {

DP(DLEVEL5,("Cascade thread waiting in pool\n"));

cascade_pool_cnt++;

while (!cascade_q)

cond_wait(&cascade_q_cv,&cascade_q_lk);

cascade_pool_cnt--;

wt = cascade_q; /* we have work to do! */

if (cascade_q->next)

cascade_q = cascade_q->next;

else

cascade_q = NULL;

mutex_unlock(&cascade_q_lk);

}

}

/*NOTREACHED*/

}

/*

* Print Local Output: Called by the search thread after it is done searching

* a single file. If any oputput was saved (matching lines), the lines are

* displayed as a group on stdout.

*/

int

print_local_output(out_t *out, work_t *wt)

{

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 427

out_t *pp, *op;

int out_count = 0;

int printed = 0;

int print_name = 1;

pp = out;

mutex_lock(&output_print_lk);

if (pp && (flags & TG_PROGRESS)) {

progress++;

if (progress >= progress_offset) {

progress = 0;

fprintf(stderr,".");

}

}

while (pp) {

out_count++;

if (!(flags & FC_COUNT)) {

if (flags & FL_NAMEONLY) { /* Pint name ONLY ! */

if (!printed) {

printed = 1;

printf("%s\n",wt->path);

}

}

else { /* We are printing more then just the name */

if (!(flags & FH_HOLDNAME)) /* do not print name ? */

printf("%s :",wt->path);

if (flags & FB_BLOCK)

printf("%ld:",pp->byte_count/512+1);

if (flags & FN_NUMBER)

printf("%d:",pp->line_count);

printf("%s\n",pp->line);

}

}

op = pp;

pp = pp->next;

/* free the nodes as we go down the list */

free(op->line);

free(op);

428 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

}

mutex_unlock(&output_print_lk);

mutex_lock(&global_count_lk);

global_count += out_count;

mutex_unlock(&global_count_lk);

return(0);

}

/*

* add output local: is called by a search thread as it finds matching lines.

* the matching line, it’s byte offset, line count, etc are stored until the

* search thread is done searching the file, then the lines are printed as

* a group. This way the lines from more then a single file are not mixed

* together.

*/

int

add_output_local(out_t **out, work_t *wt,int lc, long bc, char *line)

{

out_t *ot,*oo, *op;

if ((ot = (out_t *)malloc(sizeof(out_t))) == NULL)

goto ERROR;

if ((ot->line = (char *)malloc(strlen(line)+1)) == NULL)

goto ERROR;

strcpy(ot->line,line);

ot->line_count = lc;

ot->byte_count = bc;

if (!*out) {

*out = ot;

ot->next = NULL;

return(0);

}

/* append to the END of the list, keep things sorted! */

op = oo = *out;

while(oo) {

op = oo;

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 429

oo = oo->next;

}

op->next = ot;

ot->next = NULL;

return(0);

ERROR:

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Output lost. No space. "

"[%s: line %d byte %d match : %s\n",

wt->path,lc,bc,line);

return(1);

}

/*

* print stats: If the -S flag is set, after ALL files have been searched,

* main thread calls this function to print the stats it keeps on how the

* search went.

*/

void

prnt_stats(void)

{

float a,b,c;

float t = 0.0;

time_t st_end = 0;

char tl[80];

st_end = time(NULL); /* stop the clock */

fprintf(stderr,"\n----------------- Tgrep Stats. --------------------\n");

fprintf(stderr,"Number of directories searched: %d\n",

st_dir_search);

fprintf(stderr,"Number of files searched: %d\n",

st_file_search);

c = (float)(st_dir_search + st_file_search) / (float)(st_end - st_start);

fprintf(stderr,"Dir/files per second: %3.2f\n",

c);

fprintf(stderr,"Number of lines searched: %d\n",

st_line_search);

fprintf(stderr,"Number of matching lines to target: %d\n",

430 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

global_count);

fprintf(stderr,"Number of cascade threads created: %d\n",

st_cascade);

fprintf(stderr,"Number of cascade threads from pool: %d\n",

st_cascade_pool);

a = st_cascade_pool; b = st_dir_search;

fprintf(stderr,"Cascade thread pool hit rate: %3.2f%%\n",

((a/b)*100));

fprintf(stderr,"Cascade pool overall size: %d\n",

cascade_pool_cnt);

fprintf(stderr,"Cascade pool size limit: %d\n",

cascade_thr_limit);

fprintf(stderr,"Number of cascade threads destroyed: %d\n",

st_cascade_destroy);

fprintf(stderr,"Number of search threads created: %d\n",

st_search);

fprintf(stderr,"Number of search threads from pool: %d\n",

st_pool);

a = st_pool; b = st_file_search;

fprintf(stderr,"Search thread pool hit rate: %3.2f%%\n",

((a/b)*100));

fprintf(stderr,"Search pool overall size: %d\n",

search_pool_cnt);

fprintf(stderr,"Search pool size limit: %d\n",

search_thr_limit);

fprintf(stderr,"Number of search threads destroyed: %d\n",

st_destroy);

fprintf(stderr,"Max # of threads running concurrenly: %d\n",

st_maxrun);

fprintf(stderr,"Total run time, in seconds. %d\n",

(st_end - st_start));

/* Why did we wait ? */

a = st_workfds; b = st_dir_search+st_file_search;

c = (a/b)*100; t += c;

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 431

fprintf(stderr,"Work stopped due to no FD’s: (%.3d) %d Times, %3.2f%%\n",

search_thr_limit,st_workfds,c);

a = st_worknull; b = st_dir_search+st_file_search;

c = (a/b)*100; t += c;

fprintf(stderr,"Work stopped due to no work on Q: %d Times, %3.2f%%\n",

st_worknull,c);

#ifndef __lock_lint /* it is OK to read HERE with out the lock ! */

if (tglimit == UNLIMITED)

strcpy(tl,"Unlimited");

else

sprintf(tl," %.3d ",tglimit);

#endif

a = st_worklimit; b = st_dir_search+st_file_search;

c = (a/b)*100; t += c;

fprintf(stderr,"Work stopped due to TGLIMIT: (%.9s) %d Times, %3.2f%%\n",

tl,st_worklimit,c);

fprintf(stderr,"Work continued to be handed out: %3.2f%%\n",

100.00-t);

fprintf(stderr,"--\n");

}

/*

* not running: A glue function to track if any search threads or cascade

* threads are running. When the count is zero, and the work Q is NULL,

* we can safly say, WE ARE DONE.

*/

void

notrun (void)

{

mutex_lock(&work_q_lk);

work_cnt--;

tglimit++;

current_open_files++;

mutex_lock(&running_lk);

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

if (running > st_maxrun) {

st_maxrun = running;

432 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

DP(DLEVEL6,("Max Running has increased to %d\n",st_maxrun));

}

mutex_unlock(&stat_lk);

}

running--;

if (work_cnt == 0 && running == 0) {

all_done = 1;

DP(DLEVEL6,("Setting ALL_DONE flag to TRUE.\n"));

}

mutex_unlock(&running_lk);

cond_signal(&work_q_cv);

mutex_unlock(&work_q_lk);

}

/*

* uncase: A glue function. If the -i (case insensitive) flag is set, the

* target strng and the read in line is converted to lower case before

* comparing them.

*/

void

uncase(char *s)

{

char *p;

for (p = s; *p != NULL; p++)

*p = (char)tolower(*p);

}

/*

* SigThread: if the -S option is set, the first ^C set to tgrep will

* print the stats on the fly, the second will kill the process.

*/

void *

SigThread(void *arg)

{

int sig;

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 433

int stats_printed = 0;

while (1) {

sig = sigwait(&set);

DP(DLEVEL7,("Signal %d caught\n",sig));

switch (sig) {

case -1:

fprintf(stderr,"Signal error\n");

break;

case SIGINT:

if (stats_printed)

exit(1);

stats_printed = 1;

sig_print_stats();

break;

case SIGHUP:

sig_print_stats();

break;

default:

DP(DLEVEL7,("Default action taken (exit) for signal %d\n",sig));

exit(1); /* default action */

}

}

}

void

sig_print_stats(void)

{

/*

** Get the output lock first

** Then get the stat lock.

*/

mutex_lock(&output_print_lk);

mutex_lock(&stat_lk);

prnt_stats();

mutex_unlock(&stat_lk);

mutex_unlock(&output_print_lk);

return;

434 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

}

/*

* usage: Have to have one of these.

*/

void

usage(void)

{

fprintf(stderr,"usage: tgrep <options> pattern <{file,dir}>...\n");

fprintf(stderr,"\n");

fprintf(stderr,"Where:\n");

#ifdef DEBUG

fprintf(stderr,"Debug -d = debug level -d <levels> (-d0 for usage)\n");

fprintf(stderr,"Debug -f = block fd’s from use (-f #)\n");

#endif

fprintf(stderr," -b = show block count (512 byte block)\n");

fprintf(stderr," -c = print only a line count\n");

fprintf(stderr," -h = do not print file names\n");

fprintf(stderr," -i = case insensitive\n");

fprintf(stderr," -l = print file name only\n");

fprintf(stderr," -n = print the line number with the line\n");

fprintf(stderr," -s = Suppress error messages\n");

fprintf(stderr," -v = print all but matching lines\n");

#ifdef NOT_IMP

fprintf(stderr," -w = search for a \"word\"\n");

#endif

fprintf(stderr," -r = Do not search for files in all "

"sub-directories\n");

fprintf(stderr," -C = show continued lines (\"\\\")\n");

fprintf(stderr," -p = File name regexp pattern. (Quote it)\n");

fprintf(stderr," -P = show progress. -P 1 prints a DOT on stderr\n"

" for each file it finds, -P 10 prints a DOT\n"

" on stderr for each 10 files it finds, etc...\n");

fprintf(stderr," -e = expression search.(regexp) More then one\n");

fprintf(stderr," -B = limit the number of threads to TGLIMIT\n");

fprintf(stderr," -S = Print thread stats when done.\n");

fprintf(stderr," -Z = Print help on the regexp used.\n");

fprintf(stderr,"\n");

30.12. TGREP: THREADEDS VERSION OF UNIX GREP 435

fprintf(stderr,"Notes:\n");

fprintf(stderr," If you start tgrep with only a directory name\n");

fprintf(stderr," and no file names, you must not have the -r option\n");

fprintf(stderr," set or you will get no output.\n");

fprintf(stderr," To search stdin (piped input), you must set -r\n");

fprintf(stderr," Tgrep will search ALL files in ALL \n");

fprintf(stderr," sub-directories. (like */* */*/* */*/*/* etc..)\n");

fprintf(stderr," if you supply a directory name.\n");

fprintf(stderr," If you do not supply a file, or directory name,\n");

fprintf(stderr," and the -r option is not set, the current \n");

fprintf(stderr," directory \".\" will be used.\n");

fprintf(stderr," All the other options should work \"like\" grep\n");

fprintf(stderr," The -p patten is regexp, tgrep will search only\n");

fprintf(stderr," the file names that match the patten\n");

fprintf(stderr,"\n");

fprintf(stderr," Tgrep Version %s\n",Tgrep_Version);

fprintf(stderr,"\n");

fprintf(stderr," Copy Right By Ron Winacott, 1993-1995.\n");

fprintf(stderr,"\n");

exit(0);

}

/*

* regexp usage: Tell the world about tgrep custom (THREAD SAFE) regexp!

*/

int

regexp_usage (void)

{

fprintf(stderr,"usage: tgrep <options> -e \"pattern\" <-e ...> "

"<{file,dir}>...\n");

fprintf(stderr,"\n");

fprintf(stderr,"metachars:\n");

fprintf(stderr," . - match any character\n");

fprintf(stderr," * - match 0 or more occurrences of pervious char\n");

fprintf(stderr," + - match 1 or more occurrences of pervious char.\n");

fprintf(stderr," ^ - match at begining of string\n");

fprintf(stderr," $ - match end of string\n");

fprintf(stderr," [- start of character class\n");

436 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

fprintf(stderr,"] - end of character class\n");

fprintf(stderr," (- start of a new pattern\n");

fprintf(stderr,") - end of a new pattern\n");

fprintf(stderr," @(n)c - match <c> at column <n>\n");

fprintf(stderr," | - match either pattern\n");

fprintf(stderr," \\ - escape any special characters\n");

fprintf(stderr," \\c - escape any special characters\n");

fprintf(stderr," \\o - turn on any special characters\n");

fprintf(stderr,"\n");

fprintf(stderr,"To match two diffrerent patterns in the same command\n");

fprintf(stderr,"Use the or function. \n"

"ie: tgrep -e \"(pat1)|(pat2)\" file\n"

"This will match any line with \"pat1\" or \"pat2\" in it.\n");

fprintf(stderr,"You can also use up to %d -e expresions\n",MAXREGEXP);

fprintf(stderr,"RegExp Pattern matching brought to you by Marc Staveley\n");

exit(0);

}

/*

* debug usage: If compiled with -DDEBUG, turn it on, and tell the world

* how to get tgrep to print debug info on different threads.

*/

#ifdef DEBUG

void

debug_usage(void)

{

int i = 0;

fprintf(stderr,"DEBUG usage and levels:\n");

fprintf(stderr,"--\n");

fprintf(stderr,"Level code\n");

fprintf(stderr,"--\n");

fprintf(stderr,"0 This message.\n");

for (i=0; i<9; i++) {

fprintf(stderr,"%d %s\n",i+1,debug_set[i].name);

}

fprintf(stderr,"--\n");

fprintf(stderr,"You can or the levels together like -d134 for levels\n");

30.13. MULTITHREADED QUICKSORT 437

fprintf(stderr,"1 and 3 and 4.\n");

fprintf(stderr,"\n");

exit(0);

}

#endif

30.13 Multithreaded Quicksort

The following example tquick.cimplements the quicksort algorithm using
threads.

/*

* Multithreaded Demo Source

*

* Copyright (C) 1995 by Sun Microsystems, Inc.

* All rights reserved.

*

* This file is a product of SunSoft, Inc. and is provided for

* unrestricted use provided that this legend is included on all

* media and as a part of the software program in whole or part.

* Users may copy, modify or distribute this file at will.

*

* THIS FILE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING

* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR

* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.

*

* This file is provided with no support and without any obligation on the

* part of SunSoft, Inc. to assist in its use, correction, modification or

* enhancement.

*

* SUNSOFT AND SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT

* TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS

* FILE OR ANY PART THEREOF.

438 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

*

* IN NO EVENT WILL SUNSOFT OR SUN MICROSYSTEMS, INC. BE LIABLE FOR ANY

* LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL

* DAMAGES, EVEN IF THEY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH

* DAMAGES.

*

* SunSoft, Inc.

* 2550 Garcia Avenue

* Mountain View, California 94043

*/

/*

* multiple-thread quick-sort. See man page for qsort(3c) for info.

* Works fine on uniprocessor machines as well.

*

* Written by: Richard Pettit (Richard.Pettit@West.Sun.COM)

*/

#include <unistd.h>

#include <stdlib.h>

#include <thread.h>

/* don’t create more threads for less than this */

#define SLICE_THRESH 4096

/* how many threads per lwp */

#define THR_PER_LWP 4

/* cast the void to a one byte quanitity and compute the offset */

#define SUB(a, n) ((void *) (((unsigned char *) (a)) + ((n) * width)))

typedef struct {

void *sa_base;

int sa_nel;

size_t sa_width;

int (*sa_compar)(const void *, const void *);

} sort_args_t;

30.13. MULTITHREADED QUICKSORT 439

/* for all instances of quicksort */

static int threads_avail;

#define SWAP(a, i, j, width) \

{ \

int n; \

unsigned char uc; \

unsigned short us; \

unsigned long ul; \

unsigned long long ull; \

\

if (SUB(a, i) == pivot) \

pivot = SUB(a, j); \

else if (SUB(a, j) == pivot) \

pivot = SUB(a, i); \

\

/* one of the more convoluted swaps I’ve done */ \

switch(width) { \

case 1: \

uc = *((unsigned char *) SUB(a, i)); \

*((unsigned char *) SUB(a, i)) = *((unsigned char *) SUB(a, j)); \

*((unsigned char *) SUB(a, j)) = uc; \

break; \

case 2: \

us = *((unsigned short *) SUB(a, i)); \

*((unsigned short *) SUB(a, i)) = *((unsigned short *) SUB(a, j)); \

*((unsigned short *) SUB(a, j)) = us; \

break; \

case 4: \

ul = *((unsigned long *) SUB(a, i)); \

*((unsigned long *) SUB(a, i)) = *((unsigned long *) SUB(a, j)); \

*((unsigned long *) SUB(a, j)) = ul; \

break; \

case 8: \

ull = *((unsigned long long *) SUB(a, i)); \

*((unsigned long long *) SUB(a,i)) = *((unsigned long long *) SUB(a,j)); \

*((unsigned long long *) SUB(a, j)) = ull; \

break; \

440 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

default: \

for(n=0; n<width; n++) { \

uc = ((unsigned char *) SUB(a, i))[n]; \

((unsigned char *) SUB(a, i))[n] = ((unsigned char *) SUB(a, j))[n]; \

((unsigned char *) SUB(a, j))[n] = uc; \

} \

break; \

} \

}

static void *

_quicksort(void *arg)

{

sort_args_t *sargs = (sort_args_t *) arg;

register void *a = sargs->sa_base;

int n = sargs->sa_nel;

int width = sargs->sa_width;

int (*compar)(const void *, const void *) = sargs->sa_compar;

register int i;

register int j;

int z;

int thread_count = 0;

void *t;

void *b[3];

void *pivot = 0;

sort_args_t sort_args[2];

thread_t tid;

/* find the pivot point */

switch(n) {

case 0:

case 1:

return 0;

case 2:

if ((*compar)(SUB(a, 0), SUB(a, 1)) > 0) {

SWAP(a, 0, 1, width);

}

return 0;

30.13. MULTITHREADED QUICKSORT 441

case 3:

/* three sort */

if ((*compar)(SUB(a, 0), SUB(a, 1)) > 0) {

SWAP(a, 0, 1, width);

}

/* the first two are now ordered, now order the second two */

if ((*compar)(SUB(a, 2), SUB(a, 1)) < 0) {

SWAP(a, 2, 1, width);

}

/* should the second be moved to the first? */

if ((*compar)(SUB(a, 1), SUB(a, 0)) < 0) {

SWAP(a, 1, 0, width);

}

return 0;

default:

if (n > 3) {

b[0] = SUB(a, 0);

b[1] = SUB(a, n / 2);

b[2] = SUB(a, n - 1);

/* three sort */

if ((*compar)(b[0], b[1]) > 0) {

t = b[0];

b[0] = b[1];

b[1] = t;

}

/* the first two are now ordered, now order the second two */

if ((*compar)(b[2], b[1]) < 0) {

t = b[1];

b[1] = b[2];

b[2] = t;

}

/* should the second be moved to the first? */

if ((*compar)(b[1], b[0]) < 0) {

t = b[0];

b[0] = b[1];

b[1] = t;

}

if ((*compar)(b[0], b[2]) != 0)

442 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

if ((*compar)(b[0], b[1]) < 0)

pivot = b[1];

else

pivot = b[2];

}

break;

}

if (pivot == 0)

for(i=1; i<n; i++) {

if (z = (*compar)(SUB(a, 0), SUB(a, i))) {

pivot = (z > 0) ? SUB(a, 0) : SUB(a, i);

break;

}

}

if (pivot == 0)

return;

/* sort */

i = 0;

j = n - 1;

while(i <= j) {

while((*compar)(SUB(a, i), pivot) < 0)

++i;

while((*compar)(SUB(a, j), pivot) >= 0)

--j;

if (i < j) {

SWAP(a, i, j, width);

++i;

--j;

}

}

/* sort the sides judiciously */

switch(i) {

case 0:

case 1:

break;

case 2:

30.13. MULTITHREADED QUICKSORT 443

if ((*compar)(SUB(a, 0), SUB(a, 1)) > 0) {

SWAP(a, 0, 1, width);

}

break;

case 3:

/* three sort */

if ((*compar)(SUB(a, 0), SUB(a, 1)) > 0) {

SWAP(a, 0, 1, width);

}

/* the first two are now ordered, now order the second two */

if ((*compar)(SUB(a, 2), SUB(a, 1)) < 0) {

SWAP(a, 2, 1, width);

}

/* should the second be moved to the first? */

if ((*compar)(SUB(a, 1), SUB(a, 0)) < 0) {

SWAP(a, 1, 0, width);

}

break;

default:

sort_args[0].sa_base = a;

sort_args[0].sa_nel = i;

sort_args[0].sa_width = width;

sort_args[0].sa_compar = compar;

if ((threads_avail > 0) && (i > SLICE_THRESH)) {

threads_avail--;

thr_create(0, 0, _quicksort, &sort_args[0], 0, &tid);

thread_count = 1;

} else

_quicksort(&sort_args[0]);

break;

}

j = n - i;

switch(j) {

case 1:

break;

case 2:

if ((*compar)(SUB(a, i), SUB(a, i + 1)) > 0) {

SWAP(a, i, i + 1, width);

444 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

}

break;

case 3:

/* three sort */

if ((*compar)(SUB(a, i), SUB(a, i + 1)) > 0) {

SWAP(a, i, i + 1, width);

}

/* the first two are now ordered, now order the second two */

if ((*compar)(SUB(a, i + 2), SUB(a, i + 1)) < 0) {

SWAP(a, i + 2, i + 1, width);

}

/* should the second be moved to the first? */

if ((*compar)(SUB(a, i + 1), SUB(a, i)) < 0) {

SWAP(a, i + 1, i, width);

}

break;

default:

sort_args[1].sa_base = SUB(a, i);

sort_args[1].sa_nel = j;

sort_args[1].sa_width = width;

sort_args[1].sa_compar = compar;

if ((thread_count == 0) && (threads_avail > 0) && (i > SLICE_THRESH)) {

threads_avail--;

thr_create(0, 0, _quicksort, &sort_args[1], 0, &tid);

thread_count = 1;

} else

_quicksort(&sort_args[1]);

break;

}

if (thread_count) {

thr_join(tid, 0, 0);

threads_avail++;

}

return 0;

}

void

quicksort(void *a, size_t n, size_t width,

30.13. MULTITHREADED QUICKSORT 445

int (*compar)(const void *, const void *))

{

static int ncpus = -1;

sort_args_t sort_args;

if (ncpus == -1) {

ncpus = sysconf(_SC_NPROCESSORS_ONLN);

/* lwp for each cpu */

if ((ncpus > 1) && (thr_getconcurrency() < ncpus))

thr_setconcurrency(ncpus);

/* thread count not to exceed THR_PER_LWP per lwp */

threads_avail = (ncpus == 1) ? 0 : (ncpus * THR_PER_LWP);

}

sort_args.sa_base = a;

sort_args.sa_nel = n;

sort_args.sa_width = width;

sort_args.sa_compar = compar;

(void) _quicksort(&sort_args);

}

446 CHAPTER 30. THREAD PROGRAMMING EXAMPLES

Chapter 31

Remote Procedure Calls (RPC)

This chapter provides an overview of Remote Procedure Calls (RPC) RPC.

31.1 What Is RPC

RPC is a powerful technique for constructing distributed, client-server based
applications. It is based on extending the notion of conventional, or local
procedure calling, so that the called procedure need not exist in the same
address space as the calling procedure. The two processes may be on the
same system, or they may be on different systems with a network connecting
them. By using RPC, programmers of distributed applications avoid the
details of the interface with the network. The transport independence of
RPC isolates the application from the physical and logical elements of the
data communications mechanism and allows the application to use a variety
of transports.

RPC makes the client/server model of computing more powerful and eas-
ier to program. When combined with the ONC RPCGEN protocol compiler
(Chapter 32) clients transparently make remote calls through a local proce-
dure interface.

31.2 How RPC Works

An RPC is analogous to a function call. Like a function call, when an RPC is
made, the calling arguments are passed to the remote procedure and the caller
waits for a response to be returned from the remote procedure. Figure 31.1

447

448 CHAPTER 31. REMOTE PROCEDURE CALLS (RPC)

shows the flow of activity that takes place during an RPC call between two
networked systems. The client makes a procedure call that sends a request
to the server and waits. The thread is blocked from processing until either a
reply is received, or it times out. When the request arrives, the server calls
a dispatch routine that performs the requested service, and sends the reply
to the client. After the RPC call is completed, the client program continues.
RPC specifically supports network applications.

Figure 31.1: Remote Procedure Calling Mechanism

A remote procedure is uniquely identified by the triple: (program num-
ber, version number, procedure number) The program number identifies a

31.3. RPC APPLICATION DEVELOPMENT 449

group of related remote procedures, each of which has a unique procedure
number. A program may consist of one or more versions. Each version con-
sists of a collection of procedures which are available to be called remotely.
Version numbers enable multiple versions of an RPC protocol to be available
simultaneously. Each version contains a a number of procedures that can be
called remotely. Each procedure has a procedure number.

31.3 RPC Application Development

Consider an example:
A client/server lookup in a personal database on a remote machine. As-

suming that we cannot access the database from the local machine (via NFS).
We use UNIX to run a remote shell and execute the command this way.

There are some problems with this method:

• the command may be slow to execute.

• You require an login account on the remote machine.

The RPC alternative is to

• establish an server on the remote machine that can repond to queries.

• Retrieve information by calling a query which will be quicker than
previous approach.

To develop an RPC application the following steps are needed:

• Specify the protocol for client server communication

• Develop the client program

• Develop the server program

The programs will be compiled seperately. The communication protocol
is achieved by generated stubs and these stubs and rpc (and other libraries)
will need to be linked in.

450 CHAPTER 31. REMOTE PROCEDURE CALLS (RPC)

31.3.1 Defining the Protocol

The easiest way to define and generate the protocol is to use a protocol
complier such as rpcgen which we discuss is Chapter 32.

For the protocol you must identify the name of the service procedures,
and data types of parameters and return arguments.

The protocol compiler reads a definitio and automatically generates client
and server stubs.

rpcgen uses its own language (RPC language or RPCL) which looks very
similar to preprocessor directives.

rpcgen exists as a standalone executable compiler that reads special files
denoted by a .x prefix.

So to compile a RPCL file you simply do
rpcgen rpcprog.x

This will generate possibly four files:

• rpcprog clnt.c — the client stub

• rpcprog svc.c — the server stub

• rpcprog xdr.c — If necessary XDR (external data representation) fil-
ters

• rpcprog.h — the header file needed for any XDR filters.

The external data representation (XDR) is an data abstraction needed
for machine independent communication. The client and server need not be
machines of the same type.

31.3.2 Defining Client and Server Application Code

We must now write the the client and application code. They must commu-
nicate via procedures and data types specified in the Protocol.

The service side will have to register the procedures that may be called
by the client and receive and return any data required for processing.

The client application call the remote procedure pass any required data
and will receive the retruned data.

There are several levels of application interfaces that may be used to de-
velop RPC applications. We will briefly disuss these below before exapnading
thhe most common of these in later chapters.

31.3. RPC APPLICATION DEVELOPMENT 451

31.3.3 Compliling and running the application

Let us consider the full compilation model required to run a RPC application.
Makefiles are useful for easing the burden of compiling RPC applications but
it is necessary to understand the complete model before one can assemble a
convenient makefile.

Assume the the client program is called rpcprog.c, the service program
is rpcsvc.c and that the protocol has been defined in rpcprog.x and that
rpcgen has been used to produce the stub and filter files: rpcprog clnt.c,

rpcprog svc.c, rpcprog xdr.c, rpcprog.h.
The client and server program must include (#include "rpcprog.h"

You must then:

• compile the client code:

cc -c rpcprog.c

• compile the client stub:

cc -c rpcprog_clnt.c

• compile the XDR filter:

cc -c rpcprog_xdr.c

• build the client executable:

cc -o rpcprog rpcprog.o rpcprog_clnt.o rpcprog_xdr.c

• compile the service procedures:

cc -c rpcsvc.c

• compile the server stub:

cc -c rpcprog_svc.c

• build the server executable:

cc -o rpcsvc rpcsvc.o rpcprog_svc.o rpcprog_xdr.c

Now simply run the programs rpcprog and rpcsvc on the client and
server respectively. The server procedures must be registered before the
client can call them.

452 CHAPTER 31. REMOTE PROCEDURE CALLS (RPC)

31.4 Overview of Interface Routines

RPC has multiple levels of application interface to its services. These levels
provide different degrees of control balanced with different amounts of inter-
face code to implement. In order of increasing control and complexity. This
section gives a summary of the routines available at each level. Simplified
Interface Routines

The simplified interfaces are used to make remote procedure calls to rou-
tines on other machines, and specify only the type of transport to use. The
routines at this level are used for most applications. Descriptions and code
samples can be found in the section, Simplified Interface @ 3-2.

31.4.1 Simplified Level Routine Function

rpc reg() — Registers a procedure as an RPC program on all transports of
the specified type.

rpc call() — Remote calls the specified procedure on the specified re-
mote host.

rpc broadcast() — Broadcasts a call message across all transports of the
specified type. Standard Interface Routines The standard interfaces are di-
vided into top level, intermediate level, expert level, and bottom level. These
interfaces give a developer much greater control over communication param-
eters such as the transport being used, how long to wait beforeresponding to
errors and retransmitting requests, and so on.

31.4.2 Top Level Routines

At the top level, the interface is still simple, but the program has to create a
client handle before making a call or create a server handle before receiving
calls. If you want the application to run on all transports, use this interface.
Use of these routines and code samples can be found in Top Level Interface

clnt create() — Generic client creation. The program tells clnt create()

where the server is located and the type of transport to use.
clnt create timed() Similar to clnt create() but lets the programmer

specify the maximum time allowed for each type of transport tried during
the creation attempt.

svc create() — Creates server handles for all transports of the specified
type. The program tells svc create() which dispatch function to use.

31.5. INTERMEDIATE LEVEL ROUTINES 453

clnt call() — Client calls a procedure to send a request to the server.

31.5 Intermediate Level Routines

The intermediate level interface of RPC lets you control details. Programs
written at these lower levels are more complicated but run more efficiently.
The intermediate level enables you to specify the transport to use.

clnt tp create() — Creates a client handle for the specified transport.

clnt tp create timed() — Similar to clnt tp create() but lets the
programmer specify the maximum time allowed. svc tp create() Creates
a server handle for the specified transport.

clnt call() — Client calls a procedure to send a request to the server.

31.5.1 Expert Level Routines

The expert level contains a larger set of routines with which to specify
transport-related parameters. Use of these routines

clnt tli create() — Creates a client handle for the specified transport.

svc tli create() — Creates a server handle for the specified transport.

rpcb set() — Calls rpcbind to set a map between an RPC service and
a network address.

rpcb unset() — Deletes a mapping set by rpcb set().

rpcb getaddr() — Calls rpcbind to get the transport addresses of spec-
ified RPC services.

svc reg() — Associates the specified program and version number pair
with the specified dispatch routine.

svc unreg() —- Deletes an association set by svc reg().

clnt call() — Client calls a procedure to send a request to the server.

31.5.2 Bottom Level Routines

The bottom level contains routines used for full control of transport options.

clnt dg create() — Creates an RPC client handle for the specified re-
mote program, using a connectionless transport.

svc dg create() — Creates an RPC server handle, using a connection-
less transport.

454 CHAPTER 31. REMOTE PROCEDURE CALLS (RPC)

clnt vc create() — Creates an RPC client handle for the specified re-
mote program, using a connection-oriented transport.

svc vc create() — Creates an RPC server handle, using a connection-
oriented transport.

clnt call() — Client calls a procedure to send a request to the server.

31.6 The Programmer’s Interface to RPC

This section addresses the C interface to RPC and describes how to write
network applications using RPC. For a complete specification of the routines
in the RPC library, see the rpc and related man pages.

31.6.1 Simplified Interface

The simplified interface is the easiest level to use because it does not require
the use of any other RPC routines. It also limits control of the underly-
ing communications mechanisms. Program development at this level can be
rapid, and is directly supported by the rpcgen compiler. For most appli-
cations, rpcgen and its facilities are sufficient. Some RPC services are not
available as C functions, but they are available as RPC programs. The sim-
plified interface library routines provide direct access to the RPC facilities
for programs that do not require fine levels of control.

Routines such as rusers are in the RPC services library librpcsvc.
rusers.c, below, is a program that displays the number of users on a remote
host. It calls the RPC library routine, rusers.

The program.c program listing:

#include <rpc/rpc.h>

#include <rpcsvc/rusers.h>

#include <stdio.h>

/*

* a program that calls the

* rusers() service

*/

main(int argc,char **argv)

31.6. THE PROGRAMMER’S INTERFACE TO RPC 455

{

int num;

if (argc != 2) {

fprintf(stderr, "usage: %s hostname\n",

argv[0]);

exit(1);

}

if ((num = rnusers(argv[1])) < 0) {

fprintf(stderr, "error: rusers\n");

exit(1);

}

fprintf(stderr, "%d users on %s\n", num, argv[1]);

exit(0);

}

Compile the program with:

cc program.c -lrpcsvc -lnsl

The Client Side
There is just one function on the client side of the simplified interface

rpc call().
It has nine parameters:

int

rpc_call (char *host /* Name of server host */,

u_long prognum /* Server program number */,

u_long versnum /* Server version number */,

xdrproc_t inproc /* XDR filter to encode arg */,

char *in /* Pointer to argument */,

xdr_proc_t outproc /* Filter to decode result */,

char *out /* Address to store result */,

char *nettype /* For transport selection */);

This function calls the procedure specified by prognum, versum, and
procnum on the host. The argument to be passed to the remote procedure is

456 CHAPTER 31. REMOTE PROCEDURE CALLS (RPC)

pointed to by the in parameter, and inproc is the XDR filter to encode this
argument. The out parameter is an address where the result from the remote
procedure is to be placed. outproc is an XDR filter which will decode the
result and place it at this address.

The client blocks on rpc call() until it receives a reply from the server.
If the server accepts, it returns RPC SUCCESS with the value of zero. It will
return a non-zero value if the call was unsuccessful. This value can be cast
to the type clnt stat, an enumerated type defined in the RPC include files
(<rpc/rpc.h>) and interpreted by the clnt sperrno() function. This func-
tion returns a pointer to a standard RPC error message corresponding to the
error code. In the example, all ”visible” transports listed in /etc/netconfig

are tried. Adjusting the number of retries requires use of the lower levels of
the RPC library. Multiple arguments and results are handled by collecting
them in structures.

The example changed to use the simplified interface, looks like

#include <stdio.h>

#include <utmp.h>

#include <rpc/rpc.h>

#include <rpcsvc/rusers.h>

/* a program that calls the RUSERSPROG

* RPC program

*/

main(int argc, char **argv)

{

unsigned long nusers;

enum clnt_stat cs;

if (argc != 2) {

fprintf(stderr, "usage: rusers hostname\n");

exit(1);

}

if(cs = rpc_call(argv[1], RUSERSPROG,

RUSERSVERS, RUSERSPROC_NUM, xdr_void,

(char *)0, xdr_u_long, (char *)&nusers,

31.6. THE PROGRAMMER’S INTERFACE TO RPC 457

"visible") != RPC_SUCCESS) {

clnt_perrno(cs);

exit(1);

}

fprintf(stderr, "%d users on %s\n", nusers, argv[1]);

exit(0);

}

Since data types may be represented differently on different machines,
rpc call() needs both the type of, and a pointer to, the RPC argument
(similarly for the result). For RUSERSPROC NUM, the return value is an un-
signed long, so the first return parameter of rpc call() is xdr u long (which
is for an unsigned long) and the second is &nusers (which points to unsigned
long storage). Because RUSERSPROC NUM has no argument, the XDR encoding
function of rpc call() is xdr void() and its argument is NULL.

The Server Side
The server program using the simplified interface is very straightforward.

It simply calls rpc reg() to register the procedure to be called, and then it
calls svc run(), the RPC library’s remote procedure dispatcher, to wait for
requests to come in.

rpc reg() has the following prototype:

rpc_reg(u_long prognum /* Server program number */,

u_long versnum /* Server version number */,

u_long procnum /* server procedure number */,

char *procname /* Name of remote function */,

xdrproc_t inproc /* Filter to encode arg */,

xdrproc_t outproc /* Filter to decode result */,

char *nettype /* For transport selection */);

svc run() invokes service procedures in response to RPC call messages.
The dispatcher in rpc reg() takes care of decoding remote procedure argu-
ments and encoding results, using the XDR filters specified when the remote
procedure was registered. Some notes about the server program:

• Most RPC applications follow the naming convention of appending a
1 to the function name. The sequence n is added to the procedure

names to indicate the version number n of the service.

458 CHAPTER 31. REMOTE PROCEDURE CALLS (RPC)

• The argument and result are passed as addresses. This is true for all
functions that are called remotely. If you pass NULL as a result of a
function, then no reply is sent to the client. It is assumed that there is
no reply to send.

• The result must exist in static data space because its value is accessed
after the actual procedure has exited. The RPC library function that
builds the RPC reply message accesses the result and sends the value
back to the client.

• Only a single argument is allowed. If there are multiple elements of
data, they should be wrapped inside a structure which can then be
passed as a single entity.

• The procedure is registered for each transport of the specified type. If
the type parameter is (char *)NULL, the procedure is registered for all
transports specified in NETPATH.

You can sometimes implement faster or more compact code than can
rpcgen. rpcgen handles the generic code-generation cases. The following
program is an example of a hand-coded registration routine. It registers a
single procedure and enters svc run() to service requests.

#include <stdio.h>

#include <rpc/rpc.h>

#include <rpcsvc/rusers.h>

void *rusers();

main()

{

if(rpc_reg(RUSERSPROG, RUSERSVERS,

RUSERSPROC_NUM, rusers,

xdr_void, xdr_u_long,

"visible") == -1) {

fprintf(stderr, "Couldn’t Register\n");

exit(1);

}

svc_run(); /* Never returns */

31.6. THE PROGRAMMER’S INTERFACE TO RPC 459

fprintf(stderr, "Error: svc_run returned!\n");

exit(1);

}

rpc reg() can be called as many times as is needed to register different
programs, versions, and procedures.

31.6.2 Passing Arbitrary Data Types

Data types passed to and received from remote procedures can be any of
a set of predefined types, or can be programmer-defined types. RPC han-
dles arbitrary data structures, regardless of different machines’ byte orders or
structure layout conventions, by always converting them to a standard trans-
fer format called external data representation (XDR) before sending them
over the transport. The conversion from a machine representation to XDR is
called serializing, and the reverse process is called deserializing. The transla-
tor arguments of rpc call() and rpc reg() can specify an XDR primitive
procedure, like xdr u long(), or a programmer-supplied routine that pro-
cesses a complete argument structure. Argument processing routines must
take only two arguments: a pointer to the result and a pointer to the XDR
handle.

The following XDR Primitive Routines are available:

xdr_int() xdr_netobj() xdr_u_long() xdr_enum()

xdr_long() xdr_float() xdr_u_int() xdr_bool()

xdr_short() xdr_double() xdr_u_short() xdr_wrapstring()

xdr_char() xdr_quadruple() xdr_u_char() xdr_void()

The nonprimitive xdr string(), which takes more than two parameters,
is called from xdr wrapstring().

For an example of a programmer-supplied routine, the structure:

struct simple {

int a;

short b;

} simple;

contains the calling arguments of a procedure. The XDR routine xdr simple()

translates the argument structure as shown below:

460 CHAPTER 31. REMOTE PROCEDURE CALLS (RPC)

#include <rpc/rpc.h>

#include "simple.h"

bool_t xdr_simple(XDR *xdrsp, struct simple *simplep)

{

if (!xdr_int(xdrsp, &simplep->a))

return (FALSE);

if (!xdr_short(xdrsp, &simplep->b))

return (FALSE);

return (TRUE);

}

An equivalent routine can be generated automatically by rpcgen (See
Chapter 32).

An XDR routine returns nonzero (a C TRUE) if it completes successfully,
and zero otherwise.

For more complex data structures use the XDR prefabricated routines:

xdr_array() xdr_bytes() xdr_reference()

xdr_vector() xdr_union() xdr_pointer()

xdr_string() xdr_opaque()

For example, to send a variable-sized array of integers, it is packaged in
a structure containing the array and its length:

struct varintarr {

int *data;

int arrlnth;

} arr;

Translate the array with xdr array(), as shown below:

bool_t xdr_varintarr(XDR *xdrsp, struct varintarr *arrp)

{

return(xdr_array(xdrsp, (caddr_t)&arrp->data,

(u_int *)&arrp->arrlnth, MAXLEN, sizeof(int), xdr_int));

}

31.6. THE PROGRAMMER’S INTERFACE TO RPC 461

\end{vebatim}

The arguments of {\tt xdr_array()} are the XDR handle, a pointer to the array,

a pointer to

the size of the array, the maximum array size, the size of each array element, and a

pointer to the XDR routine to translate each array element.

If the size of the array is

known in advance, use {\tt xdr_vector()} instread as is more efficient:

\begin{verbatim}

int intarr[SIZE];

bool_t xdr_intarr(XDR *xdrsp, int intarr[])

{

return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int), xdr_int));

}

XDR converts quantities to 4-byte multiples when serializing. For arrays
of characters, each character occupies 32 bits. xdr bytes() packs characters.
It has four parameters similar to the first four parameters of xdr array().

Null-terminated strings are translated by xdr string(). It is like xdr bytes()

with no length parameter. On serializing it gets the string length from
strlen(), and on deserializing it creates a null-terminated string.

xdr reference() calls the built-in functions �xdr string() and xdr reference(),
which translates pointers to pass a string, and struct simple from the previous
examples. An example use of xdr reference() is as follows:

struct finalexample {

char *string;

struct simple *simplep;

} finalexample;

bool_t xdr_finalexample(XDR *xdrsp, struct finalexample *finalp)

{ if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))

return (FALSE);

462 CHAPTER 31. REMOTE PROCEDURE CALLS (RPC)

if (!xdr_reference(xdrsp, &finalp->simplep, sizeof(struct simple), xdr_simple))

return (FALSE);

return (TRUE);

}

Note thatxdr simple() could have been called here instead of xdr reference()

.

31.6.3 Developing High Level RPC Applications

Let us now introduce some further functions and see how we develop an
application using high level RPC routines. We will do this by studying an
example.

We will develop a remote directory reading utility.
Let us first consider how we would write a local directory reader. We

have seem how to do this already in Chapter 18.
Consider the program to consist of two files:

• lls.c — the main program which calls a routine in a local module
read dir.c

/*

* ls.c: local directory listing main - before RPC

*/

#include <stdio.h>

#include <strings.h>

#include "rls.h"

main (int argc, char **argv)

{

char dir[DIR_SIZE];

/* call the local procedure */

strcpy(dir, argv[1]); /* char dir[DIR_SIZE] is coming and going... */

read_dir(dir);

31.6. THE PROGRAMMER’S INTERFACE TO RPC 463

/* spew-out the results and bail out of here! */

printf("%s\n", dir);

exit(0);

}

• read dir.c — the file containing the local routine read dir().

/* note - RPC compliant procedure calls take one input and

return one output. Everything is passed by pointer. Return

values should point to static data, as it might have to

survive some while. */

#include <stdio.h>

#include <sys/types.h>

#include <sys/dir.h> /* use <xpg2include/sys/dirent.h> (SunOS4.1) or

<sys/dirent.h> for X/Open Portability Guide, issue 2 conformance */

#include "rls.h"

read_dir(char *dir)

/* char dir[DIR_SIZE] */

{

DIR * dirp;

struct direct *d;

printf("beginning ");

/* open directory */

dirp = opendir(dir);

if (dirp == NULL)

return(NULL);

/* stuff filenames into dir buffer */

dir[0] = NULL;

while (d = readdir(dirp))

sprintf(dir, "%s%s\n", dir, d->d_name);

/* return the result */

printf("returning ");

464 CHAPTER 31. REMOTE PROCEDURE CALLS (RPC)

closedir(dirp);

return((int)dir); /* this is the only new line from Example 4-3 */

}

• the header file rls.h contains only the following (for now at least)

#define DIR_SIZE 8192

Clearly we need to share the size between the files. Later when we
develop RPC versions more information will need to be added to this
file.

This local program would be compiled as follows:

cc lls.c read_dir.c -o lls

Now we want to modify this program to work over a network: Allowing
us to inspect directories of a remote server accross a network.

The following steps will be required:

• We will have to convert the read dir.c, to run on the server.

– We will have to register the server and the routine read dir() on
the server/.

• The client lls.c will have to call the routine as a remote procedure.

• We will have to define the protocol for communication between the
client and the server programs.

Defining the protocol

We can can use simple NULL-terminated strings for passing and receivong
the directory name and directory contents. Furthermore, we can embed the
passing of these parameters directly in the client and server code.

We therefore need to specify the program, procedure and version numbers
for client and servers. This can be done automatically using rpcgen or relying

31.6. THE PROGRAMMER’S INTERFACE TO RPC 465

on prdefined macros in the simlified interface. Here we will specify them
manually.

The server and client must agree ahead of time what logical adresses
thney will use (The physical addresses do not matter they are hidden from
the application developer)

Program numbers are defined in a standard way:

• 0x00000000 – 0x1FFFFFFF : Defined by Sun

• 0x20000000 – 0x3FFFFFFF : User Defined

• 0x40000000 – 0x5FFFFFFF : Transient

• 0x60000000 – 0xFFFFFFFF : Reserved

We will simply choose a user deifnined value for our program number.
The version and procedure numbers are set according to standard practice.

We still have the DIR SIZE definition required from the local version as the
size of the directory buffer is rewquired by bith client and server programs.

Our new rls.h file contains:

#define DIR_SIZE 8192

#define DIRPROG ((u_long) 0x20000001) /* server program (suite) number */

#define DIRVERS ((u_long) 1) /* program version number */

#define READDIR ((u_long) 1) /* procedure number for look-up */

31.6.4 Sharing the data

We have mentioned previously that we can pass the data a simple strings.
We need to define an XDR filter routine xdr dir() that shares the data.
Recall that only one encoding and decoding argument can be handled. This
is easy and defined via the standard xdr string() routine.

The XDR file, rls xrd.c, is as follows:

#include <rpc/rpc.h>

#include "rls.h"

bool_t xdr_dir(XDR *xdrs, char *objp)

{ return (xdr_string(xdrs, &objp, DIR_SIZE)); }

466 CHAPTER 31. REMOTE PROCEDURE CALLS (RPC)

The Server Side

We can use the original read dir.c file. All we need to do is register the
procedure and start the server.

The procedure is registered with registerrpc() function. This is proto-
types by:

registerrpc(u_long prognum /* Server program number */,

u_long versnum /* Server version number */,

u_long procnum /* server procedure number */,

char *procname /* Name of remote function */,

xdrproc_t inproc /* Filter to encode arg */,

xdrproc_t outproc /* Filter to decode result */);

The parameters a similarly defined as in the rpc reg simplified interface
function. We have already discussed the setting of the parametere with the
protocol rls.h header files and the rls xrd.c XDR filter file.

The svc run() routine has also been discussed previously.
The full rls svc.c code is as follows:

#include <rpc/rpc.h>

#include "rls.h"

main()

{

extern bool_t xdr_dir();

extern char * read_dir();

registerrpc(DIRPROG, DIRVERS, READDIR,

read_dir, xdr_dir, xdr_dir);

svc_run();

}

The Client Side

At the client side we simply need to call the remote procedure. The function
callrpc() does this. It is prototyped as follows:

31.6. THE PROGRAMMER’S INTERFACE TO RPC 467

callrpc(char *host /* Name of server host */,

u_long prognum /* Server program number */,

u_long versnum /* Server version number */,

char *in /* Pointer to argument */,

xdrproc_t inproc /* XDR filter to encode arg */,

char *out /* Address to store result */

xdr_proc_t outproc /* Filter to decode result */);

We call a local function read dir() which uses callrpc() to call the
remote procedure that has been registered READDIR at the server.

The full rls.c program is as follows:

/*

* rls.c: remote directory listing client

*/

#include <stdio.h>

#include <strings.h>

#include <rpc/rpc.h>

#include "rls.h"

main (argc, argv)

int argc; char *argv[];

{

char dir[DIR_SIZE];

/* call the remote procedure if registered */

strcpy(dir, argv[2]);

read_dir(argv[1], dir); /* read_dir(host, directory) */

/* spew-out the results and bail out of here! */

printf("%s\n", dir);

exit(0);

}

read_dir(host, dir)

char *dir, *host;

{

468 CHAPTER 31. REMOTE PROCEDURE CALLS (RPC)

extern bool_t xdr_dir();

enum clnt_stat clnt_stat;

clnt_stat = callrpc (host, DIRPROG, DIRVERS, READDIR,

xdr_dir, dir, xdr_dir, dir);

if (clnt_stat != 0) clnt_perrno (clnt_stat);

}

31.7 Exercise

Exercise 31.1 Compile and run the remote directory example rls.c etc.
Run both the client and server locally and if possible over a network.

Chapter 32

Protocol Compiling and Lower
Level RPC Programming

This chapter introduces the rpcgen tool and provides a tutorial with code
examples and usage of the available compile-time flags. We also introduce
some further RPC programming routines.

32.1 What is rpcgen

The rpcgen tool generates remote program interface modules. It compiles
source code written in the RPC Language. RPC Language is similar in
syntax and structure to C. rpcgen produces one or more C language source
modules, which are then compiled by a C compiler.

The default output of rpcgen is:

• A header file of definitions common to the server and the client

• A set of XDR routines that translate each data type defined in the
header file

• A stub program for the server

• A stub program for the client

rpcgen can optionally generate (although we do not consider these issues
here — see man pages or receommended reading):

469

470CHAPTER 32. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMMING

• Various transports

• A time-out for servers

• Server stubs that are MT safe

• Server stubs that are not main programs

• C-style arguments passing ANSI C-compliant code

• An RPC dispatch table that checks authorizations and invokes service
routines

rpcgen significantly reduces the development time that would otherwise
be spent developing low-level routines. Handwritten routines link easily with
the rpcgen output.

32.2 An rpcgen Tutorial

rpcgen provides programmers a simple and direct way to write distributed
applications. Server procedures may be written in any language that ob-
serves procedure-calling conventions. They are linked with the server stub
produced by rpcgen to form an executable server program. Client proce-
dures are written and linked in the same way. This section presents some
basic rpcgen programming examples. Refer also to the man rpcgen online
manual page.

32.2.1 Converting Local Procedures to Remote Proce-
dures

Assume that an application runs on a single computer and you want to
convert it to run in a ”distributed” manner on a network. This example
shows the stepwise conversion of this program that writes a message to the
system console.

Single Process Version of printmesg.c:

/* printmsg.c: print a message on the console */

#include <stdio.h>

main(int argc, char *argv[])

32.2. AN RPCGEN TUTORIAL 471

{

char *message;

if (argc != 2) {

fprintf(stderr, "usage: %s <message>\n",argv[0]);

exit(1);

}

message = argv[1];

if (!printmessage(message)) {

fprintf(stderr,"%s: couldnt print your message\n",argv[0]);

exit(1);

}

printf("Message Delivered!\n");

exit(0);

}

/* Print a message to the console.

* Return a boolean indicating whether

* the message was actually printed. */

printmessage(char *msg)

{

FILE *f;

f = fopen("/dev/console", "w");

if (f == (FILE *)NULL) {

return (0);

}

fprintf(f, "%s\n", msg);

fclose(f);

return(1);

}

For local use on a single machine, this program could be compiled and
executed as follows:

$ cc printmsg.c -o printmsg

472CHAPTER 32. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMMING

$ printmsg "Hello, there."

Message delivered!

$

If the printmessage() function is turned into a remote procedure, it can
be called from anywhere in the network. rpcgen makes it easy to do this:

First, determine the data types of all procedure-calling arguments and the
result argument. The calling argument of printmessage() is a string, and
the result is an integer. We can write a protocol specification in RPC lan-
guage that describes the remote version of printmessage. The RPC language
source code for such a specification is:

/* msg.x: Remote msg printing protocol */

program MESSAGEPROG {

version PRINTMESSAGEVERS {

int PRINTMESSAGE(string) = 1;

} = 1;

} = 0x20000001;

Remote procedures are always declared as part of remote programs. The
code above declares an entire remote program that contains the single pro-
cedure PRINTMESSAGE.

In this example,

• PRINTMESSAGE procedure is declared to be:

– the procedure 1,

– in version 1 of the remote program

• MESSAGEPROG, with the program number 0x20000001.

Version numbers are incremented when functionality is changed in the
remote program. Existing procedures can be changed or new ones can be
added. More than one version of a remote program can be defined and a
version can have more than one procedure defined.

Note: that the program and procedure names are declared with all cap-
ital letters. This is not required, but is a good convention to follow. Note
also that the argument type is string and not char * as it would be in C.
This is because a char * in C is ambiguous. char usually means an array

32.2. AN RPCGEN TUTORIAL 473

of characters, but it could also represent a pointer to a single character. In
RPC language, a null-terminated array of char is called a string.

There are just two more programs to write:

• The remote procedure itself

Th RPC Version of printmsg.c:

/*

* msg_proc.c: implementation of the

* remote procedure "printmessage"

*/

#include <stdio.h>

#include "msg.h" /* msg.h generated by rpcgen */

int * printmessage_1(char **msg, struct svc_req *req)

{

static int result; /* must be static! */

FILE *f;

f = fopen("/dev/console", "w");

if (f == (FILE *)NULL) {

result = 0;

return (&result);

}

fprintf(f, "%s\n", *msg);

fclose(f);

result = 1;

return (&result);

}

Note that the declaration of the remote procedure printmessage 1

differs from that of the local procedure printmessage in four ways:

– It takes a pointer to the character array instead of the pointer
itself. This is true of all remote procedures when the ’-’ N op-
tion is not used: They always take pointers to their arguments

474CHAPTER 32. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMMING

rather than the arguments themselves. Without the ’-’ N op-
tion, remote procedures are always called with a single argument.
If more than one argument is required the arguments must be
passed in a struct.

– It is called with two arguments. The second argument contains in-
formation on the context of an invocation: the program, version,
and procedure numbers, raw and canonical credentials, and an
SVCXPRT structure pointer (the SVCXPRT structure contains trans-
port information). This information is made available in case the
invoked procedure requires it to perform the request.

– It returns a pointer to an integer instead of the integer itself. This
is also true of remote procedures when the ’-’ N option is not
used: They return pointers to the result. The result should be
declared static unless the ’-’ M (multithread) or ’-’ A (Auto
mode) options are used. Ordinarily, if the result is declared local
to the remote procedure, references to it by the server stub are
invalid after the remote procedure returns. In the case of ’-’ M

and ’-’ A options, a pointer to the result is passed as a third
argument to the procedure, so the result is not declared in the
procedure.

– An 1 is appended to its name. In general, all remote procedures
calls generated by rpcgen are named as follows: the procedure
name in the program definition (here PRINTMESSAGE) is converted
to all lowercase letters, an underbar () is appended to it, and the
version number (here 1) is appended. This naming scheme allows
multiple versions of the same procedure.

• The main client program that calls it:

/*

* rprintmsg.c: remote version

* of "printmsg.c"

*/

#include <stdio.h>

#include "msg.h" /* msg.h generated by rpcgen */

32.2. AN RPCGEN TUTORIAL 475

main(int argc, char **argv)

{

CLIENT *clnt;

int *result;

char *server;

char *message;

if (argc != 3) {

fprintf(stderr, "usage: %s host

message\n", argv[0]);

exit(1);

}

server = argv[1];

message = argv[2];

/*

* Create client "handle" used for

* calling MESSAGEPROG on the server

* designated on the command line.

*/

clnt = clnt_create(server, MESSAGEPROG, PRINTMESSAGEVERS, "visible");

if (clnt == (CLIENT *)NULL) {

/*

* Couldn’t establish connection

* with server.

* Print error message and die.

*/

clnt_pcreateerror(server);

exit(1);

}

/*

476CHAPTER 32. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMMING

* Call the remote procedure

* "printmessage" on the server

*/

result = printmessage_1(&message, clnt);

if (result == (int *)NULL) {

/*

* An error occurred while calling

* the server.

* Print error message and die.

*/

clnt_perror(clnt, server);

exit(1);

}

/* Okay, we successfully called

* the remote procedure.

*/

if (*result == 0) {

/*

* Server was unable to print

* our message.

* Print error message and die.

*/

fprintf(stderr, "%s: could not print your message\n",argv[0]);

exit(1);

}

/* The message got printed on the

* server’s console

*/

printf("Message delivered to %s\n", server);

clnt_destroy(clnt);

32.2. AN RPCGEN TUTORIAL 477

exit(0);

}

Note the following about Client Program to Call printmsg.c:

– First, a client handle is created by the RPC library routine clnt create().
This client handle is passed to the stub routine that calls the re-
mote procedure. If no more calls are to be made using the client
handle, destroy it with a call to clnt destroy() to conserve sys-
tem resources.

– The last parameter to clnt create() is visible, which specifies
that any transport noted as visible in /etc/netconfig can be
used.

– The remote procedure printmessage 1 is called exactly the same
way as it is declared in msg proc.c, except for the inserted client
handle as the second argument. It also returns a pointer to the
result instead of the result.

– The remote procedure call can fail in two ways. The RPC mech-
anism can fail or there can be an error in the execution of the
remote procedure. In the former case, the remote procedure

printmessage 1 returns a NULL. In the latter case, the error re-
porting is application dependent. Here, the error is returned
through *result.

To compile the remote rprintmsg example:

• compile the protocol defined in msg.x: rpcgen msg.x.

This generates the header files (msg.h), client stub (msg clnt.c), and
server stub (msg svc.c).

• compile the client executable:

cc rprintmsg.c msg_clnt.c -o rprintmsg -lnsl

• compile the server executable:

cc msg_proc.c msg_svc.c -o msg_server -lnsl

478CHAPTER 32. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMMING

The C object files must be linked with the library libnsl, which contains
all of the networking functions, including those for RPC and XDR.

In this example, no XDR routines were generated because the application
uses only the basic types that are included in libnsl . Let us consider further
what rpcgen did with the input file msg.x:

• It created a header file called msg.h that contained #define state-
ments for MESSAGEPROG, MESSAGEVERS, and PRINTMESSAGE for use in
the other modules. This filemust be included by both the client and
server modules.

• It created the client stub routines in the msg clnt.c file. Here there
is only one, the printmessage 1 routine, that was called from the
rprintmsg client program. If the name of an rpcgen input file is
prog.x, the client stub’s output file is called prog clnt.c.

• It created the server program in msg svc.c that calls printmessage 1

from msg proc.c. The rule for naming the server output file is similar
to that of the client: for an input file called prog.x, the output server
file is named prog svc.c.

Once created, the server program is installed on a remote machine and
run. (If the machines are homogeneous, the server binary can just be copied.
If they are not, the server source files must be copied to and compiled on the
remote machine.)

32.3 Passing Complex Data Structures

rpcgen can also be used to generate XDR routines — the routines that
convert local data structures into XDR format and vice versa.

let us consider dir.x a remote directory listing service, built using rpcgen

both to generate stub routines and to generate the XDR routines.
The RPC Protocol Description File: dir.x is as follows:

/*

* dir.x: Remote directory listing protocol

*

* This example demonstrates the functions of rpcgen.

32.3. PASSING COMPLEX DATA STRUCTURES 479

*/

const MAXNAMELEN = 255; /* max length of directory entry */

typedef string nametype<MAXNAMELEN>; /* director entry */

typedef struct namenode *namelist; /* link in the listing */

/* A node in the directory listing */

struct namenode {

nametype name; /* name of directory entry */

namelist next; /* next entry */

};

/*

* The result of a READDIR operation

*

* a truly portable application would use

* an agreed upon list of error codes

* rather than (as this sample program

* does) rely upon passing UNIX errno’s

* back.

*

* In this example: The union is used

* here to discriminate between successful

* and unsuccessful remote calls.

*/

union readdir_res switch (int errno) {

case 0:

namelist list; /* no error: return directory listing */

default:

void; /* error occurred: nothing else to return */

};

/* The directory program definition */

480CHAPTER 32. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMMING

program DIRPROG {

version DIRVERS {

readdir_res

READDIR(nametype) = 1;

} = 1;

} = 0x20000076;

You can redefine types (like readdir res in the example above) using
the struct, union, and enum RPC language keywords. These keywords are
not used in later declarations of variables of those types. For example, if you
define a union, my un, you declare using only my un, and not union my un.
rpcgen compiles RPC unions into C structures. Do not declare C unions
using the union keyword.

Running rpcgen on dir.x generates four output files:

• the header file, dir.h,

• the client stub, dir clnt.c,

• the server skeleton, dir svc.c ,and

• the XDR routines in the file dir xdr.c.

This last file contains the XDR routines to convert declared data types
from the host platform representation into XDR format, and vice versa.
For each RPCL data type used in the .x file, rpcgen assumes that libnsl

contains a routine whose name is the name of the data type, prepended by
the XDR routine header xdr (for example, xdr int). If a data type is
defined in the .x file, rpcgen generates the required xdr routine. If there
is no data type definition in the .x source file (for example, msg.x, above),
then no xdr.c file is generated. You can write a .x source file that uses a
data type not supported by libnsl, and deliberately omit defining the type
(in the .x file). In doing so, you must provide the xdr routine. This is a
way to provide your own customized xdr routines.

The server-side of the READDIR procedure, dir proc.c is shown below:

/*

32.3. PASSING COMPLEX DATA STRUCTURES 481

* dir_proc.c: remote readdir

* implementation

*/

#include <dirent.h>

#include "dir.h" /* Created by rpcgen */

extern int errno;

extern char *malloc();

extern char *strdup();

readdir_res *

readdir_1(nametype *dirname, struct svc_req *req)

{

DIR *dirp;

struct dirent *d;

namelist nl;

namelist *nlp;

static readdir_res res; /* must be static! */

/* Open directory */

dirp = opendir(*dirname);

if (dirp == (DIR *)NULL) {

res.errno = errno;

return (&res);

}

/* Free previous result */

xdr_free(xdr_readdir_res, &res);

/*

* Collect directory entries.

* Memory allocated here is free by

* xdr_free the next time readdir_1

482CHAPTER 32. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMMING

* is called

*/

nlp = &res.readdir_res_u.list;

while (d = readdir(dirp)) {

nl = *nlp = (namenode *)

malloc(sizeof(namenode));

if (nl == (namenode *) NULL) {

res.errno = EAGAIN;

closedir(dirp);

return(&res);

}

nl->name = strdup(d->d_name);

nlp = &nl->next;

}

*nlp = (namelist)NULL;

/* Return the result */

res.errno = 0;

closedir(dirp);

return (&res);

}

The Client-side Implementation of implementation of the READDIR pro-
cedure, rls.c is given below:

/*

* rls.c: Remote directory listing client

*/

#include <stdio.h>

#include "dir.h" /* generated by rpcgen */

extern int errno;

main(int argc, char *argv[])

32.3. PASSING COMPLEX DATA STRUCTURES 483

{

CLIENT *clnt;

char *server;

char *dir;

readdir_res *result;

namelist nl;

if (argc != 3) {

fprintf(stderr, "usage: %s host

directory\n",argv[0]);

exit(1);

}

server = argv[1];

dir = argv[2];

/*

* Create client "handle" used for

* calling MESSAGEPROG on the server

* designated on the command line.

*/

cl = clnt_create(server, DIRPROG, DIRVERS, "tcp");

if (clnt == (CLIENT *)NULL) {

clnt_pcreateerror(server);

exit(1);

}

result = readdir_1(&dir, clnt);

if (result == (readdir_res *)NULL) {

clnt_perror(clnt, server);

exit(1);

}

484CHAPTER 32. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMMING

/* Okay, we successfully called

* the remote procedure.

*/

if (result->errno != 0) {

/* Remote system error. Print

* error message and die.

*/

errno = result->errno;

perror(dir);

exit(1);

}

/* Successfully got a directory listing.

* Print it.

*/

for (nl = result->readdir_res_u.list;

nl != NULL;

nl = nl->next) {

printf("%s\n", nl->name);

}

xdr_free(xdr_readdir_res, result);

clnt_destroy(cl);

exit(0);

}

As in other examples, execution is on systems named local and remote.
The files are compiled and run as follows:

remote$ rpcgen dir.x

remote$ cc -c dir_xdr.c

remote$ cc rls.c dir_clnt.c dir_xdr.o -o rls -lnsl

remote$ cc dir_svc.c dir_proc.c dir_xdr.o -o dir_svc -lnsl

remote$ dir_svc

When you install rls on system local, you can list the contents of /usr/share/lib
on system remote as follows:

32.4. PREPROCESSING DIRECTIVES 485

local$ rls remote /usr/share/lib

ascii

eqnchar

greek

kbd

marg8

tabclr

tabs

tabs4

local$

rpcgen generated client code does not release the memory allocated for
the results of the RPC call. Call xdr free() to release the memory when
you are finished with it. It is similar to calling the free() routine, except
that you pass the XDR routine for the result. In this example, after printing
the list, xdr free(xdr readdir res, result); was called.

Note - Use xdr free() to release memory allocated by malloc(). Failure
to use xdr free to() release memory results in memory leaks.

32.4 Preprocessing Directives

rpcgen supports C and other preprocessing features. C preprocessing is
performed on rpcgen input files before they are compiled. All standard C
preprocessing directives are allowed in the .x source files. Depending on
the type of output file being generated, five symbols are defined by rpcgen.
rpcgen provides an additional preprocessing feature: any line that begins
with a percent sign (%) is passed directly to the output file, with no action
on the line’s content. Caution is required because rpcgen does not always
place the lines where you intend. Check the output source file and, if needed,
edit it.

The following symbols may be used to process file specific output:

RPC HDR — Header file output

RPC XDR — XDR routine output

RPC SVC — Server stub output

RPC CLNT — Client stub output

486CHAPTER 32. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMMING

RPC TB — Index table output

The following example illustrates tthe use of rpcgens pre-processing fea-
tures.

/*

* time.x: Remote time protocol

*/

program TIMEPROG {

version TIMEVERS {

unsigned int TIMEGET() = 1;

} = 1;

} = 0x20000044;

#ifdef RPC_SVC

%int *

%timeget_1()

%{

% static int thetime;

%

% thetime = time(0);

% return (&thetime);

%}

#endif

32.4.1 cpp Directives

rpcgen supports C preprocessing features. rpcgen defaults to use /usr/ccs/lib/cpp
as the C preprocessor. If that fails, rpcgen tries to use /lib/cpp. You may
specify a library containing a different cpp to rpcgen with the ’-’ Y flag.

For example, if /usr/local/bin/cpp exists, you can specify it to rpcgen as
follows:

rpcgen -Y /usr/local/bin test.x

32.4. PREPROCESSING DIRECTIVES 487

32.4.2 Compile-Time Flags

This section describes the rpcgen options available at compile time. The
following table summarizes the options which are discussed in this section.

Option Flag Comments
C-style ’-’ N Also called Newstyle mode
ANSI C ’-’ C Often used with the -N option
MT-Safe code ’-’ M For use in multithreaded environments
MT Auto mode ’-’ A -A also turns on -M option
TS-RPC library ’ -’ b TI-RPC library is default
xdr inline count ’-’ i Uses 5 packed elements as default,

but other number may be specified

32.4.3 Client and Server Templates

rpcgen generates sample code for the client and server sides. Use these
options to generate the desired templates.

Flag Function
’-’ a Generate all template files
’-’ Sc Generate client-side template
’-’ Ss Generate server-side template
’-’ Sm Generate makefile template

The files can be used as guides or by filling in the missing parts. These
files are in addition to the stubs generated.

32.4.4 Example rpcgen compile options/templates

A C-style mode server template is generated from the add.x source by the
command:

rpcgen -N -Ss -o add_server_template.c add.x

The result is stored in the file add_server_template.c.

A C-style mode, client template for the same add.x source is generated
with the command line:

rpcgen -N -Sc -o add_client_template.c add.x

488CHAPTER 32. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMMING

The result is stored in the file add_client_template.c.
A make file template for the same add.x source is generated with the

command line:

rpcgen -N -Sm -o mkfile_template add.x

The result is stored in the file mkfile template. It can be used to compile
the client and the server. If the ’-’ a flag is used as follows:

rpcgen -N -a add.x

rpcgen generates all three template files. The client template goes into
add client.c, the server template to add server.c, and the makefile tem-
plate to �makefile.a. If any of these files already exists, rpcgen displays an
error message and exits.

Note - When you generate template files, give them new names to avoid
the files being overwritten the next time rpcgen is executed.

32.5 Recommended Reading

The book Power Programming with RPC by John Bloomer, O’Reilly and
Associates, 1992, is the most comprehensive on the topic and is essential
reading for further RPC programming.

32.6 Exercises

Exercise 32.1 Use rpcgen the generate and compile the rprintmsg listing
example given in this chapter.

Exercise 32.2 Use rpcgen the generate and compile the dir listing example
given in this chapter.

Exercise 32.3 Develop a Remote Procedure Call suite of programs that en-
ables a user to search for specific files or filtererd files in a remote directory.
That is to say you can search for a named file e.g. file.c or all files named
*.c or even *.x.

Exercise 32.4 Develop a Remote Procedure Call suite of programs that en-
ables a user to grep files remotely. You may use code developed previously
or unix system calls to implement grep.

32.6. EXERCISES 489

Exercise 32.5 Develop a Remote Procedure Call suite of programs that en-
ables a user to list the contents of a named remote files.

490CHAPTER 32. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMMING

Chapter 33

Writing Larger Programs

This Chapter deals with theoretical and practical aspects that need to be
considered when writing larger programs.

When writing large programs we should divide programs up into modules.
These would be separate source files. main() would be in one file, main.c
say, the others will contain functions.

We can create our own library of functions by writing a suite of sub-
routines in one (or more) modules. In fact modules can be shared amongst
many programs by simply including the modules at compilation as we will
see shortly..

There are many advantages to this approach:

• the modules will naturally divide into common groups of functions.

• we can compile each module separately and link in compiled modules
(more on this later).

• UNIX utilities such as make help us maintain large systems (see later).

33.1 Header files

If we adopt a modular approach then we will naturally want to keep variable
definitions, function prototypes etc. with each module. However what if
several modules need to share such definitions?

491

492 CHAPTER 33. WRITING LARGER PROGRAMS

It is best to centralise the definitions in one file and share this file amongst
the modules. Such a file is usually called a header file.

Convention states that these files have a .h suffix.
We have met standard library header files already e.g:

#include <stdio.h>

We can define our own header files and include then our programs via:

#include "my head.h’’

NOTE: Header files usually ONLY contain definitions of data types,
function prototypes and C preprocessor commands.

Consider the following simple example of a large program (Fig. 33.1) .
The full listings main.c, WriteMyString.c and header.h as as follows:
main.c:

/*

* main.c

*/

#include "header.h"

#include <stdio.h>

char *AnotherString = "Hello Everyone";

main()

{

printf("Running...\n");

/*

* Call WriteMyString() - defined in another file

*/

WriteMyString(MY_STRING);

printf("Finished.\n");

}

WriteMyString.c:

33.1. HEADER FILES 493

Figure 33.1: Modular structure of a C program

494 CHAPTER 33. WRITING LARGER PROGRAMS

/*

* WriteMyString.c

*/

extern char *AnotherString;

void WriteMyString(ThisString)

char *ThisString;

{

printf("%s\n", ThisString);

printf("Global Variable = %s\n", AnotherString);

}

header.h:

/*

* header.h

*/

#define MY_STRING "Hello World"

void WriteMyString();

We would usually compile each module separately (more later).

Some modules have a #include "header." that share common defini-
tions.

Some, like main.c, also include standard header files also.

main calls the function WriteMyString() which is in WriteMyString.c
module.

The function prototype void for WriteMyString is defined in Header.h

NOTE that in general we must resolve a tradeoff between having a desire
for each .c module to have access to the information it needs solely for its
job and the practical reality of maintaining lots of header files.

Up to some moderate program size it is probably best to one or two
header files that share more than one modules definitions.

For larger programs get UNIX to help you (see later).

33.2. EXTERNAL VARIABLES AND FUNCTIONS 495

One problem left with module approach:

SHARING VARIABLES

If we have global variables declared and instantiated in one module how
can pass knowledge of this to other modules.

We could pass values as parameters to functions, BUT:

• this can be laborious if we pass the same parameters to many functions
and / or if there are long argument lists involved.

• very large arrays and structures are difficult to store locally — memory
problems with stack.

33.2 External variables and functions

“Internal” implies arguments and functions are defined inside functions —
Local

“External” variables are defined outside of
functions — they are potentially available to the whole program (Global)
but NOT necessarily.

External variables are always permanent.

NOTE: That in C, all function definitions are external. We CANNOT
have embedded function declarations like in PASCAL.

33.2.1 Scope of externals

An external variable (or function) is not always totally global.

C applies the following rule:

The scope of an external variable (or function) begins at its point of dec-
laration and lasts to the end of the file (module) it is declared in.

Consider the following:

main()

{ }

496 CHAPTER 33. WRITING LARGER PROGRAMS

int what scope;

float end of scope[10]

void what global()

{ }

char alone;

float fn()

{ }

main cannot see what scope or end of scope but the functions what global

and fn can. ONLY fn can see alone.

This is also the one of the reasons why we should prototype functions
before the body of code etc. is given.

So here main will not know anything about the functions what global and
fn. what global does not know about fn but fn knows about what global

since it is declared above.

NOTE: The other reason we prototype functions is that some checking
can be done the parameters passed to functions.

If we need to refer to an external variable before it is declared or if it is
defined in another module we must declare it as an extern variable. e.g.

extern int what global

So returning to the modular example. We have a global string AnotherString
declared in main.c and shared with WriteMyString.c where it is declared
extern.

BEWARE the extern prefix is a declaration NOT a definition. i.e NO
STORAGE is set aside in memory for an extern variable — it is just an
announcement of the property of a variable.

The actual variable must only be defined once in the whole program —
you can have as many extern declarations as needed.

Array sizes must obviously be given with
declarations but are not needed with extern declarations. e.g.:

33.3. ADVANTAGES OF USING SEVERAL FILES 497

main.c: int arr[100]:

file.c: extern int arr[];

33.3 Advantages of Using Several Files

The main advantages of spreading a program across several files are:

• Teams of programmers can work on programs. Each programmer works
on a different file.

• An object oriented style can be used. Each file defines a particular type
of object as a datatype and operations on that object as functions. The
implementation of the object can be kept private from the rest of the
program. This makes for well structured programs which are easy to
maintain.

• Files can contain all functions from a related group. For Example all
matrix operations. These can then be accessed like a function library.

• Well implemented objects or function definitions can be re-used in other
programs, reducing development time.

• In very large programs each major function can occupy a file to itself.
Any lower level functions used to implement them can be kept in the
same file. Then programmers who call the major function need not be
distracted by all the lower level work.

• When changes are made to a file, only that file need be re-compiled
to rebuild the program. The UNIX make facility is very useful for
rebuilding multi-file programs in this way.

33.4 How to Divide a Program between Sev-

eral Files

Where a function is spread over several files, each file will contain one or more
functions. One file will include main while the others will contain functions
which are called by others. These other files can be treated as a library of
functions.

498 CHAPTER 33. WRITING LARGER PROGRAMS

Programmers usually start designing a program by dividing the problem
into easily managed sections. Each of these sections might be implemented
as one or more functions. All functions from each section will usually live in
a single file.

Where objects are implemented as data structures, it is usual to to keep
all functions which access that object in the same file. The advantages of
this are:

• The object can easily be re-used in other programs.

• All related functions are stored together.

• Later changes to the object require only one file to be modified.

Where the file contains the definition of an object, or functions which
return values, there is a further restriction on calling these functions from
another file. Unless functions in another file are told about the object or
function definitions, they will be unable to compile them correctly.

The best solution to this problem is to write a header file for each of the
C files. This will have the same name as the C file, but ending in .h. The
header file contains definitions of all the functions used in the C file.

Whenever a function in another file calls a function from our C file, it
can define the function by making a #include of the appropriate .h file.

33.5 Organisation of Data in each File

Any file must have its data organised in a certain order. This will typically
be:

• A preamble consisting of #defined constants, #included header files
and typedefs of important datatypes.

• Declaration of global and external variables. Global variables may also
be initialised here.

• One or more functions.

The order of items is important, since every object must be defined before
it can be used. Functions which return values must be defined before they
are called. This definition might be one of the following:

33.6. THE MAKE UTILITY 499

• Where the function is defined and called in the same file, a full decla-
ration of the function can be placed ahead of any call to the function.

• If the function is called from a file where it is not defined, a prototype
should appear before the call to the function.

A function defined as

float find_max(float a, float b, float c)

{ /* etc */

would have a prototype of

float find_max(float a, float b, float c);

The prototype may occur among the global variables at the start of the
source file. Alternatively it may be declared in a header file which is read in
using a #include.

It is important to remember that all C objects should be declared before
use.

33.6 The Make Utility

The make utility is an intelligent program manager that maintains integrity
of a collection of program modules, a collection of programs or a complete
system — does not have be programs in practice can be any system of files
(e.g. chapters of text in book being typeset).

Its main use has been in assisting the development of software systems.

Make was originally developed on UNIX but it is now available on most
systems.

NOTE: Make is a programmers utility not part of C language or any
language for that matter.

Consider the problem of maintaining a large collection of source files:

main.c f1.c fn.c

We would normally compile our system via:

cc -o main main.c f1.c fn.c

500 CHAPTER 33. WRITING LARGER PROGRAMS

However, if we know that some files have been compiled previously and
their sources have not changed since then we could try and save overall
compilation time by linking in the object code from those files say:

cc -o main main.c f1.c ... fi.o .. fj.o ... fn.c

We can use the C compiler option (Appendix A) -c to create a .o for a
given module. For example:

cc -c main.c

will create a main.o file. We do not need to supply any library links here
as these are resolved at the linking stage of compilation.

We have a problem in compiling the whole program in this long hand way
however:
• It is time consuming to compile a .c module — if the module has been

compiled before and not been altered there is no need to recompiled it. We
can just link the object files in. However, it will not be easy to remember
which files are in fact up to date. If we link in an old object file our final
executable program will be wrong.
• It is error prone and laborious to type a long compile sequence on the

command line. There may be many of our own files to link as well as many
system library files. It may be very hard to remember the correct sequence.
Also if we make a slight change to our system editing command line can be
error prone.

If we use the make utility all this control is taken care by make. In
general only modules that have older object files than source files will be
recompiled.

33.7 Make Programming

Make programming is fairly straightforward. Basically, we write a sequence
of commands which describes how our program (or system of programs) can
be constructed from source files.

The construction sequence is described in
makefiles which contain dependency rules and construction rules.

A dependency rule has two parts - a left and right side separated by a :

left side : right side

33.8. CREATING A MAKEFILE 501

The left side gives the names of a target(s) (the names of the program
or system files) to be built, whilst the right side gives names of files on
which the target depends (eg. source files, header files, data files)

If the target is out of date with respect to the constituent parts, con-
struction rules following the dependency rules are obeyed.

So for a typical C program, when a make file is run the following tasks
are performed:

1. The makefile is read. Makefile says which object and library files need
to be linked and which header files and sources have to be compiled to
create each object file.

2. Time and date of each object file are checked against source and header
files it depends on. If any source, header file later than object file then
files have been altered since last compilation THEREFORE recompile
object file(s).

3. Once all object files have been checked the time and date of all object
files are checked against executable files. If any later object files will
be recompiled.

NOTE: Make files can obey any commands we type from command line.
Therefore we can use makefiles to do more than just compile a system source
module. For example, we could make backups of files, run programs if data
files have been changed or clean up directories.

33.8 Creating a makefile

This is fairly simple: just create a text file using any text editor. The makefile
just contains a list of file dependencies and commands needed to satisfy them.

Lets look at an example makefile:

prog: prog.o f1.o f2.o
c89 prog.o f1.o f2.o -lm etc.

prog.o: header.h prog.c
c89 -c prog.c

502 CHAPTER 33. WRITING LARGER PROGRAMS

f1.o: header.h f1.c
c89 -c f1.c

f2.o: —–
——–

Make would interpret the file as follows:

1. prog depends on 3 files: prog.o, f1.o and f2.o. If any of the object
files have been changed since last compilation the files must be relinked.

2. prog.o depends on 2 files. If these have been changed prog.o must be
recompiled. Similarly for f1.o and f2.o.

The last 3 commands in the makefile are called explicit rules — since the
files in commands are listed by name.

We can use implicit rules in our makefile which let us generalise our rules
and save typing.

We can take

f1.o: f1.c

cc -c f1.c

f2.o: f2.c

cc -c f2.c

and generalise to this:
.c.o: cc -c $<
We read this as .source extension.target extension: command
$< is shorthand for file name with .c extension.
We can put comments in a makefile by using the # symbol. All characters

following # on line are ignored.
Make has many built in commands similar to or actual UNIX commands.

Here are a few:

33.9. MAKE MACROS 503

break date mkdir

type chdir mv (move or rename)
cd rm (remove) ls

cp (copy) path

There are many more see manual pages for make (online and printed
reference)

33.9 Make macros

We can define macros in make — they are typically used to store source file
names, object file names, compiler options and library links.

They are simple to define, e.g.:

SOURCES = main.c f1.c f2.c

CFLAGS = -g -C

LIBS = -lm

PROGRAM = main

OBJECTS = (SOURCES: .c = .o)

where (SOURCES: .c = .o) makes .c extensions of SOURCES .o exten-
sions.

To reference or invoke a macro in make do $(macro name).e.g.:

$(PROGRAM) : $(OBJECTS)

$(LINK.C) -o $@ $(OBJECTS) $(LIBS)

NOTE:

• $(PROGRAM) : $(OBJECTS) – makes a list of
dependencies and targets.

• The use of an internal macros i.e. $@.

504 CHAPTER 33. WRITING LARGER PROGRAMS

There are many internal macros (see manual pages) here a few common
ones:

$* — file name part of current dependent (minus .suffix).

$@ — full target name of current target.

$< — .c file of target.

An example makefile for the WriteMyString modular program discussed
in the above is as follows:

#

Makefile

#

SOURCES.c= main.c WriteMyString.c

INCLUDES=

CFLAGS=

SLIBS=

PROGRAM= main

OBJECTS= $(SOURCES.c:.c=.o)

.KEEP_STATE:

debug := CFLAGS= -g

all debug: $(PROGRAM)

$(PROGRAM): $(INCLUDES) $(OBJECTS)

$(LINK.c) -o $@ $(OBJECTS) $(SLIBS)

clean:

rm -f $(PROGRAM) $(OBJECTS)

33.10 Running Make

Simply type make from command line.

33.10. RUNNING MAKE 505

UNIX automatically looks for a file called Makefile (note: capital M rest
lower case letters).

So if we have a file called Makefile and we type make from command
line. The Makefile in our current directory will get executed.

We can override this search for a file by typing make -f make filename

e.g. make -f my make

There are a few more -options for makefiles — see manual pages.

506 CHAPTER 33. WRITING LARGER PROGRAMS

Chapter 34

Further Reading, Information
and References

This chapter gives references to text books used in writing this course and
provide further reading on all subjects covered. Information sources on the
Internet are also cited where appropriate.

34.1 C References

34.1.1 Basic C and UNIX

The two most appropriate books for the C and standard library aspects of
the course are:

Pointers on C, Kenneth Reek, Addison Wesley, 1998.
C Programming in a UNIX Environment, Judy Kay and Bob Kummer-

field, Addison Wesley, 1997.
Othere books that are useful:

• Brian W Kernighan and Dennis M Ritchie, The C Programming Lan-
guage 2nd Ed, Prentice-Hall, 1988.

• A Book on C (4th Ed.), Kelley and Pohl, Addison Wesley, 1998.

• Kenneth E. Martin, C Through UNIX, WCB Group, 1992.

• Keith Tizzard, C for Professional Programmers, Ellis Horwood, 1986.

507

508CHAPTER 34. FURTHER READING, INFORMATION ANDREFERENCES

• Chris Carter, Structured Programming into ANSI C, Pittman, 1991.

• C. Charlton, P. Leng and Janet Little, A Course on C, McGraw Hill,
1992.

• G. Bronson and S. Menconi, A First Book on C: Fundamentals of C
Programming (2nd ed.), West Publishing, 1991.

34.1.2 Threads and Remote Procedure Calls

The following books are good resources on Threads:

Pthreads Programming:A POSIX Standard for Better Multiprocessing By
Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell, (1st Edi-
tion),O’Reilly, 1996

Multithreaded Programming With Pthreads by Bil Lewis, Daniel J. Berg,
Prentice Hall Computer Books, 1996

Threads Primer : A Guide to Solaris Multithreaded Programming by Bil
Lewis, Daniel J. Berg (Contributor), Bil Bewis, Prentice Hall, 1995.

The following book is a good source of information on Remote Procedure
Calls:

Power Programming with RPC, John Bloomer, O’Reilly, 1992.

34.1.3 Internet Resources on C

The web site for this course is

http://www.cm.cf.ac.uk/Dave/C/CE.html

Some good general UNIX/C Web sites can found at

• http://www.connect.org.uk/techwatch/c/ — Technology Watch : C Archive¡

• http://www.eecs.nwu.edu/unix.html — UNIX Reference Desk

• http://www.bsn.usf.edu:80/ scottb/links/unixprog.html — Unix Program-
ming Reference.

The Sun Websites has some good information about Threads:

http://www.sun.com/workshop/threads/

34.2. MOTIF/X WINDOW PROGRAMMING 509

34.2 Motif/X Window Programming

34.2.1 Motif/CDE/X Books

There are a number of books that deal with many aspects of the CDE:

• Common Desktop Environment Advanced User’s and System Adminis-
trator’s Guide, Addison-Wesley Developers Press, 1994.

• Common Desktop Environment Application Builder User’s Guide, Addison-
Wesley Developers Press, 1994.

• Common Desktop Environment Help System Author’s and Program-
mer’s Guide, Addison-Wesley Developers Press, 1994.

• Common Desktop Environment Help System Author’s and Program-
mer’s Guide, Addison-Wesley Developers Press, 1994.

• Common Desktop Environment Programmer’s Guide, Addison-Wesley
Developers Press, 1994.

• Common Desktop Environment Programmer’s Overview, Addison-Wesley
Developers Press, 1994.

• Common Desktop Environment User’s Guide, Addison-Wesley Devel-
opers Press, 1994.

There are a number of good general texts on Motif/X Window program-
ming:

• E. Cutler, Gilly D., and T. O’Reilly, The X Window System in a Nut-
shell. O’Reilly & Associates, Sebastopol, CA, USA, 2 edition, 1992.

• F. Culwin, An X/Motif Programmers Primer. Prentice Hall, London,
UK, 1994.

• Volume Five: X Toolkit Intrinsics Reference Manual, O’Reilly & Asso-
ciates, Sebastopol, CA, USA, 1992.

• D. Heller. Volume Six A: Motif 1.2 Programming Manual, O’Reilly &
Associates, Sebastopol, CA, USA, 1994.

510CHAPTER 34. FURTHER READING, INFORMATION ANDREFERENCES

• D. Heller. Volume Six B: Motif 1.2 Reference Manual. O’Reilly &
Associates, Sebastopol, CA, USA, 1994.

• E.F. Johnson and Reichard K. Power Programming: Motif. O’Reilly
& Associates, ew York, USA, 2 edition, 1994.

• L. Mui and E. Pearce. Volume Eight: X Window System Administra-
tor’s Guide. O’Reilly & Associates, Sebastopol, CA, USA, 1992.

• A. Nye (Ed.). Volume 0: X Protocol Reference Manual, O’Reilly &
Associates, Sebastopol, CA, USA, 3 edition, 1992.

• A. Nye (Ed.). Volume Two: Xlib Reference Manual. O’Reilly & Asso-
ciates, Sebastopol, CA, USA, 3 edition, 1992.

• J. Newmarch. The X Window System and Motif: A Fast Track Ap-
proach, Addison Wesley, New York, USA, 1992.

• A. Nye and T. O’Reilly. Volume Four: X Toolkit Intrinsics Program-
ming Manual (Motif Edition). O’Reilly & Associates, Sebastopol, CA,
USA, 1992.

• A. Nye. Volume One: Xlib Programming Manual, O’Reilly & Asso-
ciates, Sebastopol, CA, USA, 3 edition, 1992.

• Open Software Foundation, London, UK. OSF/Motif Style Guide, 1993.

• Open Software Foundation, London, UK. OSF/Motif 2.0 Programming
Manual, 1995.

• Open Software Foundation, London, UK. OSf/Motif 2.0 Reference Man-
ual, 1995.

• Open Software Foundation, London, UK. OSF/Motif Widget Writer’s
Guide, 1995.

• V. Quercia and T. O’Reilly. Volume Three: X Window System User’s
Guide. O’Reilly & Associates, Sebastopol, CA, USA, 1990.

• V. Quercia and T. O’Reilly. Volume Three: X Window System User’s
Guide (Motif Edition). O’Reilly & Associates, Sebastopol, CA, USA,
1991.

34.2. MOTIF/X WINDOW PROGRAMMING 511

• R.K Rost. X and Motif Quick Reference Guide. Digital Press, New
York, USA, 2 edition, 1993.

• L. Reiss and J. Radin. k X Window: Inside and Out, McGraw Hill,
New York, USA, 1992.

34.2.2 Motif distribution

Various components of X/Motif are distributed by the OSF, the X Consor-
tium, the Open Group and by a number of independent vendors for a variety
of platforms. Section ?? gives details on these matters.

34.2.3 WWW and Ftp Access

The main WWW source of information for motif is MW3: Motif on the
World Wide Web (URL: http://www.cen.com/mw3/). From the home page
you can connect to a wealth of resources for Motif and X Window System
development. MW3 presently contains over 700 links. Virtually all aspects
of Motif are covered here.

Other useful WWW links include:

• http://www.rahul.net/kenton/xsites — Good source of X information
and links to many related sites.

• http://www.landfield.com/faqs/faqsearch.html — The best frequently
asked questions (FAQ) search interface (Usenet Hypertext FAQ Archive).

• X, Xt and Motif FAQ are also archived at:

– Utrecht University (http://www.cs.ruu.nl/wais/html/na-dir/),

– Oxford University (http://www.lib.ox.ac.uk/internet/news/faq/),

– SUNSite Northern Europe (http://src.doc.ic.ac.uk/usenet/usenet-
by-hierarchy/comp/windows/x/).

The Motif FAQ is available via ftp also at:

• Century Computing Inc, USA — The file is available in raw text and
compressed formats: ftp://ftp.cen.com/pub/Motif-FAQ,
ftp://ftp.cen.com/pub/Motif-FAQ.Z and ftp://ftp.cen.com/pub/Motif-
FAQ.gz.

512CHAPTER 34. FURTHER READING, INFORMATION ANDREFERENCES

• MIT — The Motif FAQ is available in 9 parts: ftp:// rtfm.mit.edu/pub/usenet-
by-group/comp.windows.x.motif.

• X Consortium — ftp://ftp.x.org/contrib/faqs/Motif-FAQ.

34.2.4 Valuable Information Resources

Other sources of information on the Internet are provided via mailing lists
and news groups. Mailing lists are sent via email and serve as discussion
groups and avenues for news announcements for particular topics. News
groups can be read by specific news reader applications and broadly serve as
discussion groups. Mailing lists and news groups do not necesarily require
a WWW browser for reading although browsers such as Netscape Navigator
do provide specific access to news groups and email.

Mailing lists

The following public mailing lists are maintained by the X Consortium for
the discussion of issues relating to the X Window System. All are hosted
@x.org.

xpert A mailing list that discuses many X related issues. This list is gate-
wayed to the newsgroup comp.windows.x (see below).

To subscribe to this mailing list, send mail to the request address. In
general this is specified by adding -request to the name of the desired
list. Thus, to add yourself to the xpert mailing list:

To: xpert-request@x.org

Subject: (none needed)

subscribe

To unsubscribe:

To: xpert-request@x.org

Subject: (none needed)

unsubscribe

34.2. MOTIF/X WINDOW PROGRAMMING 513

To add an address to a specific list, or to add a specific user, you
can specify options to the subscribe or unsubscribe command. This
example adds dave@widget.uk to the xpert mailing list:

To: xpert-request@x.org

Subject: (none needed)

subscribe xpert dave@widget.uk

xannounce This is a moderated mailing list for announcing releases of non-
commercial X related software, and other issues concerning the X Win-
dow System.

This mailing list is gatewayed to the newsgroup comp.windows.x.announce.

Subscription requests should be sent to xannounce-request@x.org.

News groups

The news group comp.windows.x.motif is the main news group for Motif
related issues. The following news groups exist for the discussion of other
issues related to the X Window System:

comp.windows.x — This news group is gatewayed to the xpert mailing
list (see above).

comp.windows.x.announce This group is moderated by the staff of X
Consortium, Inc. Traffic is limited to major X announcements, such as
X Consortium standards, new releases, patch releases, toolkit releases
and X conferences, exhibitions, or meetings.

comp.windows.x.apps — This news group is concerned with X applica-
tions.

comp.windows.x.intrinsics — This news group is concerned with Xt toolkit.

comp.windows.x.pex — This news group is concerned with the 3D graph-
ics extension to X.

alt.windows.cde — The news group dedicated to Common Desktop Envi-
ronment issues.

514CHAPTER 34. FURTHER READING, INFORMATION ANDREFERENCES

Most of the above news groups have a frequently asked question section
posted regularly to the news group which provide valuable information for
the novice and discuss common problems. The comp.windows.x.motif are
also accessible from many of the WWW sites listed in Section 34.2.3

34.3 C++

There are many books on C++, Here are a few good general programming
guides:

• The C++ Programming Language, B. Stroustrup, Addison Wesley,
1997.

• Learning C++, Neill Graham, Mcgraw Hill, 1991.

• Learning C++: A Hands on Approach, E. Nagler, West Publishing,
1993.

• Introduction to C++, D. Dench and B. Proir, Chapmann Hall, 1994.

Some books which are more advances and deal with Object Oriented
Design with C++:

• C++ Programming Style, T. Cargill, Addison Wesley, 1992.

• From Chaos to Classes: Object Oriented Software Development in C++,
D. Duffy, McGraw-Hill, 1995.

• Object Oriented Software in C++, M. Smith, Chapmann Hall, 1993.

Thhe major C++ Web repository is:
http://www.austinlinks.com/CPlusPlus/

Appendix A

C Compiler Options and the
GNU C++ compiler

This appendix gives some common compiler options and some details on the
GNU C/C++ compiler.

A.1 Common Compiler Options

Here we list common C Compiler options. They can be tagged on to the
compiler directive. Some take an additional argument.

E.g.

cc -c -o prog prog.c

The -o option needs an argument, -c does not.

-c Suppress linking with ld(1) and produce a .o file

for each source file. A single object file can be

named explicitly using the -o option.

-C Prevent the C preprocessor from removing

comments.

-D Define symbols either as identifiers (-Didentifer) or as values

(-Dsymbol=value}) in a similar fashion as the #define preprocessor

command.

515

516APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

-E Run the source file through the C preprocessor,

only. Sends the output to the standard output, or

to a file named with the -o option. Includes the

cpp line numbering information. (See also, the -P

option.)

-g Produce additional symbol table information for

dbx(1) and dbxtool(1). When this option is given,

the -O and -R options are suppressed.

-help Display helpful information about compiler.

-Ipathname

Add pathname to the list of directories in which

to search for #include files with relative

filenames (not beginning with slash /). The

preprocessor first searches for #include files in

the directory containing sourcefile, then in

directories named with -I options (if any), and

finally, in /usr/include.

-llibrary Link with object library library (for ld(1)).

This option must follow the sourcefile arguments.

-Ldirectory

Add directory to the list of directories contain-

ing object-library routines (for linking using

ld(1).

-M Run only the macro preprocessor on the named C

programs, requesting that it generate makefile

dependencies and send the result to the standard

output (see make(1) for details about makefiles

and dependencies).

-o outputfile

A.1. COMMON COMPILER OPTIONS 517

Name the output file outputfile. outputfile must

have the appropriate suffix for the type of file

to be produced by the compilation (see FILES,

below). outputfile cannot be the same as source-

file (the compiler will not overwrite the source

file).

-O[level] Optimize the object code. Ignored when either -g

or -a is used. -O with the level omitted is

equivalent to -O2. level is one of:

1 Do postpass assembly-level optimization

only.

2 Do global optimization prior to code

generation, including loop optimiza-

tions, common subexpression elimination,

copy propagation, and automatic register

allocation. -O2 does not optimize refer-

ences to or definitions of external or

indirect variables.

If the optimizer runs out of memory, it tries to

recover by retrying the current procedure at a

lower level of optimization and resumes subsequent

procedures at the original level.

-P Run the source file through the C preprocessor,

only. Puts the output in a file with a .i suffix.

Does not include cpp-type line number information

in the output

518APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

A.2 GCC - The GNU C/C++ Compiler

A.2.1 Introduction to GCC

Information in the section was taken from the GNU CC web site and GNU
CC supporting documentation distrubuted with the GNU CC compiler. For
more complete and up to date information readers are urgent to consult these
sources.

The GNU CC web site URL is: http://www.gnu.ai.mit.edu/software/gcc/gcc.html

GCC was developed by GNU to provide a free compiler for the GNU
system. GCC is distributed under the terms of the GNU General Public
License(20k characters) (GNU GPL for short).

GCC can compile programs written in C, C++, Objective C, Ada 95,
Fortran 77, and Pascal (see compiling other languages).

GCC is a full featured compiler, providing everything you need in a C
compiler. GCC is updated to support new features and new platforms. The
GNU project also provides many companion tools, such as GNU make and
GDB (GNU Debugger).

GCC is short for the GNU C Compiler; we also sometimes use the name
GNU CC.

’gcc’ is also the command name used to invoke the compiler. The reason
for this name is that the compiler initially supported only the C language.
Now, ’gcc’ will invoke the proper compiler files for C++ files if their names
end in ’.C’, ’.cc’, ’.cpp’, or ’.cxx’. The ’gcc’ command also recognizes Objec-
tive C, Pascal, Fortran and Ada files based on their file names.

A.2.2 Languages compiled by GCC

The main GCC distribution includes the source for the C, C++, and Ob-
jective C front ends, giving gcc the ability to compile programs in these
languages. Additional front ends for Ada 95, Fortran 77, and Pascal are
distributed separately. (Note: The front end for Ada is not distributed by
the Free Software Foundation, because it is written in Ada and therefore has
to be distributed together with binaries for bootstrapping.)

G++ is the C++ compiler. G++ is a compiler, not merely a preprocessor;
G++ builds object code directly from your C++ program source. There is
no intermediate C version of the program.

A.2. GCC - THE GNU C/C++ COMPILER 519

Avoiding an intermediate C representation of the program means that
you get better object code, and better debugging information. The GNU
debugger, GDB, works with this information in the object code to give you
comprehensive C++ source-level editing capabilities.

A.2.3 Portability and Optimization

GCC is a fairly portable optimizing compiler which performs many optimiza-
tions.

Portability :

GCC supports full ANSI C, traditional C, and GNU C extensions (in-
cluding: nested functions support, nonlocal gotos, and taking the ad-
dress of a label).

GCC can generate a.out, COFF, ELF, and OSF-Rose files when used
with a suitable assembler. It can produce debugging information in
these formats: BSD stabs, COFF, ECOFF, ECOFF with stabs, and
DWARF and DWARF 2. Position-independent code is generated for
the Clipper, Hitachi H8/300, HP-PA (1.0 & 1.1), i386/i486/Pentium,
m68k, m88k, SPARC, and SPARClite.

GCC can open-code most arithmetic on 64-bit values (type ’long long
int’). It supports extended floating point (type ’long double’) on the
68k and ix86; other machines will follow. GCC generates code for
many CPUs. Using the configuration scheme for GCC, building a cross-
compiler is as easy as building a native compiler.

Optimizations :

Automatic register allocation Common sub-expression elimination (CSE)
(including a certain amount of CSE between basic blocks). Invari-
ant code motion from loops Induction variable optimizations Constant
propagation and copy propagation Delayed popping of function call ar-
guments Tail recursion elimination Integration of in-line functions and
frame pointer elimination Instruction scheduling Loop unrolling Filling
of delay slots Leaf function optimization Optimized multiplication by
constants The ability to assign attributes to instructions Many local
optimizations automatically deduced from the machine description

520APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

A.2.4 GNU CC Distribution Policy

GCC is distributed under the terms of the GNU General Public License
(GPL).

Under the GNU GPL, any modified version of GCC, any program that
contains any of the code of GCC, must be released as free software–to do
otherwise is copyright infringement.

It is permissible to compile non-free programs with GCC. Compiling a
program with GCC and distributing the binary does not require you to make
the program free software or release its source code. This is because the run-
time library included with GCC comes with special permission to link it with
your compiled programs without restriction. The legal rules for using the
output from GCC are the determined by the program that you are compiling,
not by GCC.

However, making programs free software is the right thing to do on general
ethical principles, regardless of what compiler you use.

A.2.5 Compile C, C++, or Objective C

The C, C++, and Objective C versions of the compiler are integrated; the
GNU C compiler can compile programs written in C, C++, or Objective C.

”GCC” is a common shorthand term for the GNU C compiler. This is
both the most general name for the compiler, and the name used when the
emphasis is on compiling C programs.

When referring to C++ compilation, it is usual to call the compiler
”G++”. Since there is only one compiler, it is also accurate to call it ”GCC”
no matter what the language context; however, the term ”G++” is more
useful when the emphasis is on compiling C++ programs.

We use the name ”GNU CC” to refer to the compilation system as a
whole, and more specifically to the language-independent part of the com-
piler. For example, we refer to the optimization options as affecting the
behavior of ”GNU CC” or sometimes just ”the compiler”.

Front ends for other languages, such as Ada 9X, Fortran, Modula-3, and
Pascal, are under development. These front-ends, like that for C++, are
built in subdirectories of GNU CC and link to it. The result is an integrated
compiler that can compile programs written in C, C++, Objective C, or any
of the languages for which you have installed front ends.

In this manual, we only discuss the options for the C, Objective-C, and

A.2. GCC - THE GNU C/C++ COMPILER 521

C++ compilers and those of the GNU CC core. Consult the documentation
of the other front ends for the options to use when compiling programs written
in other languages.

G++ is a compiler, not merely a preprocessor. G++ builds object code
directly from your C++ program source. There is no intermediate C version
of the program. (By contrast, for example, some other implementations use
a program that generates a C program from your C++ source.) Avoiding
an intermediate C representation of the program means that you get better
object code, and better debugging information. The GNU debugger, GDB,
works with this information in the object code to give you comprehensive
C++ source-level editing capabilities.

A.2.6 GNU CC Command Options

When you invoke GNU CC, it normally does preprocessing, compilation,
assembly and linking. The ”overall options” allow you to stop this process
at an intermediate stage. For example, the ’-c’ option says not to run the
linker. Then the output consists of object files output by the assembler.

Other options are passed on to one stage of processing. Some options
control the preprocessor and others the compiler itself. Yet other options
control the assembler and linker; most of these are not documented here,
since you rarely need to use any of them.

Most of the command line options that you can use with GNU CC are
useful for C programs; when an option is only useful with another language
(usually C++), the explanation says so explicitly. If the description for
a particular option does not mention a source language, you can use that
option with all supported languages.

See section Compiling C++ Programs, for a summary of special options
for compiling C++ programs.

The gcc program accepts options and file names as operands. Many
options have multiletter names; therefore multiple single-letter options may
not be grouped: ’-dr’ is very different from ’-d -r’.

You can mix options and other arguments. For the most part, the order
you use doesn’t matter. Order does matter when you use several options of
the same kind; for example, if you specify ’-L’ more than once, the directories
are searched in the order specified.

Many options have long names starting with ’-f’ or with ’-W’—for exam-
ple, ’-fforce-mem’, ’-fstrength-reduce’, ’-Wformat’ and so on. Most of these

522APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

have both positive and negative forms; the negative form of ’-ffoo’ would be
’-fno-foo’. This manual documents only one of these two forms, whichever
one is not the default.

Here is a summary of all the options, grouped by type. Explanations are
in the following sections.

Overall Options

See section Options Controlling the Kind of Output.

-c -S -E -o file -pipe -v -x language

C Language Options

See section Options Controlling C Dialect.

-ansi -fallow-single-precision -fcond-mismatch -fno-asm

-fno-builtin -fsigned-bitfields -fsigned-char

-funsigned-bitfields -funsigned-char -fwritable-strings

-traditional -traditional-cpp -trigraphs

C++ Language Options

See section Options Controlling C++ Dialect.

-fall-virtual -fdollars-in-identifiers -felide-constructors

-fenum-int-equiv -fexternal-templates -fhandle-signatures

-fmemoize-lookups -fno-default-inline -fno-gnu-keywords

-fnonnull-objects -foperator-names -fstrict-prototype

-fthis-is-variable -nostdinc++ -traditional +en

Warning Options

See section Options to Request or Suppress Warnings.

-fsyntax-only -pedantic -pedantic-errors

-w -W -Wall -Waggregate-return -Wbad-function-cast

-Wcast-align -Wcast-qual -Wchar-subscript -Wcomment

-Wconversion -Wenum-clash -Werror -Wformat

-Wid-clash-len -Wimplicit -Wimport -Winline

-Wlarger-than-len -Wmissing-declarations

-Wmissing-prototypes -Wnested-externs

A.2. GCC - THE GNU C/C++ COMPILER 523

-Wno-import -Woverloaded-virtual -Wparentheses

-Wpointer-arith -Wredundant-decls -Wreorder -Wreturn-type -Wshadow

-Wstrict-prototypes -Wswitch -Wsynth -Wtemplate-debugging

-Wtraditional -Wtrigraphs -Wuninitialized -Wunused

-Wwrite-strings

Debugging Options

See section Options for Debugging Your Program or GNU CC.

-a -dletters -fpretend-float

-g -glevel -gcoff -gdwarf -gdwarf+

-ggdb -gstabs -gstabs+ -gxcoff -gxcoff+

-p -pg -print-file-name=library -print-libgcc-file-name

-print-prog-name=program -print-search-dirs -save-temps

Optimization Options

See section Options That Control Optimization.

-fcaller-saves -fcse-follow-jumps -fcse-skip-blocks

-fdelayed-branch -fexpensive-optimizations

-ffast-math -ffloat-store -fforce-addr -fforce-mem

-finline-functions -fkeep-inline-functions

-fno-default-inline -fno-defer-pop -fno-function-cse

-fno-inline -fno-peephole -fomit-frame-pointer

-frerun-cse-after-loop -fschedule-insns

-fschedule-insns2 -fstrength-reduce -fthread-jumps

-funroll-all-loops -funroll-loops

-O -O0 -O1 -O2 -O3

Preprocessor Options

See section Options Controlling the Preprocessor.

-Aquestion(answer) -C -dD -dM -dN

-Dmacro[=defn] -E -H

-idirafter dir

-include file -imacros file

-iprefix file -iwithprefix dir

-iwithprefixbefore dir -isystem dir

524APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

-M -MD -MM -MMD -MG -nostdinc -P -trigraphs

-undef -Umacro -Wp,option

Assembler Option

See section Passing Options to the Assembler.

-Wa,option

Linker Options

See section Options for Linking.

object-file-name -llibrary

-nostartfiles -nodefaultlibs -nostdlib

-s -static -shared -symbolic

-Wl,option -Xlinker option

-u symbol

Directory Options

See section Options for Directory Search.

-Bprefix -Idir -I- -Ldir

Target Options

See section Specifying Target Machine and Compiler Version.

-b machine -V version

Machine Dependent Options

See section Hardware Models and Configurations.

M680x0 Options

-m68000 -m68020 -m68020-40 -m68030 -m68040 -m68881

-mbitfield -mc68000 -mc68020 -mfpa -mnobitfield

-mrtd -mshort -msoft-float

VAX Options

-mg -mgnu -munix

A.2. GCC - THE GNU C/C++ COMPILER 525

SPARC Options

-mapp-regs -mcypress -mepilogue -mflat -mfpu -mhard-float

-mhard-quad-float -mno-app-regs -mno-flat -mno-fpu

-mno-epilogue -mno-unaligned-doubles

-msoft-float -msoft-quad-float

-msparclite -msupersparc -munaligned-doubles -mv8

SPARC V9 compilers support the following options

in addition to the above:

-mmedlow -mmedany

-mint32 -mint64 -mlong32 -mlong64

-mno-stack-bias -mstack-bias

Convex Options

-mc1 -mc2 -mc32 -mc34 -mc38

-margcount -mnoargcount

-mlong32 -mlong64

-mvolatile-cache -mvolatile-nocache

AMD29K Options

-m29000 -m29050 -mbw -mnbw -mdw -mndw

-mlarge -mnormal -msmall

-mkernel-registers -mno-reuse-arg-regs

-mno-stack-check -mno-storem-bug

-mreuse-arg-regs -msoft-float -mstack-check

-mstorem-bug -muser-registers

ARM Options

-mapcs -m2 -m3 -m6 -mbsd -mxopen -mno-symrename

M88K Options

-m88000 -m88100 -m88110 -mbig-pic

-mcheck-zero-division -mhandle-large-shift

-midentify-revision -mno-check-zero-division

-mno-ocs-debug-info -mno-ocs-frame-position

-mno-optimize-arg-area -mno-serialize-volatile

-mno-underscores -mocs-debug-info

526APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

-mocs-frame-position -moptimize-arg-area

-mserialize-volatile -mshort-data-num -msvr3

-msvr4 -mtrap-large-shift -muse-div-instruction

-mversion-03.00 -mwarn-passed-structs

RS/6000 and PowerPC Options

-mcpu=cpu type

-mpower -mno-power -mpower2 -mno-power2

-mpowerpc -mno-powerpc

-mpowerpc-gpopt -mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mnew-mnemonics -mno-new-mnemonics

-mfull-toc -mminimal-toc -mno-fop-in-toc -mno-sum-in-toc

-msoft-float -mhard-float -mmultiple -mno-multiple

-mstring -mno-string -mbit-align -mno-bit-align

-mstrict-align -mno-strict-align -mrelocatable -mno-relocatable

-mtoc -mno-toc -mtraceback -mno-traceback

-mlittle -mlittle-endian -mbig -mbig-endian

RT Options

-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs

-mfull-fp-blocks -mhc-struct-return -min-line-mul

-mminimum-fp-blocks -mnohc-struct-return

MIPS Options

-mabicalls -mcpu=cpu type -membedded-data

-membedded-pic -mfp32 -mfp64 -mgas -mgp32 -mgp64

-mgpopt -mhalf-pic -mhard-float -mint64 -mips1

-mips2 -mips3 -mlong64 -mlong-calls -mmemcpy

-mmips-as -mmips-tfile -mno-abicalls

-mno-embedded-data -mno-embedded-pic

-mno-gpopt -mno-long-calls

-mno-memcpy -mno-mips-tfile -mno-rnames -mno-stats

-mrnames -msoft-float

-m4650 -msingle-float -mmad

-mstats -EL -EB -G num -nocpp

i386 Options

A.2. GCC - THE GNU C/C++ COMPILER 527

-m486 -m386 -mieee-fp -mno-fancy-math-387

-mno-fp-ret-in-387 -msoft-float -msvr3-shlib

-mno-wide-multiply -mrtd -malign-double

-mreg-alloc=list -mregparm=num

-malign-jumps=num -malign-loops=num

-malign-functions=num

HPPA Options

-mdisable-fpregs -mdisable-indexing -mfast-indirect-calls

-mgas -mjump-in-delay -mlong-millicode-calls -mno-disable-fpregs

-mno-disable-indexing -mno-fast-indirect-calls -mno-gas

-mno-jump-in-delay -mno-millicode-long-calls

-mno-portable-runtime -mno-soft-float -msoft-float

-mpa-risc-1-0 -mpa-risc-1-1 -mportable-runtime -mschedule=list

Intel 960 Options

-mcpu type -masm-compat -mclean-linkage

-mcode-align -mcomplex-addr -mleaf-procedures

-mic-compat -mic2.0-compat -mic3.0-compat

-mintel-asm -mno-clean-linkage -mno-code-align

-mno-complex-addr -mno-leaf-procedures

-mno-old-align -mno-strict-align -mno-tail-call

-mnumerics -mold-align -msoft-float -mstrict-align

-mtail-call

DEC Alpha Options

-mfp-regs -mno-fp-regs -mno-soft-float

-msoft-float

Clipper Options

-mc300 -mc400

H8/300 Options

-mrelax -mh

System V Options

-Qy -Qn -YP,paths -Ym,dir

528APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

Code Generation Options

See section Options for Code Generation Conventions.

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -finhibit-size-directive

-fno-common -fno-ident -fno-gnu-linker

-fpcc-struct-return -fpic -fPIC

-freg-struct-return -fshared-data -fshort-enums

-fshort-double -fvolatile -fvolatile-global

-fverbose-asm -fpack-struct +e0 +e1

Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper,
assembly and linking, always in that order. The first three stages apply to an
individual source file, and end by producing an object file; linking combines
all the object files (those newly compiled, and those specified as input) into
an executable file.

For any given input file, the file name suffix determines what kind of
compilation is done:

file.c

C source code which must be preprocessed.

file.i

C source code which should not be preprocessed.

file.ii

C++ source code which should not be preprocessed.

file.m

Objective-C source code. Note that you must link with the library ’libobjc.a’ to make an Objective-C program work.

file.h

C header file (not to be compiled or linked).

file.cc

file.cxx

A.2. GCC - THE GNU C/C++ COMPILER 529

file.cpp

file.C

C++ source code which must be preprocessed. Note that in ’.cxx’, the last two letters must both be literally ’x’. Likewise, ’.C’

refers to a literal capital C.

file.s

Assembler code.

file.S

Assembler code which must be preprocessed.

other An object file to be fed straight into linking. Any file name with
no recognized suffix is treated this way.

You can specify the input language explicitly with the ’-x’ option:

-x language

Specify explicitly the language for the following input files (rather than letting the compiler choose a default based on the file name

suffix). This option applies to all following input files until the next ’-x’ option. Possible values for language are:

c objective-c c++

c-header cpp-output c++-cpp-output

assembler assembler-with-cpp

-x none

Turn off any specification of a language, so that subsequent files are handled according to their file name suffixes (as they are if ’-x’

has not been used at all).

If you only want some of the stages of compilation, you can use ’-x’ (or
filename suffixes) to tell gcc where to start, and one of the options ’-c’, ’-S’, or
’-E’ to say where gcc is to stop. Note that some combinations (for example,
’-x cpp-output -E’ instruct gcc to do nothing at all.

-c Compile or assemble the source files, but do not link. The linking stage simply is not done. The ultimate output is in the form of an

object file for each source file.

By default, the object file name for a source file is made by replacing the suffix ’.c’, ’.i’, ’.s’, etc., with ’.o’.

530APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

Unrecognized input files, not requiring compilation or assembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble. The output is in the form of an assembler code file for each

non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the suffix ’.c’, ’.i’, etc., with ’.s’.

Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler proper. The output is in the form of preprocessed source code, which is

sent to the standard output.

Input files which don’t require preprocessing are ignored.

-o file

Place output in file file. This applies regardless to whatever sort of output is being produced, whether it be an executable file, an

object file, an assembler file or preprocessed C code.

Since only one output file can be specified, it does not make sense to use ’-o’ when compiling more than one input file, unless you

are producing an executable file as output.

If ’-o’ is not specified, the default is to put an executable file in ’a.out’, the object file for ’source.suffix’ in ’source.o’,

its assembler file in ’source.s’, and all preprocessed C source on standard output.

-v Print (on standard error output) the commands executed to run the stages of compilation. Also print the version number of the

compiler driver program and of the preprocessor and the compiler proper.

-pipe Use pipes rather than temporary files for communication between the various stages of compilation. This fails to work on some

systems where the assembler is unable to read from a pipe; but the GNU assembler has no trouble.

Compiling C++ Programs

C++ source files conventionally use one of the suffixes ’.C’, ’.cc’, ’cpp’, or
’.cxx’; preprocessed C++ files use the suffix ’.ii’. GNU CC recognizes files
with these names and compiles them as C++ programs even if you call the
compiler the same way as for compiling C programs (usually with the name
gcc).

However, C++ programs often require class libraries as well as a compiler

A.2. GCC - THE GNU C/C++ COMPILER 531

that understands the C++ language–and under some circumstances, you
might want to compile programs from standard input, or otherwise without
a suffix that flags them as C++ programs. g++ is a program that calls
GNU CC with the default language set to C++, and automatically specifies
linking against the GNU class library libg++. (1) On many systems, the
script g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same
command-line options that you use for compiling programs in any language;
or command-line options meaningful for C and related languages; or options
that are meaningful only for C++ programs. See section Options Control-
ling C Dialect, for explanations of options for languages related to C. See
section Options Controlling C++ Dialect, for explanations of options that
are meaningful only for C++ programs.

Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C,
such as C++ and Objective C) that the compiler accepts:

-ansi Support all ANSI standard C programs.

This turns off certain features of GNU C that are incompatible with ANSI C, such as the asm, inline and typeof keywords, and

predefined macros such as unix and vax that identify the type of system you are using. It also enables the undesirable and rarely

used ANSI trigraph feature, and disallows ’$’ as part of identifiers.

The alternate keywords __asm__, __extension__, __inline__ and __typeof__ continue to work despite ’-ansi’. You would

not want to use them in an ANSI C program, of course, but it is useful to put them in header files that might be included in

compilations done with ’-ansi’. Alternate predefined macros such as __unix__ and __vax__ are also available, with or without

’-ansi’.

The ’-ansi’ option does not cause non-ANSI programs to be rejected gratuitously. For that, ’-pedantic’ is required in addition to

’-ansi’. See section Options to Request or Suppress Warnings.

The macro __STRICT_ANSI__ is predefined when the ’-ansi’ option is used. Some header files may notice this macro and refrain

from declaring certain functions or defining certain macros that the ANSI standard doesn’t call for; this is to avoid interfering with

any programs that might use these names for other things.

The functions alloca, abort, exit, and _exit are not builtin functions when ’-ansi’ is used.

532APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

-fno-asm

Do not recognize asm, inline or typeof as a keyword, so that code can use these words as identifiers. You can use the keywords

__asm__, __inline__ and __typeof__ instead. ’-ansi’ implies ’-fno-asm’.

In C++, this switch only affects the typeof keyword, since asm and inline are standard keywords. You may want to use the

’-fno-gnu-keywords’ flag instead, as it also disables the other, C++-specific, extension keywords such as headof.

-fno-builtin

Don’t recognize builtin functions that do not begin with two leading underscores. Currently, the functions affected include abort,

abs, alloca, cos, exit, fabs, ffs, labs, memcmp, memcpy, sin, sqrt, strcmp, strcpy, and strlen.

GCC normally generates special code to handle certain builtin functions more efficiently; for instance, calls to alloca may become

single instructions that adjust the stack directly, and calls to memcpy may become inline copy loops. The resulting code is often both

smaller and faster, but since the function calls no longer appear as such, you cannot set a breakpoint on those calls, nor can you

change the behavior of the functions by linking with a different library.

The ’-ansi’ option prevents alloca and ffs from being builtin functions, since these functions do not have an ANSI standard

meaning.

-trigraphs

Support ANSI C trigraphs. You don’t want to know about this brain-damage. The ’-ansi’ option implies ’-trigraphs’.

-traditional

Attempt to support some aspects of traditional C compilers. Specifically:

All extern declarations take effect globally even if they are written inside of a function definition. This includes

implicit declarations of functions.

The newer keywords typeof, inline, signed, const and volatile are not recognized. (You can still use the

alternative keywords such as __typeof__, __inline__, and so on.)

Comparisons between pointers and integers are always allowed.

Integer types unsigned short and unsigned char promote to unsigned int.

Out-of-range floating point literals are not an error.

A.2. GCC - THE GNU C/C++ COMPILER 533

Certain constructs which ANSI regards as a single invalid preprocessing number, such as ’0xe-0xd’, are treated as

expressions instead.

String ’’constants’’ are not necessarily constant; they are stored in writable space, and identical looking constants are

allocated separately. (This is the same as the effect of ’-fwritable-strings’.)

All automatic variables not declared register are preserved by longjmp. Ordinarily, GNU C follows ANSI C:

automatic variables not declared volatile may be clobbered.

The character escape sequences ’\x’ and ’\a’ evaluate as the literal characters ’x’ and ’a’ respectively. Without

’-traditional’, ’\x’ is a prefix for the hexadecimal representation of a character, and ’\a’ produces a bell.

In C++ programs, assignment to this is permitted with ’-traditional’. (The option ’-fthis-is-variable’

also has this effect.)

You may wish to use ’-fno-builtin’ as well as ’-traditional’ if your program uses names that are normally GNU C builtin

functions for other purposes of its own.

You cannot use ’-traditional’ if you include any header files that rely on ANSI C features. Some vendors are starting to ship

systems with ANSI C header files and you cannot use ’-traditional’ on such systems to compile files that include any system

headers.

In the preprocessor, comments convert to nothing at all, rather than to a space. This allows traditional token concatenation.

In preprocessing directive, the ’#’ symbol must appear as the first character of a line.

In the preprocessor, macro arguments are recognized within string constants in a macro definition (and their values are stringified,

though without additional quote marks, when they appear in such a context). The preprocessor always considers a string constant to

end at a newline.

The predefined macro __STDC__ is not defined when you use ’-traditional’, but __GNUC__ is (since the GNU extensions which

__GNUC__ indicates are not affected by ’-traditional’). If you need to write header files that work differently depending on

whether ’-traditional’ is in use, by testing both of these predefined macros you can distinguish four situations: GNU C,

traditional GNU C, other ANSI C compilers, and other old C compilers. The predefined macro __STDC_VERSION__ is also not

defined when you use ’-traditional’. See section ’Standard Predefined Macros’ in The C Preprocessor, for more discussion of

these and other predefined macros.

The preprocessor considers a string constant to end at a newline (unless the newline is escaped with ’\’). (Without

534APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

’-traditional’, string constants can contain the newline character as typed.)

-traditional-cpp

Attempt to support some aspects of traditional C preprocessors. This includes the last five items in the table immediately above, but

none of the other effects of ’-traditional’.

-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third arguments. The value of such an expression is void.

-funsigned-char

Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like unsigned char by default or like signed char by

default.

Ideally, a portable program should always use signed char or unsigned char when it depends on the signedness of an object.

But many programs have been written to use plain char and expect it to be signed, or expect it to be unsigned, depending on the

machines they were written for. This option, and its inverse, let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned char, even though its behavior is always just like

one of those two.

-fsigned-char

Let the type char be signed, like signed char.

Note that this is equivalent to ’-fno-unsigned-char’, which is the negative form of ’-funsigned-char’. Likewise, the option

’-fno-signed-char’ is equivalent to ’-funsigned-char’.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields

These options control whether a bitfield is signed or unsigned, when the declaration does not use either signed or unsigned. By

default, such a bitfield is signed, because this is consistent: the basic integer types such as int are signed types.

However, when ’-traditional’ is used, bitfields are all unsigned no matter what.

-fwritable-strings

A.2. GCC - THE GNU C/C++ COMPILER 535

Store string constants in the writable data segment and don’t uniquize them. This is for compatibility with old programs which

assume they can write into string constants. The option ’-traditional’ also has this effect.

Writing into string constants is a very bad idea; ’’constants’’ should be constant.

-fallow-single-precision

Do not promote single precision math operations to double precision, even when compiling with ’-traditional’.

Traditional K&R C promotes all floating point operations to double precision, regardless of the sizes of the operands. On the

architecture for which you are compiling, single precision may be faster than double precision. If you must use ’-traditional’,

but want to use single precision operations when the operands are single precision, use this option. This option has no effect when

compiling with ANSI or GNU C conventions (the default).

Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful
for C++ programs; but you can also use most of the GNU compiler options
regardless of what language your program is in. For example, you might
compile a file firstClass.C like this:

g++ -g -felide-constructors -O -c firstClass.C
In this example, only ’-felide-constructors’ is an option meant only for

C++ programs; you can use the other options with any language supported
by GNU CC.

Here is a list of options that are only for compiling C++ programs:

-fno-access-control

Turn off all access checking. This switch is mainly useful for working around bugs in the access control code.

-fall-virtual

Treat all possible member functions as virtual, implicitly. All member functions (except for constructor functions and new or delete

member operators) are treated as virtual functions of the class where they appear.

This does not mean that all calls to these member functions will be made through the internal table of virtual functions. Under some

circumstances, the compiler can determine that a call to a given virtual function can be made directly; in these cases the calls are direct

in any case.

-fcheck-new

536APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

Check that the pointer returned by operator new is non-null before attempting to modify the storage allocated. The current Working

Paper requires that operator new never return a null pointer, so this check is normally unnecessary.

-fconserve-space

Put uninitialized or runtime-initialized global variables into the common segment, as C does. This saves space in the executable at the

cost of not diagnosing duplicate definitions. If you compile with this flag and your program mysteriously crashes after main() has

completed, you may have an object that is being destroyed twice because two definitions were merged.

-fdollars-in-identifiers

Accept ’$’ in identifiers. You can also explicitly prohibit use of ’$’ with the option ’-fno-dollars-in-identifiers’. (GNU

C++ allows ’$’ by default on some target systems but not others.) Traditional C allowed the character ’$’ to form part of

identifiers. However, ANSI C and C++ forbid ’$’ in identifiers.

-fenum-int-equiv

Anachronistically permit implicit conversion of int to enumeration types. Current C++ allows conversion of enum to int, but not

the other way around.

-fexternal-templates

Cause template instantiations to obey ’#pragma interface’ and ’implementation’; template instances are emitted or not

according to the location of the template definition. See section Where’s the Template?, for more information.

-falt-external-templates

Similar to -fexternal-templates, but template instances are emitted or not according to the place where they are first instantiated. See

section Where’s the Template?, for more information.

-fno-gnu-keywords

Do not recognize classof, headof, signature, sigof or typeof as a keyword, so that code can use these words as identifiers.

You can use the keywords __classof__, __headof__, __signature__, __sigof__, and __typeof__ instead. ’-ansi’ implies

’-fno-gnu-keywords’.

-fno-implicit-templates

Never emit code for templates which are instantiated implicitly (i.e. by use); only emit code for explicit instantiations. See section

Where’s the Template?, for more information.

-fhandle-signatures

Recognize the signature and sigof keywords for specifying abstract types. The default (’-fno-handle-signatures’) is not to

recognize them. See section Type Abstraction using Signatures.

A.2. GCC - THE GNU C/C++ COMPILER 537

-fhuge-objects

Support virtual function calls for objects that exceed the size representable by a ’short int’. Users should not use this flag by

default; if you need to use it, the compiler will tell you so. If you compile any of your code with this flag, you must compile all of

your code with this flag (including libg++, if you use it).

This flag is not useful when compiling with -fvtable-thunks.

-fno-implement-inlines

To save space, do not emit out-of-line copies of inline functions controlled by ’#pragma implementation’. This will cause linker

errors if these functions are not inlined everywhere they are called.

-fmemoize-lookups

-fsave-memoized

Use heuristics to compile faster. These heuristics are not enabled by default, since they are only effective for certain input files. Other

input files compile more slowly.

The first time the compiler must build a call to a member function (or reference to a data member), it must (1) determine whether the

class implements member functions of that name; (2) resolve which member function to call (which involves figuring out what sorts

of type conversions need to be made); and (3) check the visibility of the member function to the caller. All of this adds up to slower

compilation. Normally, the second time a call is made to that member function (or reference to that data member), it must go through

the same lengthy process again. This means that code like this:

cout << ’’This ’’ << p << ’’ has ’’ << n << ’’ legs.\n’’;

makes six passes through all three steps. By using a software cache, a ’’hit’’ significantly reduces this cost. Unfortunately, using the

cache introduces another layer of mechanisms which must be implemented, and so incurs its own overhead. ’-fmemoize-lookups’

enables the software cache.

Because access privileges (visibility) to members and member functions may differ from one function context to the next, G++ may

need to flush the cache. With the ’-fmemoize-lookups’ flag, the cache is flushed after every function that is compiled. The

’-fsave-memoized’ flag enables the same software cache, but when the compiler determines that the context of the last function

compiled would yield the same access privileges of the next function to compile, it preserves the cache. This is most helpful when

defining many member functions for the same class: with the exception of member functions which are friends of other classes, each

member function has exactly the same access privileges as every other, and the cache need not be flushed.

The code that implements these flags has rotted; you should probably avoid using them.

-fstrict-prototype

538APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

Within an ’extern ’’C’’’ linkage specification, treat a function declaration with no arguments, such as ’int foo ();’, as declaring

the function to take no arguments. Normally, such a declaration means that the function foo can take any combination of arguments,

as in C. ’-pedantic’ implies ’-fstrict-prototype’ unless overridden with ’-fno-strict-prototype’.

This flag no longer affects declarations with C++ linkage.

-fno-nonnull-objects

Don’t assume that a reference is initialized to refer to a valid object. Although the current C++ Working Paper prohibits null

references, some old code may rely on them, and you can use ’-fno-nonnull-objects’ to turn on checking.

At the moment, the compiler only does this checking for conversions to virtual base classes.

-foperator-names

Recognize the operator name keywords and, bitand, bitor, compl, not, or and xor as synonyms for the symbols they refer to.

’-ansi’ implies ’-foperator-names’.

-fthis-is-variable

Permit assignment to this. The incorporation of user-defined free store management into C++ has made assignment to ’this’ an

anachronism. Therefore, by default it is invalid to assign to this within a class member function; that is, GNU C++ treats ’this’ in

a member function of class X as a non-lvalue of type ’X *’. However, for backwards compatibility, you can make it valid with

’-fthis-is-variable’.

-fvtable-thunks

Use ’thunks’ to implement the virtual function dispatch table (’vtable’). The traditional (cfront-style) approach to implementing

vtables was to store a pointer to the function and two offsets for adjusting the ’this’ pointer at the call site. Newer implementations

store a single pointer to a ’thunk’ function which does any necessary adjustment and then calls the target function.

This option also enables a heuristic for controlling emission of vtables; if a class has any non-inline virtual functions, the vtable will

be emitted in the translation unit containing the first one of those.

-nostdinc++

Do not search for header files in the standard directories specific to C++, but do still search the other standard directories. (This

option is used when building libg++.)

-traditional

For C++ programs (in addition to the effects that apply to both C and C++), this has the same effect as ’-fthis-is-variable’.

See section Options Controlling C Dialect.

A.2. GCC - THE GNU C/C++ COMPILER 539

In addition, these optimization, warning, and code generation options have meanings only for C++ programs:

-fno-default-inline

Do not assume ’inline’ for functions defined inside a class scope. See section Options That Control Optimization.

-Wenum-clash

-Woverloaded-virtual

-Wtemplate-debugging

Warnings that apply only to C++ programs. See section Options to Request or Suppress Warnings.

+en Control how virtual function definitions are used, in a fashion compatible with cfront 1.x. See section Options for Code Generation

Conventions.

Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not
inherently erroneous but which are risky or suggest there may have been an
error.

You can request many specific warnings with options beginning ’-W’, for
example ’-Wimplicit’ to request warnings on implicit declarations. Each of
these specific warning options also has a negative form beginning ’-Wno-’ to
turn off warnings; for example, ’-Wno-implicit’. This manual lists only one
of the two forms, whichever is not the default.

These options control the amount and kinds of warnings produced by
GNU CC:

-fsyntax-only

Check the code for syntax errors, but don’t do anything beyond that.

-pedantic

Issue all the warnings demanded by strict ANSI standard C; reject all programs that use forbidden extensions.

Valid ANSI standard C programs should compile properly with or without this option (though a rare few will require ’-ansi’).

However, without this option, certain GNU extensions and traditional C features are supported as well. With this option, they are

rejected.

’-pedantic’ does not cause warning messages for use of the alternate keywords whose names begin and end with ’__’. Pedantic

warnings are also disabled in the expression that follows __extension__. However, only system header files should use these

540APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

escape routes; application programs should avoid them. See section Alternate Keywords.

This option is not intended to be useful; it exists only to satisfy pedants who would otherwise claim that GNU CC fails to support

the ANSI standard.

Some users try to use ’-pedantic’ to check programs for strict ANSI C conformance. They soon find that it does not do quite what

they want: it finds some non-ANSI practices, but not all--only those for which ANSI C requires a diagnostic.

A feature to report any failure to conform to ANSI C might be useful in some instances, but would require considerable additional

work and would be quite different from ’-pedantic’. We recommend, rather, that users take advantage of the extensions of GNU

C and disregard the limitations of other compilers. Aside from certain supercomputers and obsolete small machines, there is less and

less reason ever to use any other C compiler other than for bootstrapping GNU CC.

-pedantic-errors

Like ’-pedantic’, except that errors are produced rather than warnings.

-w Inhibit all warning messages.

-Wno-import

Inhibit warning messages about the use of ’#import’.

-Wchar-subscripts

Warn if an array subscript has type char. This is a common cause of error, as programmers often forget that this type is signed on

some machines.

-Wcomment

Warn whenever a comment-start sequence ’/*’ appears in a comment.

-Wformat

Check calls to printf and scanf, etc., to make sure that the arguments supplied have types appropriate to the format string

specified.

-Wimplicit

Warn whenever a function or parameter is implicitly declared.

-Wparentheses

Warn if parentheses are omitted in certain contexts, such as when there is an assignment in a context where a truth value is expected,

or when operators are nested whose precedence people often get confused about.

A.2. GCC - THE GNU C/C++ COMPILER 541

-Wreturn-type

Warn whenever a function is defined with a return-type that defaults to int. Also warn about any return statement with no

return-value in a function whose return-type is not void.

-Wswitch

Warn whenever a switch statement has an index of enumeral type and lacks a case for one or more of the named codes of that

enumeration. (The presence of a default label prevents this warning.) case labels outside the enumeration range also provoke

warnings when this option is used.

-Wtrigraphs

Warn if any trigraphs are encountered (assuming they are enabled).

-Wunused

Warn whenever a variable is unused aside from its declaration, whenever a function is declared static but never defined, whenever a

label is declared but not used, and whenever a statement computes a result that is explicitly not used.

To suppress this warning for an expression, simply cast it to void. For unused variables and parameters, use the ’unused’ attribute

(see section Specifying Attributes of Variables).

-Wuninitialized

An automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation, because they require data flow information that is computed only when

optimizing. If you don’t specify ’-O’, you simply won’t get these warnings.

These warnings occur only for variables that are candidates for register allocation. Therefore, they do not occur for a variable that is

declared volatile, or whose address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for structures,

unions or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to compute a value that itself is never used, because such

computations may be deleted by data flow analysis before the warnings are printed.

These warnings are made optional because GNU CC is not smart enough to see all the reasons why the code might be correct despite

appearing to have an error. Here is one example of how this can happen:

{

int x;

542APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

switch (y)

{

case 1: x = 1;

break;

case 2: x = 4;

break;

case 3: x = 5;

}

foo (x);

}

If the value of y is always 1, 2 or 3, then x is always initialized, but GNU CC doesn’t know this. Here is another common case:

{

int save_y;

if (change_y) save_y = y, y = new_y;

...

if (change_y) y = save_y;

}

This has no bug because save_y is used only if it is set.

Some spurious warnings can be avoided if you declare all the functions you use that never return as noreturn. See section Declaring

Attributes of Functions.

-Wenum-clash

Warn about conversion between different enumeration types. (C++ only).

-Wreorder (C++ only)

Warn when the order of member initializers given in the code does not match the order in which they must be executed. For instance:

struct A {

int i;

int j;

A(): j (0), i (1) { }

};

Here the compiler will warn that the member initializers for ’i’ and ’j’ will be rearranged to match the declaration order of the

A.2. GCC - THE GNU C/C++ COMPILER 543

members.

-Wtemplate-debugging

When using templates in a C++ program, warn if debugging is not yet fully available (C++ only).

-Wall All of the above ’-W’ options combined. These are all the options which pertain to usage that we recommend avoiding and that we

believe is easy to avoid, even in conjunction with macros.

The remaining ’-W...’ options are not implied by ’-Wall’ because they warn about constructions that we consider reasonable to use, on

occasion, in clean programs.

-W Print extra warning messages for these events:

A nonvolatile automatic variable might be changed by a call to longjmp. These warnings as well are possible only

in optimizing compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will be called; in fact, a signal handler could call

it at any point in the code. As a result, you may get a warning even when there is in fact no problem because longjmp

cannot in fact be called at the place which would cause a problem.

A function can return either with or without a value. (Falling off the end of the function body is considered

returning without a value.) For example, this function would evoke such a warning:

foo (a)

{

if (a > 0)

return a;

}

An expression-statement contains no side effects.

An unsigned value is compared against zero with ’<’ or ’<=’.

A comparison like ’x<=y<=z’ appears; this is equivalent to ’(x<=y ? 1 : 0) <= z’, which is a different

interpretation from that of ordinary mathematical notation.

Storage-class specifiers like static are not the first things in a declaration. According to the C Standard, this usage

is obsolescent.

544APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

If ’-Wall’ or ’-Wunused’ is also specified, warn about unused arguments.

An aggregate has a partly bracketed initializer. For example, the following code would evoke such a warning,

because braces are missing around the initializer for x.h:

struct s { int f, g; };

struct t { struct s h; int i; };

struct t x = { 1, 2, 3 };

-Wtraditional

Warn about certain constructs that behave differently in traditional and ANSI C.

Macro arguments occurring within string constants in the macro body. These would substitute the argument in

traditional C, but are part of the constant in ANSI C.

A function declared external in one block and then used after the end of the block.

A switch statement has an operand of type long.

-Wshadow

Warn whenever a local variable shadows another local variable.

-Wid-clash-len

Warn whenever two distinct identifiers match in the first len characters. This may help you prepare a program that will compile with

certain obsolete, brain-damaged compilers.

-Wlarger-than-len

Warn whenever an object of larger than len bytes is defined.

-Wpointer-arith

Warn about anything that depends on the ’’size of’’ a function type or of void. GNU C assigns these types a size of 1, for

convenience in calculations with void * pointers and pointers to functions.

-Wbad-function-cast

Warn whenever a function call is cast to a non-matching type. For example, warn if int malloc() is cast to anything *.

-Wcast-qual

A.2. GCC - THE GNU C/C++ COMPILER 545

Warn whenever a pointer is cast so as to remove a type qualifier from the target type. For example, warn if a const char * is cast

to an ordinary char *.

-Wcast-align

Warn whenever a pointer is cast such that the required alignment of the target is increased. For example, warn if a char * is cast to

an int * on machines where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings

Give string constants the type const char[length] so that copying the address of one into a non-const char * pointer will get a

warning. These warnings will help you find at compile time code that can try to write into a string constant, but only if you have

been very careful about using const in declarations and prototypes. Otherwise, it will just be a nuisance; this is why we did not

make ’-Wall’ request these warnings.

-Wconversion

Warn if a prototype causes a type conversion that is different from what would happen to the same argument in the absence of a

prototype. This includes conversions of fixed point to floating and vice versa, and conversions changing the width or signedness of

a fixed point argument except when the same as the default promotion.

Also, warn if a negative integer constant expression is implicitly converted to an unsigned type. For example, warn about the

assignment x = -1 if x is unsigned. But do not warn about explicit casts like (unsigned) -1.

-Waggregate-return

Warn if any functions that return structures or unions are defined or called. (In languages where you can return an array, this also

elicits a warning.)

-Wstrict-prototypes

Warn if a function is declared or defined without specifying the argument types. (An old-style function definition is permitted

without a warning if preceded by a declaration which specifies the argument types.)

-Wmissing-prototypes

Warn if a global function is defined without a previous prototype declaration. This warning is issued even if the definition itself

provides a prototype. The aim is to detect global functions that fail to be declared in header files.

-Wmissing-declarations

Warn if a global function is defined without a previous declaration. Do so even if the definition itself provides a prototype. Use this

option to detect global functions that are not declared in header files.

-Wredundant-decls

546APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

Warn if anything is declared more than once in the same scope, even in cases where multiple declaration is valid and changes

nothing.

-Wnested-externs

Warn if an extern declaration is encountered within an function.

-Winline

Warn if a function can not be inlined, and either it was declared as inline, or else the ’-finline-functions’ option was given.

-Woverloaded-virtual

Warn when a derived class function declaration may be an error in defining a virtual function (C++ only). In a derived class, the

definitions of virtual functions must match the type signature of a virtual function declared in the base class. With this option, the

compiler warns when you define a function with the same name as a virtual function, but with a type signature that does not match

any declarations from the base class.

-Wsynth (C++ only)

Warn when g++’s synthesis behavior does not match that of cfront. For instance:

struct A {

operator int ();

A& operator = (int);

};

main ()

{

A a,b;

a = b;

}

In this example, g++ will synthesize a default ’A& operator = (const A&);’, while cfront will use the user-defined ’operator

=’.

-Werror

Make all warnings into errors.

A.2. GCC - THE GNU C/C++ COMPILER 547

Options for Debugging Your Program or GNU CC

GNU CC has various special options that are used for debugging either your
program or GCC:

-g Produce debugging information in the operating system’s native format (stabs, COFF, XCOFF, or DWARF). GDB can work with

this debugging information.

On most systems that use stabs format, ’-g’ enables use of extra debugging information that only GDB can use; this extra

information makes debugging work better in GDB but will probably make other debuggers crash or refuse to read the program. If

you want to control for certain whether to generate the extra information, use ’-gstabs+’, ’-gstabs’, ’-gxcoff+’, ’-gxcoff’,

’-gdwarf+’, or ’-gdwarf’ (see below).

Unlike most other C compilers, GNU CC allows you to use ’-g’ with ’-O’. The shortcuts taken by optimized code may

occasionally produce surprising results: some variables you declared may not exist at all; flow of control may briefly move where

you did not expect it; some statements may not be executed because they compute constant results or their values were already at

hand; some statements may execute in different places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it reasonable to use the optimizer for programs that might

have bugs.

The following options are useful when GNU CC is generated with the capability for more than one debugging format.

-ggdb Produce debugging information in the native format (if that is supported), including GDB extensions if at all possible.

-gstabs

Produce debugging information in stabs format (if that is supported), without GDB extensions. This is the format used by DBX on

most BSD systems. On MIPS, Alpha and System V Release 4 systems this option produces stabs debugging output which is not

understood by DBX or SDB. On System V Release 4 systems this option requires the GNU assembler.

-gstabs+

Produce debugging information in stabs format (if that is supported), using GNU extensions understood only by the GNU debugger

(GDB). The use of these extensions is likely to make other debuggers crash or refuse to read the program.

-gcoff Produce debugging information in COFF format (if that is supported). This is the format used by SDB on most System V systems

prior to System V Release 4.

-gxcoff

Produce debugging information in XCOFF format (if that is supported). This is the format used by the DBX debugger on IBM

548APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

RS/6000 systems.

-gxcoff+

Produce debugging information in XCOFF format (if that is supported), using GNU extensions understood only by the GNU

debugger (GDB). The use of these extensions is likely to make other debuggers crash or refuse to read the program, and may cause

assemblers other than the GNU assembler (GAS) to fail with an error.

-gdwarf

Produce debugging information in DWARF format (if that is supported). This is the format used by SDB on most System V Release

4 systems.

-gdwarf+

Produce debugging information in DWARF format (if that is supported), using GNU extensions understood only by the GNU

debugger (GDB). The use of these extensions is likely to make other debuggers crash or refuse to read the program.

-glevel

-ggdblevel

-gstabslevel

-gcofflevel

-gxcofflevel

-gdwarflevel

Request debugging information and also use level to specify how much information. The default level is 2.

Level 1 produces minimal information, enough for making backtraces in parts of the program that you don’t plan to debug. This

includes descriptions of functions and external variables, but no information about local variables and no line numbers.

Level 3 includes extra information, such as all the macro definitions present in the program. Some debuggers support macro

expansion when you use ’-g3’.

-p Generate extra code to write profile information suitable for the analysis program prof. You must use this option when compiling

the source files you want data about, and you must also use it when linking.

-pg Generate extra code to write profile information suitable for the analysis program gprof. You must use this option when compiling

the source files you want data about, and you must also use it when linking.

-a Generate extra code to write profile information for basic blocks, which will record the number of times each basic block is executed,

the basic block start address, and the function name containing the basic block. If ’-g’ is used, the line number and filename of the

start of the basic block will also be recorded. If not overridden by the machine description, the default action is to append to the text

A.2. GCC - THE GNU C/C++ COMPILER 549

file ’bb.out’.

This data could be analyzed by a program like tcov. Note, however, that the format of the data is not what tcov expects. Eventually

GNU gprof should be extended to process this data.

-dletters

Says to make debugging dumps during compilation at times specified by letters. This is used for debugging the compiler. The file

names for most of the dumps are made by appending a word to the source file name (e.g. ’foo.c.rtl’ or ’foo.c.jump’). Here

are the possible letters for use in letters, and their meanings:

’M’ Dump all macro definitions, at the end of preprocessing, and write no output.

’N’ Dump all macro names, at the end of preprocessing.

’D’ Dump all macro definitions, at the end of preprocessing, in addition to normal output.

’y’ Dump debugging information during parsing, to standard error.

’r’ Dump after RTL generation, to ’file.rtl’.

’x’ Just generate RTL for a function instead of compiling it. Usually used with ’r’.

’j’ Dump after first jump optimization, to ’file.jump’.

’s’ Dump after CSE (including the jump optimization that sometimes follows CSE), to ’file.cse’.

’L’ Dump after loop optimization, to ’file.loop’.

’t’ Dump after the second CSE pass (including the jump optimization that sometimes follows CSE), to ’file.cse2’.

’f’ Dump after flow analysis, to ’file.flow’.

’c’ Dump after instruction combination, to the file ’file.combine’.

’S’ Dump after the first instruction scheduling pass, to ’file.sched’.

’l’ Dump after local register allocation, to ’file.lreg’.

’g’ Dump after global register allocation, to ’file.greg’.

’R’ Dump after the second instruction scheduling pass, to ’file.sched2’.

’J’ Dump after last jump optimization, to ’file.jump2’.

’d’ Dump after delayed branch scheduling, to ’file.dbr’.

’k’ Dump after conversion from registers to stack, to ’file.stack’.

’a’ Produce all the dumps listed above.

’m’ Print statistics on memory usage, at the end of the run, to standard error.

’p’ Annotate the assembler output with a comment indicating which pattern and alternative was used.

-fpretend-float When running a cross-compiler, pretend that the target machine uses the same floating point format as the host

machine. This causes incorrect output of the actual floating constants, but the actual instruction sequence will probably be the same

as GNU CC would make when running on the target machine.

-save-temps Store the usual ’’temporary’’ intermediate files permanently; place them in the current directory and name them based on

550APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

the source file. Thus, compiling ’foo.c’ with ’-c -save-temps’ would produce files ’foo.i’ and ’foo.s’, as well as ’foo.o’.

-print-file-name=library Print the full absolute name of the library file library that would be used when linking--and don’t do

anything else. With this option, GNU CC does not compile or link anything; it just prints the file name.

-print-prog-name=program Like ’-print-file-name’, but searches for a program such as ’cpp’.

-print-libgcc-file-name Same as ’-print-file-name=libgcc.a’.

This is useful when you use ’-nostdlib’ or ’-nodefaultlibs’ but you do want to link with ’libgcc.a’. You can do

gcc -nostdlib files... ’gcc -print-libgcc-file-name’

-print-search-dirs Print the name of the configured installation directory and a list of program and library directories gcc will

search--and don’t do anything else.

This is useful when gcc prints the error message ’installation problem, cannot exec cpp: No such file or

directory’. To resolve this you either need to put ’cpp’ and the other compiler components where gcc expects to find them, or

you can set the environment variable GCC_EXEC_PREFIX to the directory where you installed them. Don’t forget the trailing ’/’. See

section Environment Variables Affecting GNU CC.

Options That Control Optimization

These options control various sorts of optimizations:

-O

-O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a large function.

Without ’-O’, the compiler’s goal is to reduce the cost of compilation and to make debugging produce the expected results.

Statements are independent: if you stop the program with a breakpoint between statements, you can then assign a new value to any

variable or change the program counter to any other statement in the function and get exactly the results you would expect from the

source code.

Without ’-O’, the compiler only allocates variables declared register in registers. The resulting compiled code is a little worse than

produced by PCC without ’-O’.

With ’-O’, the compiler tries to reduce code size and execution time.

A.2. GCC - THE GNU C/C++ COMPILER 551

When you specify ’-O’, the compiler turns on ’-fthread-jumps’ and ’-fdefer-pop’ on all machines. The compiler turns on

’-fdelayed-branch’ on machines that have delay slots, and ’-fomit-frame-pointer’ on machines that can support debugging

even without a frame pointer. On some machines the compiler also turns on other flags.

-O2 Optimize even more. GNU CC performs nearly all supported optimizations that do not involve a space-speed tradeoff. The compiler

does not perform loop unrolling or function inlining when you specify ’-O2’. As compared to ’-O’, this option increases both

compilation time and the performance of the generated code.

’-O2’ turns on all optional optimizations except for loop unrolling and function inlining. It also turns on frame pointer elimination on

machines where doing so does not interfere with debugging.

-O3 Optimize yet more. ’-O3’ turns on all optimizations specified by ’-O2’ and also turns on the ’inline-functions’ option.

-O0 Do not optimize.

If you use multiple ’-O’ options, with or without level numbers, the last such option is the one that is effective.

Options of the form ’-fflag’ specify machine-independent flags. Most flags
have both positive and negative forms; the negative form of ’-ffoo’ would be
’-fno-foo’. In the table below, only one of the forms is listed–the one which is
not the default. You can figure out the other form by either removing ’no-’
or adding it.

-ffloat-store

Do not store floating point variables in registers, and inhibit other options that might change whether a floating point value is taken

from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000 where the floating registers (of the 68881) keep

more precision than a double is supposed to have. For most programs, the excess precision does only good, but a few programs

rely on the precise definition of IEEE floating point. Use ’-ffloat-store’ for such programs.

-fno-default-inline

Do not make member functions inline by default merely because they are defined inside the class scope (C++ only). Otherwise,

when you specify ’-O’, member functions defined inside class scope are compiled inline by default; i.e., you don’t need to add

’inline’ in front of the member function name.

-fno-defer-pop

Always pop the arguments to each function call as soon as that function returns. For machines which must pop arguments after a

552APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

function call, the compiler normally lets arguments accumulate on the stack for several function calls and pops them all at once.

-fforce-mem

Force memory operands to be copied into registers before doing arithmetic on them. This may produce better code by making all

memory references potential common subexpressions. When they are not common subexpressions, instruction combination should

eliminate the separate register-load. I am interested in hearing about the difference this makes.

-fforce-addr

Force memory address constants to be copied into registers before doing arithmetic on them. This may produce better code just as

’-fforce-mem’ may. I am interested in hearing about the difference this makes.

-fomit-frame-pointer

Don’t keep the frame pointer in a register for functions that don’t need one. This avoids the instructions to save, set up and restore

frame pointers; it also makes an extra register available in many functions. It also makes debugging impossible on some

machines.

On some machines, such as the Vax, this flag has no effect, because the standard calling sequence automatically handles the frame

pointer and nothing is saved by pretending it doesn’t exist. The machine-description macro FRAME_POINTER_REQUIRED controls

whether a target machine supports this flag. See section Register Usage.

-fno-inline

Don’t pay attention to the inline keyword. Normally this option is used to keep the compiler from expanding any functions inline.

Note that if you are not optimizing, no functions can be expanded inline.

-finline-functions

Integrate all simple functions into their callers. The compiler heuristically decides which functions are simple enough to be worth

integrating in this way.

If all calls to a given function are integrated, and the function is declared static, then the function is normally not output as

assembler code in its own right.

-fkeep-inline-functions

Even if all calls to a given function are integrated, and the function is declared static, nevertheless output a separate run-time

callable version of the function.

-fno-function-cse

Do not put function addresses in registers; make each instruction that calls a constant function contain the function’s address

explicitly.

A.2. GCC - THE GNU C/C++ COMPILER 553

This option results in less efficient code, but some strange hacks that alter the assembler output may be confused by the optimizations

performed when this option is not used.

-ffast-math

This option allows GCC to violate some ANSI or IEEE rules and/or specifications in the interest of optimizing code for speed. For

example, it allows the compiler to assume arguments to the sqrt function are non-negative numbers and that no floating-point values

are NaNs.

This option should never be turned on by any ’-O’ option since it can result in incorrect output for programs which depend on an

exact implementation of IEEE or ANSI rules/specifications for math functions.

The following options control specific optimizations. The ’-O2’ option
turns on all of these optimizations except ’-funroll-loops’ and ’-funroll-all-
loops’. On most machines, the ’-O’ option turns on the ’-fthread-jumps’ and
’-fdelayed-branch’ options, but specific machines may handle it differently.

You can use the following flags in the rare cases when ”fine-tuning” of
optimizations to be performed is desired.

-fstrength-reduce

Perform the optimizations of loop strength reduction and elimination of iteration variables.

-fthread-jumps

Perform optimizations where we check to see if a jump branches to a location where another comparison subsumed by the first is

found. If so, the first branch is redirected to either the destination of the second branch or a point immediately following it,

depending on whether the condition is known to be true or false.

-fcse-follow-jumps

In common subexpression elimination, scan through jump instructions when the target of the jump is not reached by any other path.

For example, when CSE encounters an if statement with an else clause, CSE will follow the jump when the condition tested is

false.

-fcse-skip-blocks

This is similar to ’-fcse-follow-jumps’, but causes CSE to follow jumps which conditionally skip over blocks. When CSE

encounters a simple if statement with no else clause, ’-fcse-skip-blocks’ causes CSE to follow the jump around the body of the

if.

-frerun-cse-after-loop

554APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

Re-run common subexpression elimination after loop optimizations has been performed.

-fexpensive-optimizations

Perform a number of minor optimizations that are relatively expensive.

-fdelayed-branch

If supported for the target machine, attempt to reorder instructions to exploit instruction slots available after delayed branch

instructions.

-fschedule-insns

If supported for the target machine, attempt to reorder instructions to eliminate execution stalls due to required data being unavailable.

This helps machines that have slow floating point or memory load instructions by allowing other instructions to be issued until the

result of the load or floating point instruction is required.

-fschedule-insns2

Similar to ’-fschedule-insns’, but requests an additional pass of instruction scheduling after register allocation has been done.

This is especially useful on machines with a relatively small number of registers and where memory load instructions take more than

one cycle.

-fcaller-saves

Enable values to be allocated in registers that will be clobbered by function calls, by emitting extra instructions to save and restore the

registers around such calls. Such allocation is done only when it seems to result in better code than would otherwise be produced.

This option is enabled by default on certain machines, usually those which have no call-preserved registers to use instead.

-funroll-loops

Perform the optimization of loop unrolling. This is only done for loops whose number of iterations can be determined at compile

time or run time. ’-funroll-loop’ implies both ’-fstrength-reduce’ and ’-frerun-cse-after-loop’.

-funroll-all-loops

Perform the optimization of loop unrolling. This is done for all loops and usually makes programs run more slowly.

’-funroll-all-loops’ implies ’-fstrength-reduce’ as well as ’-frerun-cse-after-loop’.

-fno-peephole

Disable any machine-specific peephole optimizations.

A.2. GCC - THE GNU C/C++ COMPILER 555

Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file
before actual compilation.

If you use the ’-E’ option, nothing is done except preprocessing. Some
of these options make sense only together with ’-E’ because they cause the
preprocessor output to be unsuitable for actual compilation.

-include file

Process file as input before processing the regular input file. In effect, the contents of file are compiled first. Any ’-D’ and ’-U’

options on the command line are always processed before ’-include file’, regardless of the order in which they are written. All

the ’-include’ and ’-imacros’ options are processed in the order in which they are written.

-imacros file

Process file as input, discarding the resulting output, before processing the regular input file. Because the output generated from

file is discarded, the only effect of ’-imacros file’ is to make the macros defined in file available for use in the main input.

Any ’-D’ and ’-U’ options on the command line are always processed before ’-imacros file’, regardless of the order in which

they are written. All the ’-include’ and ’-imacros’ options are processed in the order in which they are written.

-idirafter dir

Add the directory dir to the second include path. The directories on the second include path are searched when a header file is not

found in any of the directories in the main include path (the one that ’-I’ adds to).

-iprefix prefix

Specify prefix as the prefix for subsequent ’-iwithprefix’ options.

-iwithprefix dir

Add a directory to the second include path. The directory’s name is made by concatenating prefix and dir, where prefix was

specified previously with ’-iprefix’. If you have not specified a prefix yet, the directory containing the installed passes of the

compiler is used as the default.

-iwithprefixbefore dir

Add a directory to the main include path. The directory’s name is made by concatenating prefix and dir, as in the case of

’-iwithprefix’.

-isystem dir

Add a directory to the beginning of the second include path, marking it as a system directory, so that it gets the same special

556APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

treatment as is applied to the standard system directories.

-nostdinc

Do not search the standard system directories for header files. Only the directories you have specified with ’-I’ options (and the

current directory, if appropriate) are searched. See section Options for Directory Search, for information on ’-I’.

By using both ’-nostdinc’ and ’-I-’, you can limit the include-file search path to only those directories you specify explicitly.

-undef Do not predefine any nonstandard macros. (Including architecture flags).

-E Run only the C preprocessor. Preprocess all the C source files specified and output the results to standard output or to the specified

output file.

-C Tell the preprocessor not to discard comments. Used with the ’-E’ option.

-P Tell the preprocessor not to generate ’#line’ directives. Used with the ’-E’ option.

-M Tell the preprocessor to output a rule suitable for make describing the dependencies of each object file. For each source file, the

preprocessor outputs one make-rule whose target is the object file name for that source file and whose dependencies are all the

#include header files it uses. This rule may be a single line or may be continued with ’\’-newline if it is long. The list of rules is

printed on standard output instead of the preprocessed C program.

’-M’ implies ’-E’.

Another way to specify output of a make rule is by setting the environment variable DEPENDENCIES_OUTPUT (see section

Environment Variables Affecting GNU CC).

-MM Like ’-M’ but the output mentions only the user header files included with ’#include ’’file’’’. System header files included with

’#include <file>’ are omitted.

-MD Like ’-M’ but the dependency information is written to a file made by replacing ’’.c’’ with ’’.d’’ at the end of the input file names. This

is in addition to compiling the file as specified---’-MD’ does not inhibit ordinary compilation the way ’-M’ does.

In Mach, you can use the utility md to merge multiple dependency files into a single dependency file suitable for using with the

’make’ command.

-MMD Like ’-MD’ except mention only user header files, not system header files.

A.2. GCC - THE GNU C/C++ COMPILER 557

-MG Treat missing header files as generated files and assume they live in the same directory as the source file. If you specify ’-MG’, you

must also specify either ’-M’ or ’-MM’. ’-MG’ is not supported with ’-MD’ or ’-MMD’.

-H Print the name of each header file used, in addition to other normal activities.

-Aquestion(answer)

Assert the answer answer for question, in case it is tested with a preprocessing conditional such as ’#if

#question(answer)’. ’-A-’ disables the standard assertions that normally describe the target machine.

-Dmacro

Define macro macro with the string ’1’ as its definition.

-Dmacro=defn

Define macro macro as defn. All instances of ’-D’ on the command line are processed before any ’-U’ options.

-Umacro

Undefine macro macro. ’-U’ options are evaluated after all ’-D’ options, but before any ’-include’ and ’-imacros’ options.

-dM Tell the preprocessor to output only a list of the macro definitions that are in effect at the end of preprocessing. Used with the ’-E’

option.

-dD Tell the preprocessing to pass all macro definitions into the output, in their proper sequence in the rest of the output.

-dN Like ’-dD’ except that the macro arguments and contents are omitted. Only ’#define name’ is included in the output.

-trigraphs

Support ANSI C trigraphs. The ’-ansi’ option also has this effect.

-Wp,option

Pass option as an option to the preprocessor. If option contains commas, it is split into multiple options at the commas.

Passing Options to the Assembler

You can pass options to the assembler.

-Wa,option

Pass option as an option to the assembler. If option contains commas, it is split into multiple options at the commas.

558APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

Options for Linking

These options come into play when the compiler links object files into an
executable output file. They are meaningless if the compiler is not doing a
link step.

object-file-name

A file name that does not end in a special recognized suffix is considered to name an object file or library. (Object files are

distinguished from libraries by the linker according to the file contents.) If linking is done, these object files are used as input to the

linker.

-c

-S

-E If any of these options is used, then the linker is not run, and object file names should not be used as arguments. See section Options

Controlling the Kind of Output.

-llibrary

Search the library named library when linking.

It makes a difference where in the command you write this option; the linker searches processes libraries and object files in the order

they are specified. Thus, ’foo.o -lz bar.o’ searches library ’z’ after file ’foo.o’ but before ’bar.o’. If ’bar.o’ refers to

functions in ’z’, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually a file named ’liblibrary.a’. The linker then

uses this file as if it had been specified precisely by name.

The directories searched include several standard system directories plus any that you specify with ’-L’.

Normally the files found this way are library files--archive files whose members are object files. The linker handles an archive file by

scanning through it for members which define symbols that have so far been referenced but not defined. But if the file that is found

is an ordinary object file, it is linked in the usual fashion. The only difference between using an ’-l’ option and specifying a file

name is that ’-l’ surrounds library with ’lib’ and ’.a’ and searches several directories.

-lobjc You need this special case of the ’-l’ option in order to link an Objective C program.

-nostartfiles

Do not use the standard system startup files when linking. The standard system libraries are used normally, unless -nostdlib or

-nodefaultlibs is used.

A.2. GCC - THE GNU C/C++ COMPILER 559

-nodefaultlibs

Do not use the standard system libraries when linking. Only the libraries you specify will be passed to the linker. The standard

startup files are used normally, unless -nostartfiles is used.

-nostdlib

Do not use the standard system startup files or libraries when linking. No startup files and only the libraries you specify will be

passed to the linker.

One of the standard libraries bypassed by ’-nostdlib’ and ’-nodefaultlibs’ is ’libgcc.a’, a library of internal subroutines

that GNU CC uses to overcome shortcomings of particular machines, or special needs for some languages. (See section Interfacing

to GNU CC Output, for more discussion of ’libgcc.a’.) In most cases, you need ’libgcc.a’ even when you want to avoid other

standard libraries. In other words, when you specify ’-nostdlib’ or ’-nodefaultlibs’ you should usually specify ’-lgcc’ as

well. This ensures that you have no unresolved references to internal GNU CC library subroutines. (For example, ’__main’, used

to ensure C++ constructors will be called; see section collect2.)

-s Remove all symbol table and relocation information from the executable.

-static

On systems that support dynamic linking, this prevents linking with the shared libraries. On other systems, this option has no effect.

-shared

Produce a shared object which can then be linked with other objects to form an executable. Only a few systems support this option.

-symbolic

Bind references to global symbols when building a shared object. Warn about any unresolved references (unless overridden by the

link editor option ’-Xlinker -z -Xlinker defs’). Only a few systems support this option.

-Xlinker option

Pass option as an option to the linker. You can use this to supply system-specific linker options which GNU CC does not know

how to recognize.

If you want to pass an option that takes an argument, you must use ’-Xlinker’ twice, once for the option and once for the

argument. For example, to pass ’-assert definitions’, you must write ’-Xlinker -assert -Xlinker definitions’. It

does not work to write ’-Xlinker ’’-assert definitions’’’, because this passes the entire string as a single argument, which is

not what the linker expects.

-Wl,option

Pass option as an option to the linker. If option contains commas, it is split into multiple options at the commas.

560APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

-u symbol

Pretend the symbol symbol is undefined, to force linking of library modules to define it. You can use ’-u’ multiple times with

different symbols to force loading of additional library modules.

Options for Directory Search

These options specify directories to search for header files, for libraries and
for parts of the compiler:

-Idir Add the directory directory to the head of the list of directories to be searched for header files. This can be used to override a system

header file, substituting your own version, since these directories are searched before the system header file directories. If you use

more than one ’-I’ option, the directories are scanned in left-to-right order; the standard system directories come after.

-I- Any directories you specify with ’-I’ options before the ’-I-’ option are searched only for the case of ’#include ’’file’’’; they

are not searched for ’#include <file>’.

If additional directories are specified with ’-I’ options after the ’-I-’, these directories are searched for all ’#include’ directives.

(Ordinarily all ’-I’ directories are used this way.)

In addition, the ’-I-’ option inhibits the use of the current directory (where the current input file came from) as the first search

directory for ’#include ’’file’’’. There is no way to override this effect of ’-I-’. With ’-I.’ you can specify searching the

directory which was current when the compiler was invoked. That is not exactly the same as what the preprocessor does by default,

but it is often satisfactory.

’-I-’ does not inhibit the use of the standard system directories for header files. Thus, ’-I-’ and ’-nostdinc’ are independent.

-Ldir Add directory dir to the list of directories to be searched for ’-l’.

-Bprefix

This option specifies where to find the executables, libraries, include files, and data files of the compiler itself.

The compiler driver program runs one or more of the subprograms ’cpp’, ’cc1’, ’as’ and ’ld’. It tries prefix as a prefix for

each program it tries to run, both with and without ’machine/version/’ (see section Specifying Target Machine and Compiler

Version).

For each subprogram to be run, the compiler driver first tries the ’-B’ prefix, if any. If that name is not found, or if ’-B’ was not

specified, the driver tries two standard prefixes, which are ’/usr/lib/gcc/’ and ’/usr/local/lib/gcc-lib/’. If neither of

A.2. GCC - THE GNU C/C++ COMPILER 561

those results in a file name that is found, the unmodified program name is searched for using the directories specified in your ’PATH’

environment variable.

’-B’ prefixes that effectively specify directory names also apply to libraries in the linker, because the compiler translates these

options into ’-L’ options for the linker. They also apply to includes files in the preprocessor, because the compiler translates these

options into ’-isystem’ options for the preprocessor. In this case, the compiler appends ’include’ to the prefix.

The run-time support file ’libgcc.a’ can also be searched for using the ’-B’ prefix, if needed. If it is not found there, the two

standard prefixes above are tried, and that is all. The file is left out of the link if it is not found by those means.

Another way to specify a prefix much like the ’-B’ prefix is to use the environment variable GCC_EXEC_PREFIX. See section

Environment Variables Affecting GNU CC.

Specifying Target Machine and Compiler Version

By default, GNU CC compiles code for the same type of machine that you
are using. However, it can also be installed as a cross-compiler, to compile
for some other type of machine. In fact, several different configurations of
GNU CC, for different target machines, can be installed side by side. Then
you specify which one to use with the ’-b’ option.

In addition, older and newer versions of GNU CC can be installed side
by side. One of them (probably the newest) will be the default, but you may
sometimes wish to use another.

-b machine

The argument machine specifies the target machine for compilation. This is useful when you have installed GNU CC as a

cross-compiler.

The value to use for machine is the same as was specified as the machine type when configuring GNU CC as a cross-compiler. For

example, if a cross-compiler was configured with ’configure i386v’, meaning to compile for an 80386 running System V, then

you would specify ’-b i386v’ to run that cross compiler.

When you do not specify ’-b’, it normally means to compile for the same type of machine that you are using.

-V version

The argument version specifies which version of GNU CC to run. This is useful when multiple versions are installed. For

example, version might be ’2.0’, meaning to run GNU CC version 2.0.

562APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

The default version, when you do not specify ’-V’, is the last version of GNU CC that you installed.

The ’-b’ and ’-V’ options actually work by controlling part of the file
name used for the executable files and libraries used for compilation. A
given version of GNU CC, for a given target machine, is normally kept in
the directory ’/usr/local/lib/gcc-lib/machine/version’.

Thus, sites can customize the effect of ’-b’ or ’-V’ either by changing the
names of these directories or adding alternate names (or symbolic links). If in
directory ’/usr/local/lib/gcc-lib/’ the file ’80386’ is a link to the file ’i386v’,
then ’-b 80386’ becomes an alias for ’-b i386v’.

In one respect, the ’-b’ or ’-V’ do not completely change to a different
compiler: the top-level driver program gcc that you originally invoked con-
tinues to run and invoke the other executables (preprocessor, compiler per
se, assembler and linker) that do the real work. However, since no real work
is done in the driver program, it usually does not matter that the driver
program in use is not the one for the specified target and version.

The only way that the driver program depends on the target machine is
in the parsing and handling of special machine-specific options. However,
this is controlled by a file which is found, along with the other executables,
in the directory for the specified version and target machine. As a result, a
single installed driver program adapts to any specified target machine and
compiler version.

The driver program executable does control one significant thing, how-
ever: the default version and target machine. Therefore, you can install
different instances of the driver program, compiled for different targets or
versions, under different names.

For example, if the driver for version 2.0 is installed as ogcc and that for
version 2.1 is installed as gcc, then the command gcc will use version 2.1 by
default, while ogcc will use 2.0 by default. However, you can choose either
version with either command with the ’-V’ option.

Environment Variables Affecting GNU CC

This section describes several environment variables that affect how GNU
CC operates. They work by specifying directories or prefixes to use when
searching for various kinds of files.

Note that you can also specify places to search using options such as
’-B’, ’-I’ and ’-L’ (see section Options for Directory Search). These take

A.2. GCC - THE GNU C/C++ COMPILER 563

precedence over places specified using environment variables, which in turn
take precedence over those specified by the configuration of GNU CC. See
section Controlling the Compilation Driver, ’gcc’.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files. GNU CC uses temporary files to hold the output of one stage of

compilation which is to be used as input to the next stage: for example, the output of the preprocessor, which is the input to the

compiler proper.

GCC_EXEC_PREFIX

If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the subprograms executed by the compiler. No slash is added

when this prefix is combined with the name of a subprogram, but you can specify a prefix that ends with a slash if you wish.

If GNU CC cannot find the subprogram using the specified prefix, it tries looking in the usual places for the subprogram.

The default value of GCC_EXEC_PREFIX is ’prefix/lib/gcc-lib/’ where prefix is the value of prefix when you ran the

’configure’ script.

Other prefixes specified with ’-B’ take precedence over this prefix.

This prefix is also used for finding files such as ’crt0.o’ that are used for linking.

In addition, the prefix is used in an unusual way in finding the directories to search for header files. For each of the standard

directories whose name normally begins with ’/usr/local/lib/gcc-lib’ (more precisely, with the value of GCC_INCLUDE_DIR),

GNU CC tries replacing that beginning with the specified prefix to produce an alternate directory name. Thus, with ’-Bfoo/’, GNU

CC will search ’foo/bar’ where it would normally search ’/usr/local/lib/bar’. These alternate directories are searched first;

the standard directories come next.

COMPILER_PATH

The value of COMPILER_PATH is a colon-separated list of directories, much like PATH. GNU CC tries the directories thus specified

when searching for subprograms, if it can’t find the subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH

The value of LIBRARY_PATH is a colon-separated list of directories, much like PATH. When configured as a native compiler, GNU

CC tries the directories thus specified when searching for special linker files, if it can’t find them using GCC_EXEC_PREFIX. Linking

using GNU CC also uses these directories when searching for ordinary libraries for the ’-l’ option (but directories specified with

’-L’ come first).

C_INCLUDE_PATH

564APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

CPLUS_INCLUDE_PATH

OBJC_INCLUDE_PATH

These environment variables pertain to particular languages. Each variable’s value is a colon-separated list of directories, much like

PATH. When GNU CC searches for header files, it tries the directories listed in the variable for the language you are using, after the

directories specified with ’-I’ but before the standard header file directories.

DEPENDENCIES_OUTPUT

If this variable is set, its value specifies how to output dependencies for Make based on the header files processed by the compiler.

This output looks much like the output from the ’-M’ option (see section Options Controlling the Preprocessor), but it goes to a

separate file, and is in addition to the usual results of compilation.

The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the Make rules are written to that file, guessing the target

name from the source file name. Or the value can have the form ’file target’, in which case the rules are written to file file

using target as the target name.

Running Protoize

The program protoize is an optional part of GNU C. You can use it to add
prototypes to a program, thus converting the program to ANSI C in one
respect. The companion program unprotoize does the reverse: it removes
argument types from any prototypes that are found.

When you run these programs, you must specify a set of source files as
command line arguments. The conversion programs start out by compiling
these files to see what functions they define. The information gathered about
a file foo is saved in a file named ’foo.X’.

After scanning comes actual conversion. The specified files are all eligible
to be converted; any files they include (whether sources or just headers) are
eligible as well.

But not all the eligible files are converted. By default, protoize and
unprotoize convert only source and header files in the current directory. You
can specify additional directories whose files should be converted with the
’-d directory’ option. You can also specify particular files to exclude with the
’-x file’ option. A file is converted if it is eligible, its directory name matches
one of the specified directory names, and its name within the directory has
not been excluded.

Basic conversion with protoize consists of rewriting most function defini-
tions and function declarations to specify the types of the arguments. The
only ones not rewritten are those for varargs functions.

A.2. GCC - THE GNU C/C++ COMPILER 565

protoize optionally inserts prototype declarations at the beginning of the
source file, to make them available for any calls that precede the function’s
definition. Or it can insert prototype declarations with block scope in the
blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most function dec-
larations to remove any argument types, and rewriting function definitions
to the old-style pre-ANSI form.

Both conversion programs print a warning for any function declaration
or definition that they can’t convert. You can suppress these warnings with
’-q’.

The output from protoize or unprotoize replaces the original source file.
The original file is renamed to a name ending with ’.save’. If the ’.save’ file
already exists, then the source file is simply discarded.

protoize and unprotoize both depend on GNU CC itself to scan the pro-
gram and collect information about the functions it uses. So neither of these
programs will work until GNU CC is installed.

Here is a table of the options you can use with protoize and unprotoize.
Each option works with both programs unless otherwise stated.

-B directory

Look for the file ’SYSCALLS.c.X’ in directory, instead of the usual directory (normally ’/usr/local/lib’). This file contains

prototype information about standard system functions. This option applies only to protoize.

-c compilation-options

Use compilation-options as the options when running gcc to produce the ’.X’ files. The special option ’-aux-info’ is always

passed in addition, to tell gcc to write a ’.X’ file.

Note that the compilation options must be given as a single argument to protoize or unprotoize. If you want to specify several

gcc options, you must quote the entire set of compilation options to make them a single word in the shell.

There are certain gcc arguments that you cannot use, because they would produce the wrong kind of output. These include ’-g’,

’-O’, ’-c’, ’-S’, and ’-o’ If you include these in the compilation-options, they are ignored.

-C Rename files to end in ’.C’ instead of ’.c’. This is convenient if you are converting a C program to C++. This option applies only

to protoize.

-g Add explicit global declarations. This means inserting explicit declarations at the beginning of each source file for each function that

is called in the file and was not declared. These declarations precede the first function definition that contains a call to an undeclared

566APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

function. This option applies only to protoize.

-i string

Indent old-style parameter declarations with the string string. This option applies only to protoize.

unprotoize converts prototyped function definitions to old-style function definitions, where the arguments are declared between the

argument list and the initial ’{’. By default, unprotoize uses five spaces as the indentation. If you want to indent with just one

space instead, use ’-i ’’ ’’’.

-k Keep the ’.X’ files. Normally, they are deleted after conversion is finished.

-l Add explicit local declarations. protoize with ’-l’ inserts a prototype declaration for each function in each block which calls the

function without any declaration. This option applies only to protoize.

-n Make no real changes. This mode just prints information about the conversions that would have been done without ’-n’.

-N Make no ’.save’ files. The original files are simply deleted. Use this option with caution.

-p program

Use the program program as the compiler. Normally, the name ’gcc’ is used.

-q Work quietly. Most warnings are suppressed.

-v Print the version number, just like ’-v’ for gcc.

A.3 Extensions to the C Language Family

GNU C provides several language features not found in ANSI standard C.
(The ’-pedantic’ option directs GNU CC to print a warning message if any
of these features is used.) To test for the availability of these features in con-
ditional compilation, check for a predefined macro GNUC , which is always
defined under GNU CC.

These extensions are available in C and Objective C. Most of them are
also available in C++. See section Extensions to the C++ Language, for
extensions that apply only to C++.

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 567

Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression
in GNU C. This allows you to use loops, switches, and local variables within
an expression.

Recall that a compound statement is a sequence of statements surrounded
by braces; in this construct, parentheses go around the braces. For example:

({ int y = foo (); int z;

if (y > 0) z = y;

else z = - y;

z; })

is a valid (though slightly more complex than necessary) expression for
the absolute value of foo ().

The last thing in the compound statement should be an expression fol-
lowed by a semicolon; the value of this subexpression serves as the value of
the entire construct. (If you use some other kind of statement last within
the braces, the construct has type void, and thus effectively no value.)

This feature is especially useful in making macro definitions ”safe” (so
that they evaluate each operand exactly once). For example, the ”maximum”
function is commonly defined as a macro in standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the
operand has side effects. In GNU C, if you know the type of the operands
(here let’s assume int), you can define the macro safely as follows:

#define maxint(a,b) \

({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as
the value of an enumeration constant, the width of a bit field, or the initial
value of a static variable.

If you don’t know the type of the operand, you can still do this, but you
must use typeof (see section Referring to a Type with typeof) or type naming
(see section Naming an Expression’s Type).

568APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

Locally Declared Labels

Each statement expression is a scope in which local labels can be declared.
A local label is simply an identifier; you can jump to it with an ordinary goto
statement, but only from within the statement expression it belongs to.

A local label declaration looks like this:

__label__ label;

or

__label__ label1, label2, ...;

Local label declarations must come at the beginning of the statement
expression, right after the ’({’, before any ordinary declarations.

The label declaration defines the label name, but does not define the label
itself. You must do this in the usual way, with label:, within the statements
of the statement expression.

The local label feature is useful because statement expressions are often
used in macros. If the macro contains nested loops, a goto can be useful for
breaking out of them. However, an ordinary label whose scope is the whole
function cannot be used: if the macro can be expanded several times in one
function, the label will be multiply defined in that function. A local label
avoids this problem. For example:

#define SEARCH(array, target) \

({ \

__label__ found; \

typeof (target) _SEARCH_target = (target); \

typeof (*(array)) *_SEARCH_array = (array); \

int i, j; \

int value; \

for (i = 0; i < max; i++) \

for (j = 0; j < max; j++) \

if (_SEARCH_array[i][j] == _SEARCH_target) \

{ value = i; goto found; } \

value = -1; \

found: \

value; \

})

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 569

Labels as Values

You can get the address of a label defined in the current function (or a
containing function) with the unary operator ’&&’. The value has type void
*. This value is a constant and can be used wherever a constant of that type
is valid. For example:

void *ptr;

...

ptr = &&foo;

To use these values, you need to be able to jump to one. This is done
with the computed goto statement, goto *exp;. For example,

goto *ptr;

Any expression of type void * is allowed.
One way of using these constants is in initializing a static array that will

serve as a jump table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

goto *array[i];

Note that this does not check whether the subscript is in bounds — array
indexing in C never does that.

Such an array of label values serves a purpose much like that of the switch
statement. The switch statement is cleaner, so use that rather than an array
unless the problem does not fit a switch statement very well.

Another use of label values is in an interpreter for threaded code. The
labels within the interpreter function can be stored in the threaded code for
super-fast dispatching.

You can use this mechanism to jump to code in a different function. If
you do that, totally unpredictable things will happen. The best way to avoid
this is to store the label address only in automatic variables and never pass
it as an argument.

570APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

Constructing Function Calls

Using the built-in functions described below, you can record the arguments
a function received, and call another function with the same arguments,
without knowing the number or types of the arguments.

You can also record the return value of that function call, and later return
that value, without knowing what data type the function tried to return (as
long as your caller expects that data type).

__builtin_apply_args ()

This built-in function returns a pointer of type void * to data describing how to perform a call with the same arguments as were

passed to the current function.

The function saves the arg pointer register, structure value address, and all registers that might be used to pass arguments to a

function into a block of memory allocated on the stack. Then it returns the address of that block.

__builtin_apply (function, arguments, size)

This built-in function invokes function (type void (*)()) with a copy of the parameters described by arguments (type void

*) and size (type int).

The value of arguments should be the value returned by __builtin_apply_args. The argument size specifies the size of the

stack argument data, in bytes.

This function returns a pointer of type void * to data describing how to return whatever value was returned by function. The

data is saved in a block of memory allocated on the stack.

It is not always simple to compute the proper value for size. The value is used by __builtin_apply to compute the amount of

data that should be pushed on the stack and copied from the incoming argument area.

__builtin_return (result)

This built-in function returns the value described by result from the containing function. You should specify, for result, a value

returned by __builtin_apply.

Naming an Expression’s Type

You can give a name to the type of an expression using a typedef declaration
with an initializer. Here is how to define name as a type name for the type
of exp:

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 571

typedef name = exp;

This is useful in conjunction with the statements-within-expressions feature. Here is how the two together can be used to define a safe

’’maximum’’ macro that operates on any arithmetic type:

#define max(a,b) \

({typedef _ta = (a), _tb = (b); \

_ta _a = (a); _tb _b = (b); \

_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substituted for a and b. Eventually we hope to design
a new form of declaration syntax that allows you to declare variables whose
scopes start only after their initializers; this will be a more reliable way to
prevent such conflicts.

Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax
of using of this keyword looks like sizeof, but the construct acts semantically
like a type name defined with typedef.

There are two ways of writing the argument to typeof: with an expression
or with a type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that
of the values of the functions.

Here is an example with a typename as the argument:

typeof (int *)

Here the type described is that of pointers to int.
If you are writing a header file that must work when included in ANSI

C programs, write typeof instead of typeof. See section Alternate Key-
words.

572APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

A typeof-construct can be used anywhere a typedef name could be used.
For example, you can use it in a declaration, in a cast, or inside of sizeof or
typeof.

This declares y with the type of what x points to.

typeof (*x) y;

This declares y as an array of such values.

typeof (*x) y[4];

This declares y as an array of pointers to characters:

typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:

char *y[4];

To see the meaning of the declaration using typeof, and why it might be
a useful way to write, let’s rewrite it with these macros:

#define pointer(T) typeof(T *)

#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:

array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 573

Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as lval-
ues provided their operands are lvalues. This means that you can take their
addresses or store values into them.

Standard C++ allows compound expressions and conditional expressions
as lvalues, and permits casts to reference type, so use of this extension is
deprecated for C++ code.

For example, a compound expression can be assigned, provided the last
expression in the sequence is an lvalue. These two expressions are equivalent:

(a, b) += 5

a, (b += 5)

Similarly, the address of the compound expression can be taken. These
two expressions are equivalent:

&(a, b)

a, &b

A conditional expression is a valid lvalue if its type is not void and the true
and false branches are both valid lvalues. For example, these two expressions
are equivalent:

(a ? b : c) = 5

(a ? b = 5 : (c = 5))

A cast is a valid lvalue if its operand is an lvalue. A simple assignment
whose left-hand side is a cast works by converting the right-hand side first
to the specified type, then to the type of the inner left-hand side expression.
After this is stored, the value is converted back to the specified type to
become the value of the assignment. Thus, if a has type char *, the following
two expressions are equivalent:

(int)a = 5

(int)(a = (char *)(int)5)

An assignment-with-arithmetic operation such as ’+=’ applied to a cast
performs the arithmetic using the type resulting from the cast, and then con-
tinues as in the previous case. Therefore, these two expressions are equiva-
lent:

574APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

(int)a += 5

(int)(a = (char *)(int) ((int)a + 5))

You cannot take the address of an lvalue cast, because the use of its ad-
dress would not work out coherently. Suppose that &(int)f were permitted,
where f has type float. Then the following statement would try to store an
integer bit-pattern where a floating point number belongs:

*&(int)f = 1;

This is quite different from what (int)f = 1 would do — that would
convert 1 to floating point and store it. Rather than cause this inconsistency,
we think it is better to prohibit use of ’&’ on a cast.

If you really do want an int * pointer with the address of f, you can
simply write (int *)&f.

Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the
first operand is nonzero, its value is the value of the conditional expression.

Therefore, the expression

x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

This example is perfectly equivalent to

x ? x : y

In this simple case, the ability to omit the middle operand is not especially
useful. When it becomes useful is when the first operand does, or may (if
it is a macro argument), contain a side effect. Then repeating the operand
in the middle would perform the side effect twice. Omitting the middle
operand uses the value already computed without the undesirable effects of
recomputing it.

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 575

Double-Word Integers

GNU C supports data types for integers that are twice as long as long int.
Simply write long long int for a signed integer, or unsigned long long int for
an unsigned integer. To make an integer constant of type long long int, add
the suffix LL to the integer. To make an integer constant of type unsigned
long long int, add the suffix ULL to the integer.

You can use these types in arithmetic like any other integer types. Ad-
dition, subtraction, and bitwise boolean operations on these types are open-
coded on all types of machines. Multiplication is open-coded if the machine
supports fullword-to-doubleword a widening multiply instruction. Division
and shifts are open-coded only on machines that provide special support.
The operations that are not open-coded use special library routines that
come with GNU CC.

There may be pitfalls when you use long long types for function argu-
ments, unless you declare function prototypes. If a function expects type int
for its argument, and you pass a value of type long long int, confusion will
result because the caller and the subroutine will disagree about the number
of bytes for the argument. Likewise, if the function expects long long int and
you pass int. The best way to avoid such problems is to use prototypes.

subsubsectionComplex Numbers
GNU C supports complex data types. You can declare both complex

integer types and complex floating types, using the keyword complex .
For example,

__complex__ double x;

declares x as a variable whose real part and imaginary part are both of
type double.

__complex__ short int y;

declares y to have real and imaginary parts of type short int; this is not
likely to be useful, but it shows that the set of complex types is complete.

To write a constant with a complex data type, use the suffix ’i’ or ’j’
(either one; they are equivalent). For example, 2.5fi has type complex

float and 3i has type complex int. Such a constant always has a pure
imaginary value, but you can form any complex value you like by adding one
to a real constant.

576APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

To extract the real part of a complex-valued expression exp, write real

exp. Likewise, use imag to extract the imaginary part.
The operator ’∼’ performs complex conjugation when used on a value

with a complex type.
GNU CC can allocate complex automatic variables in a noncontiguous

fashion; it’s even possible for the real part to be in a register while the imag-
inary part is on the stack (or vice-versa). None of the supported debugging
info formats has a way to represent noncontiguous allocation like this, so
GNU CC describes a noncontiguous complex variable as if it were two sepa-
rate variables of noncomplex type. If the variable’s actual name is foo, the
two fictitious variables are named foorealandfooimag. You can examine and
set these two fictitious variables with your debugger.

A future version of GDB will know how to recognize such pairs and treat
them as a single variable with a complex type.

Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last
element of a structure which is really a header for a variable-length object:

struct line {

int length;

char contents[0];

};

{

struct line *thisline = (struct line *)

malloc (sizeof (struct line) + this_length);

thisline->length = this_length;

}

In standard C, you would have to give contents a length of 1, which means
either you waste space or complicate the argument to malloc.

Arrays of Variable Length

Variable-length automatic arrays are allowed in GNU C. These arrays are
declared like any other automatic arrays, but with a length that is not a

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 577

constant expression. The storage is allocated at the point of declaration and
deallocated when the brace-level is exited. For example:

FILE *

concat_fopen (char *s1, char *s2, char *mode)

{

char str[strlen (s1) + strlen (s2) + 1];

strcpy (str, s1);

strcat (str, s2);

return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates the
storage. Jumping into the scope is not allowed; you get an error message for
it.

You can use the function alloca to get an effect much like variable-length
arrays. The function alloca is available in many other C implementations
(but not in all). On the other hand, variable-length arrays are more elegant.

There are other differences between these two methods. Space allocated
with alloca exists until the containing function returns. The space for a
variable-length array is deallocated as soon as the array name’s scope ends.
(If you use both variable-length arrays and alloca in the same function, deal-
location of a variable-length array will also deallocate anything more recently
allocated with alloca.)

You can also use variable-length arrays as arguments to functions:

struct entry

tester (int len, char data[len][len])

{

...

}

The length of an array is computed once when the storage is allocated
and is remembered for the scope of the array in case you access it with sizeof.

If you want to pass the array first and the length afterward, you can use
a forward declaration in the parameter list–another GNU extension.

struct entry

tester (int len; char data[len][len], int len)

578APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

{

...

}

The ’int len’ before the semicolon is a parameter forward declaration, and
it serves the purpose of making the name len known when the declaration of
data is parsed.

You can write any number of such parameter forward declarations in the
parameter list. They can be separated by commas or semicolons, but the last
one must end with a semicolon, which is followed by the ”real” parameter
declarations. Each forward declaration must match a ”real” declaration in
parameter name and data type.

Macros with Variable Numbers of Arguments

In GNU C, a macro can accept a variable number of arguments, much as a
function can. The syntax for defining the macro looks much like that used
for a function. Here is an example:

#define eprintf(format, args...) \

fprintf (stderr, format , ## args)

Here args is a rest argument: it takes in zero or more arguments, as many
as the call contains. All of them plus the commas between them form the
value of args, which is substituted into the macro body where args is used.
Thus, we have this expansion:

eprintf (’’%s:%d: ’’, input_file_name, line_number)

==>

fprintf (stderr, ’’%s:%d: ’’ , input_file_name, line_number)

Note that the comma after the string constant comes from the definition
of eprintf, whereas the last comma comes from the value of args.

The reason for using ’##’ is to handle the case when args matches no
arguments at all. In this case, args has an empty value. In this case, the
second comma in the definition becomes an embarrassment: if it got through
to the expansion of the macro, we would get something like this:

fprintf (stderr, ’’success!\n’’ ,);

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 579

which is invalid C syntax. ’##’ gets rid of the comma, so we get the
following instead:

fprintf (stderr, ’’success!\n’’);

This is a special feature of the GNU C preprocessor: ’##’ before a rest
argument that is empty discards the preceding sequence of non-whitespace
characters from the macro definition. (If another macro argument precedes,
none of it is discarded.)

It might be better to discard the last preprocessor token instead of the last
preceding sequence of non-whitespace characters; in fact, we may someday
change this feature to do so. We advise you to write the macro definition
so that the preceding sequence of non-whitespace characters is just a single
token, so that the meaning will not change if we change the definition of this
feature.

Non-Lvalue Arrays May Have Subscripts

Subscripting is allowed on arrays that are not lvalues, even though the unary
’&’ operator is not. For example, this is valid in GNU C though not valid in
other C dialects:

struct foo {int a[4];};

struct foo f();

bar (int index)

{

return f().a[index];

}

Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointers
to void and on pointers to functions. This is done by treating the size of a
void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on function
types, and returns 1.

The option ’-Wpointer-arith’ requests a warning if these extensions are
used.

580APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

Non-Constant Initializers

As in standard C++, the elements of an aggregate initializer for an automatic
variable are not required to be constant expressions in GNU C. Here is an
example of an initializer with run-time varying elements:

foo (float f, float g)

{

float beat_freqs[2] = { f-g, f+g };

...

}

Constructor Expressions

GNU C supports constructor expressions. A constructor looks like a cast
containing an initializer. Its value is an object of the type specified in the
cast, containing the elements specified in the initializer.

Usually, the specified type is a structure. Assume that struct foo and
structure are declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a constructor:

structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:

{

struct foo temp = {x + y, ’a’, 0};

structure = temp;

}

You can also construct an array. If all the elements of the constructor
are (made up of) simple constant expressions, suitable for use in initializers,
then the constructor is an lvalue and can be coerced to a pointer to its first
element, as shown here:

char **foo = (char *[]) { ’’x’’, ’’y’’, ’’z’’ };

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 581

Array constructors whose elements are not simple constants are not very
useful, because the constructor is not an lvalue. There are only two valid
ways to use it: to subscript it, or initialize an array variable with it. The
former is probably slower than a switch statement, while the latter does
the same thing an ordinary C initializer would do. Here is an example of
subscripting an array constructor:

output = ((int[]) { 2, x, 28 }) [input];

Constructor expressions for scalar types and union types are is also al-
lowed, but then the constructor expression is equivalent to a cast.

Labeled Elements in Initializers

Standard C requires the elements of an initializer to appear in a fixed or-
der, the same as the order of the elements in the array or structure being
initialized.

In GNU C you can give the elements in any order, specifying the ar-
ray indices or structure field names they apply to. This extension is not
implemented in GNU C++.

To specify an array index, write ’[index]’ or ’[index] =’ before the element
value. For example,

int a[6] = { [4] 29, [2] = 15 };

is equivalent to

int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being
initialized is automatic.

To initialize a range of elements to the same value, write ’[first ... last] =
value’. For example,

int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };

Note that the length of the array is the highest value specified plus one.
In a structure initializer, specify the name of a field to initialize with ’field-

name:’ before the element value. For example, given the following structure,

582APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

struct point { int x, y; };

the following initialization

struct point p = { y: yvalue, x: xvalue };

is equivalent to

struct point p = { xvalue, yvalue };

Another syntax which has the same meaning is ’.fieldname =’., as shown
here:

struct point p = { .y = yvalue, .x = xvalue };

You can also use an element label (with either the colon syntax or the
period-equal syntax) when initializing a union, to specify which element of
the union should be used. For example,

union foo { int i; double d; };

union foo f = { d: 4 };

will convert 4 to a double to store it in the union using the second element.
By contrast, casting 4 to type union foo would store it into the union as the
integer i, since it is an integer. (See section Cast to a Union Type.)

You can combine this technique of naming elements with ordinary C
initialization of successive elements. Each initializer element that does not
have a label applies to the next consecutive element of the array or structure.
For example,

int a[6] = { [1] = v1, v2, [4] = v4 };

is equivalent to

int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when the
indices are characters or belong to an enum type. For example:

int whitespace[256]

= { [’ ’] = 1, [’\t’] = 1, [’\h’] = 1,

[’\f’] = 1, [’\n’] = 1, [’\r’] = 1 };

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 583

Case Ranges

You can specify a range of consecutive values in a single case label, like this:

case low ... high:

This has the same effect as the proper number of individual case labels,
one for each integer value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:

case ’A’ ... ’Z’:

Be careful: Write spaces around the ..., for otherwise it may be parsed
wrong when you use it with integer values. For example, write this:

case 1 ... 5:

rather than this:

case 1...5:

Cast to a Union Type

A cast to union type is similar to other casts, except that the type specified
is a union type. You can specify the type either with union tag or with a
typedef name. A cast to union is actually a constructor though, not a cast,
and hence does not yield an lvalue like normal casts. (See section Constructor
Expressions.)

The types that may be cast to the union type are those of the members
of the union. Thus, given the following union and variables:

union foo { int i; double d; };

int x;

double y;

both x and y can be cast to type union foo.
Using the cast as the right-hand side of an assignment to a variable of

union type is equivalent to storing in a member of the union:

584APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

union foo u;

...

u = (union foo) x == u.i = x

u = (union foo) y == u.d = y

You can also use the union cast as a function argument:

void hack (union foo);

...

hack ((union foo) x);

Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program
which help the compiler optimize function calls and check your code more
carefully.

The keyword attribute allows you to specify special attributes when
making a declaration. This keyword is followed by an attribute specification
inside double parentheses. Eight attributes, noreturn, const, format, section,
constructor, destructor, unused and weak are currently defined for functions.
Other attributes, including section are supported for variables declarations
(see section Specifying Attributes of Variables) and for types (see section
Specifying Attributes of Types).

You may also specify attributes with ’ ’ preceding and following each
keyword. This allows you to use them in header files without being con-
cerned about a possible macro of the same name. For example, you may use
noreturn instead of noreturn.

noreturn
A few standard library functions, such as abort and exit, cannot return.

GNU CC knows this automatically. Some programs define their own func-
tions that never return. You can declare them noreturn to tell the compiler
this fact. For example,

void fatal () __attribute__ ((noreturn));

void

fatal (...)

{

... /* Print error message. */ ...

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 585

exit (1);

}

The noreturn keyword tells the compiler to assume that fatal cannot
return. It can then optimize without regard to what would happen if fatal
ever did return. This makes slightly better code. More importantly, it helps
avoid spurious warnings of uninitialized variables.

Do not assume that registers saved by the calling function are restored
before calling the noreturn function.

It does not make sense for a noreturn function to have a return type other
than void.

The attribute noreturn is not implemented in GNU C versions earlier
than 2.5. An alternative way to declare that a function does not return,
which works in the current version and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

const
Many functions do not examine any values except their arguments, and

have no effects except the return value. Such a function can be subject to
common subexpression elimination and loop optimization just as an arith-
metic operator would be. These functions should be declared with the at-
tribute const. For example,

int square (int) __attribute__ ((const));

says that the hypothetical function square is safe to call fewer times than
the program says.

The attribute const is not implemented in GNU C versions earlier than
2.5. An alternative way to declare that a function has no side effects, which
works in the current version and in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

586APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

This approach does not work in GNU C++ from 2.6.0 on, since the
language specifies that the ’const’ must be attached to the return value.

Note that a function that has pointer arguments and examines the data
pointed to must not be declared const. Likewise, a function that calls a non-
const function usually must not be const. It does not make sense for a const
function to return void.

format (archetype, string-index, first-to-check)

The format attribute specifies that a function takes printf or scanf style
arguments which should be type-checked against a format string. For exam-
ple, the declaration:

extern int

my_printf (void *my_object, const char *my_format, ...)

__attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my printf for consis-
tency with the printf style format string argument my format.

The parameter archetype determines how the format string is interpreted,
and should be either printf or scanf. The parameter string-index specifies
which argument is the format string argument (starting from 1), while first-
to-check is the number of the first argument to check against the format
string. For functions where the arguments are not available to be checked
(such as vprintf), specify the third parameter as zero. In this case the com-
piler only checks the format string for consistency.

In the example above, the format string (my format) is the second argu-
ment of the function my print, and the arguments to check start with the
third argument, so the correct parameters for the format attribute are 2 and
3.

The format attribute allows you to identify your own functions which
take format strings as arguments, so that GNU CC can check the calls to
these functions for errors. The compiler always checks formats for the ANSI
library functions printf, fprintf, sprintf, scanf, fscanf, sscanf, vprintf, vfprintf
and vsprintf whenever such warnings are requested (using ’-Wformat’), so
there is no need to modify the header file ’stdio.h’.

section (’’section-name’’)

Normally, the compiler places the code it generates in the text section.
Sometimes, however, you need additional sections, or you need certain par-
ticular functions to appear in special sections. The section attribute specifies
that a function lives in a particular section. For example, the declaration:

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 587

extern void foobar (void) __attribute__ ((section (’’bar’’)));

puts the function foobar in the bar section.
Some file formats do not support arbitrary sections so the section at-

tribute is not available on all platforms. If you need to map the entire
contents of a module to a particular section, consider using the facilities of
the linker instead.

constructor/destructor
The constructor attribute causes the function to be called automatically

before execution enters main (). Similarly, the destructor attribute causes
the function to be called automatically after main () has completed or exit
() has been called. Functions with these attributes are useful for initializing
data that will be used implicitly during the execution of the program.

These attributes are not currently implemented for Objective C.
unused
This attribute, attached to a function, means that the function is meant

to be possibly unused. GNU CC will not produce a warning for this function.
weak
The weak attribute causes the declaration to be emitted as a weak symbol

rather than a global. This is primarily useful in defining library functions
which can be overridden in user code, though it can also be used with non-
function declarations. Weak symbols are supported for ELF targets, and also
for a.out targets when using the GNU assembler and linker.

alias (’’target’’)

The alias attribute causes the declaration to be emitted as an alias for
another symbol, which must be specified. For instance,

void __f () { /* do something */; }

void f () __attribute__ ((weak, alias (’’__f’’)));

declares ’f’ to be a weak alias for ’ f’. In C++, the mangled name for
the target must be used.

You can specify multiple attributes in a declaration by separating them
by commas within the double parentheses or by immediately following an
attribute declaration with another attribute declaration.

Some people object to the attribute feature, suggesting that ANSI
C’s #pragma should be used instead. There are two reasons for not doing
this.

588APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

• It is impossible to generate #pragma commands from a macro.

• .There is no telling what the same #pragma might mean in another
compiler.

These two reasons apply to almost any application that might be proposed
for #pragma. It is basically a mistake to use #pragma for anything.

Prototypes and Old-Style Function Definitions

GNU C extends ANSI C to allow a function prototype to override a later
old-style non-prototype definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */

#if __STDC__

#define P(x) x

#else

#define P(x) ()

#endif

/* Prototype function declaration. */

int isroot P((uid_t));

/* Old-style function definition. */

int

isroot (x) /* ??? lossage here ??? */

uid_t x;

{

return x == 0;

}

Suppose the type uid t happens to be short. ANSI C does not allow this
example, because subword arguments in old-style non-prototype definitions
are promoted. Therefore in this example the function definition’s argument
is really an int, which does not match the prototype argument type of short.

This restriction of ANSI C makes it hard to write code that is portable to
traditional C compilers, because the programmer does not know whether the
uid t type is short, int, or long. Therefore, in cases like these GNU C allows
a prototype to override a later old-style definition. More precisely, in GNU

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 589

C, a function prototype argument type overrides the argument type specified
by a later old-style definition if the former type is the same as the latter type
before promotion. Thus in GNU C the above example is equivalent to the
following:

int isroot (uid_t);

int

isroot (uid_t x)

{

return x == 0;

}

Note: GNU C++ does not support old-style function definitions, so this
extension is irrelevant.

Dollar Signs in Identifier Names

In GNU C, you may use dollar signs in identifier names. This is because
many traditional C implementations allow such identifiers.

On some machines, dollar signs are allowed in identifiers if you specify
’-traditional’. On a few systems they are allowed by default, even if you do
not use ’-traditional’. But they are never allowed if you specify ’-ansi’.

There are certain ANSI C programs (obscure, to be sure) that would
compile incorrectly if dollar signs were permitted in identifiers. For example:

#define foo(a) #a

#define lose(b) foo (b)

#define test$

lose (test)

The Character ESC in Constants

You can use the sequence ’\e’ in a string or character constant to stand for
the ASCII character ESC.

590APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

Inquiring on Alignment of Types or Variables

The keyword alignof allows you to inquire about how an object is
aligned, or the minimum alignment usually required by a type. Its syntax is
just like sizeof.

For example, if the target machine requires a double value to be aligned
on an 8-byte boundary, then alignof (double) is 8. This is true on many
RISC machines. On more traditional machine designs, alignof (double)
is 4 or even 2.

Some machines never actually require alignment; they allow reference to
any data type even at an odd addresses. For these machines, alignof

reports the recommended alignment of a type.
When the operand of alignof is an lvalue rather than a type, the value

is the largest alignment that the lvalue is known to have. It may have this
alignment as a result of its data type, or because it is part of a structure and
inherits alignment from that structure. For example, after this declaration:

struct foo { int x; char y; } foo1;

the value of alignof (foo1.y) is probably 2 or 4, the same as alignof

(int), even though the data type of foo1.y does not itself demand any align-
ment.

A related feature which lets you specify the alignment of an object is
alignof ((aligned (alignment))); see the following section.

Specifying Attributes of Variables

The keyword attribute allows you to specify special attributes of vari-
ables or structure fields. This keyword is followed by an attribute speci-
fication inside double parentheses. Eight attributes are currently defined
for variables: aligned, mode, nocommon, packed, section, transparent union,
unused, and weak. Other attributes are available for functions (see section
Declaring Attributes of Functions) and for types (see section Specifying At-
tributes of Types).

You may also specify attributes with ’ ’ preceding and following each
keyword. This allows you to use them in header files without being con-
cerned about a possible macro of the same name. For example, you may use
aligned instead of aligned.

aligned (alignment)

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 591

This attribute specifies a minimum alignment for the variable or structure
field, measured in bytes. For example, the declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte bound-
ary. On a 68040, this could be used in conjunction with an asm expression
to access the move16 instruction which requires 16-byte aligned operands.

You can also specify the alignment of structure fields. For example, to
create a double-word aligned int pair, you could write:

struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double member that
forces the union to be double-word aligned.

It is not possible to specify the alignment of functions; the alignment
of functions is determined by the machine’s requirements and cannot be
changed. You cannot specify alignment for a typedef name because such a
name is just an alias, not a distinct type.

As in the preceding examples, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given variable or structure
field. Alternatively, you can leave out the alignment factor and just ask the
compiler to align a variable or field to the maximum useful alignment for the
target machine you are compiling for. For example, you could write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute spec-
ification, the compiler automatically sets the alignment for the declared vari-
able or field to the largest alignment which is ever used for any data type on
the target machine you are compiling for. Doing this can often make copy
operations more efficient, because the compiler can use whatever instructions
copy the biggest chunks of memory when performing copies to or from the
variables or fields that you have aligned this way.

The aligned attribute can only increase the alignment; but you can de-
crease it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inher-
ent limitations in your linker. On many systems, the linker is only able to
arrange for variables to be aligned up to a certain maximum alignment. (For

592APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

some linkers, the maximum supported alignment may be very very small.) If
your linker is only able to align variables up to a maximum of 8 byte align-
ment, then specifying aligned(16) in an attribute will still only provide
you with 8 byte alignment. See your linker documentation for further infor-
mation.

mode (mode)
This attribute specifies the data type for the declaration–whichever type

corresponds to the mode mode. This in effect lets you request an integer or
floating point type according to its width.

You may also specify a mode of ’byte’ or ’ byte ’ to indicate the mode
corresponding to a one-byte integer, ’word’ or ’ word ’ for the mode of
a one-word integer, and ’pointer’ or ’ pointer ’ for the mode used to
represent pointers.

nocommon
This attribute specifies requests GNU CC not to place a variable ”com-

mon” but instead to allocate space for it directly. If you specify the ’-fno-
common’ flag, GNU CC will do this for all variables.

Specifying the nocommon attribute for a variable provides an initializa-
tion of zeros. A variable may only be initialized in one source file.

packed
The packed attribute specifies that a variable or structure field should

have the smallest possible alignment–one byte for a variable, and one bit for
a field, unless you specify a larger value with the aligned attribute.

Here is a structure in which the field x is packed, so that it immediately
follows a:

struct foo

{

char a;

int x[2] __attribute__ ((packed));

};

section (”section-name”)
Normally, the compiler places the objects it generates in sections like

data and bss. Sometimes, however, you need additional sections, or you
need certain particular variables to appear in special sections, for example to
map to special hardware. The section attribute specifies that a variable (or
function) lives in a particular section. For example, this small program uses
several specific section names:

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 593

struct duart a __attribute__ ((section (’’DUART_A’’))) = { 0 };

struct duart b __attribute__ ((section (’’DUART_B’’))) = { 0 };

char stack[10000] __attribute__ ((section (’’STACK’’))) = { 0 };

int init_data_copy __attribute__ ((section (’’INITDATACOPY’’))) = 0;

main()

{

/* Initialize stack pointer */

init_sp (stack + sizeof (stack));

/* Initialize initialized data */

memcpy (&init_data_copy, &data, &edata - &data);

/* Turn on the serial ports */

init_duart (&a);

init_duart (&b);

}

Use the section attribute with an initialized definition of a global variable,
as shown in the example. GNU CC issues a warning and otherwise ignores
the section attribute in uninitialized variable declarations.

You may only use the section attribute with a fully initialized global
definition because of the way linkers work. The linker requires each object
be defined once, with the exception that uninitialized variables tentatively go
in the common (or bss) section and can be multiply ”defined”. You can force
a variable to be initialized with the ’-fno-common’ flag or the nocommon
attribute.

Some file formats do not support arbitrary sections so the section at-
tribute is not available on all platforms. If you need to map the entire
contents of a module to a particular section, consider using the facilities of
the linker instead.

transparent union

This attribute, attached to a function argument variable which is a union,
means to pass the argument in the same way that the first union member
would be passed. You can also use this attribute on a typedef for a union
data type; then it applies to all function arguments with that type.

unused

594APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

This attribute, attached to a variable, means that the variable is meant
to be possibly unused. GNU CC will not produce a warning for this variable.

weak
The weak attribute is described in See section Declaring Attributes of

Functions.
To specify multiple attributes, separate them by commas within the dou-

ble parentheses: for example,

__attribute__ ((aligned (16), packed))

Specifying Attributes of Types

The keyword attribute allows you to specify special attributes of struct
and union types when you define such types. This keyword is followed by
an attribute specification inside double parentheses. Three attributes are
currently defined for types: aligned, packed, and transparent union. Other
attributes are defined for functions (see section Declaring Attributes of Func-
tions) and for variables (see section Specifying Attributes of Variables).

You may also specify any one of these attributes with ’ ’ preceding and
following its keyword. This allows you to use these attributes in header files
without being concerned about a possible macro of the same name. For
example, you may use aligned instead of aligned.

You may specify the aligned and transparent union attributes either in a
typedef declaration or just past the closing curly brace of a complete enum,
struct or union type definition and the packed attribute only past the closing
brace of a definition.

aligned (alignment)
This attribute specifies a minimum alignment (in bytes) for variables of

the specified type. For example, the declarations:

struct S { short f[3]; } __attribute__ ((aligned (8));

typedef int more_aligned_int __attribute__ ((aligned (8));

force the compiler to insure (as fas as it can) that each variable whose
type is struct S or more aligned int will be allocated and aligned at least on
a 8-byte boundary. On a Sparc, having all variables of type struct S aligned
to 8-byte boundaries allows the compiler to use the ldd and std (doubleword
load and store) instructions when copying one variable of type struct S to
another, thus improving run-time efficiency.

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 595

Note that the alignment of any given struct or union type is required by
the ANSI C standard to be at least a perfect multiple of the lowest common
multiple of the alignments of all of the members of the struct or union in
question. This means that you can effectively adjust the alignment of a
struct or union type by attaching an aligned attribute to any one of the
members of such a type, but the notation illustrated in the example above is
a more obvious, intuitive, and readable way to request the compiler to adjust
the alignment of an entire struct or union type.

As in the preceding example, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given struct or union
type. Alternatively, you can leave out the alignment factor and just ask the
compiler to align a type to the maximum useful alignment for the target
machine you are compiling for. For example, you could write:

struct S { short f[3]; } __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute spec-
ification, the compiler automatically sets the alignment for the type to the
largest alignment which is ever used for any data type on the target machine
you are compiling for. Doing this can often make copy operations more ef-
ficient, because the compiler can use whatever instructions copy the biggest
chunks of memory when performing copies to or from the variables which
have types that you have aligned this way.

In the example above, if the size of each short is 2 bytes, then the size
of the entire struct S type is 6 bytes. The smallest power of two which is
greater than or equal to that is 8, so the compiler sets the alignment for the
entire struct S type to 8 bytes.

Note that although you can ask the compiler to select a time-efficient
alignment for a given type and then declare only individual stand-alone ob-
jects of that type, the compiler’s ability to select a time-efficient alignment
is primarily useful only when you plan to create arrays of variables having
the relevant (efficiently aligned) type. If you declare or use arrays of vari-
ables of an efficiently-aligned type, then it is likely that your program will
also be doing pointer arithmetic (or subscripting, which amounts to the same
thing) on pointers to the relevant type, and the code that the compiler gen-
erates for these pointer arithmetic operations will often be more efficient for
efficiently-aligned types than for other types.

The aligned attribute can only increase the alignment; but you can de-
crease it by specifying packed as well. See below.

596APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

Note that the effectiveness of aligned attributes may be limited by inher-
ent limitations in your linker. On many systems, the linker is only able to
arrange for variables to be aligned up to a certain maximum alignment. (For
some linkers, the maximum supported alignment may be very very small.) If
your linker is only able to align variables up to a maximum of 8 byte align-
ment, then specifying aligned(16) in an attribute will still only provide
you with 8 byte alignment. See your linker documentation for further infor-
mation.

packed
This attribute, attached to an enum, struct, or union type definition,

specified that the minimum required memory be used to represent the type.
Specifying this attribute for struct and union types is equivalent to speci-

fying the packed attribute on each of the structure or union members. Speci-
fying the ’-fshort-enums’ flag on the line is equivalent to specifying the packed
attribute on all enum definitions.

You may only specify this attribute after a closing curly brace on an enum
definition, not in a typedef declaration.

transparent union
This attribute, attached to a union type definition, indicates that any

variable having that union type should, if passed to a function, be passed in
the same way that the first union member would be passed. For example:

union foo

{

char a;

int x[2];

} __attribute__ ((transparent_union));

To specify multiple attributes, separate them by commas within the dou-
ble parentheses: for example,

__attribute__ ((aligned (16), packed))

An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GNU CC to integrate that
function’s code into the code for its callers. This makes execution faster by

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 597

eliminating the function-call overhead; in addition, if any of the actual ar-
gument values are constant, their known values may permit simplifications
at compile time so that not all of the inline function’s code needs to be in-
cluded. The effect on code size is less predictable; object code may be larger
or smaller with function inlining, depending on the particular case. Inlin-
ing of functions is an optimization and it really ”works” only in optimizing
compilation. If you don’t use ’-O’, no function is really inline.

To declare a function inline, use the inline keyword in its declaration, like
this:

inline int

inc (int *a)

{

(*a)++;

}

(If you are writing a header file to be included in ANSI C programs, write
inline instead of inline. See section Alternate Keywords.)

You can also make all ”simple enough” functions inline with the option ’-
finline-functions’. Note that certain usages in a function definition can make
it unsuitable for inline substitution.

Note that in C and Objective C, unlike C++, the inline keyword does
not affect the linkage of the function.

GNU CC automatically inlines member functions defined within the class
body of C++ programs even if they are not explicitly declared inline. (You
can override this with ’-fno-default-inline’; see section Options Controlling
C++ Dialect.)

When a function is both inline and static, if all calls to the function are
integrated into the caller, and the function’s address is never used, then the
function’s own assembler code is never referenced. In this case, GNU CC does
not actually output assembler code for the function, unless you specify the
option ’-fkeep-inline-functions’. Some calls cannot be integrated for various
reasons (in particular, calls that precede the function’s definition cannot be
integrated, and neither can recursive calls within the definition). If there
is a nonintegrated call, then the function is compiled to assembler code as
usual. The function must also be compiled as usual if the program refers to
its address, because that can’t be inlined.

When an inline function is not static, then the compiler must assume
that there may be calls from other source files; since a global symbol can

598APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

be defined only once in any program, the function must not be defined in
the other source files, so the calls therein cannot be integrated. Therefore, a
non-static inline function is always compiled on its own in the usual fashion.

If you specify both inline and extern in the function definition, then the
definition is used only for inlining. In no case is the function compiled on its
own, not even if you refer to its address explicitly. Such an address becomes
an external reference, as if you had only declared the function, and had not
defined it.

This combination of inline and extern has almost the effect of a macro.
The way to use it is to put a function definition in a header file with these
keywords, and put another copy of the definition (lacking inline and extern)
in a library file. The definition in the header file will cause most calls to the
function to be inlined. If any uses of the function remain, they will refer to
the single copy in the library.

GNU C does not inline any functions when not optimizing. It is not clear
whether it is better to inline or not, in this case, but we found that a correct
implementation when not optimizing was difficult. So we did the easy thing,
and turned it off.

Alternate Keywords

The option ’-traditional’ disables certain keywords; ’-ansi’ disables certain
others. This causes trouble when you want to use GNU C extensions, or
ANSI C features, in a general-purpose header file that should be usable by
all programs, including ANSI C programs and traditional ones. The keywords
asm, typeof and inline cannot be used since they won’t work in a program
compiled with ’-ansi’, while the keywords const, volatile, signed, typeof and
inline won’t work in a program compiled with ’-traditional’.

The way to solve these problems is to put ’ ’ at the beginning and end
of each problematical keyword. For example, use asm instead of asm,
const instead of const, and inline instead of inline.

Other C compilers won’t accept these alternative keywords; if you want
to compile with another compiler, you can define the alternate keywords as
macros to replace them with the customary keywords. It looks like this:

#ifndef __GNUC__

#define __asm__ asm

#endif

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 599

’-pedantic’ causes warnings for many GNU C extensions. You can pre-
vent such warnings within one expression by writing � extension before the
expression. extension has no effect aside from this.

Incomplete enum Types

You can define an enum tag without specifying its possible values. This
results in an incomplete type, much like what you get if you write struct foo
without describing the elements. A later declaration which does specify the
possible values completes the type.

You can’t allocate variables or storage using the type while it is incom-
plete. However, you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of enum
more consistent with the way struct and union are handled.

This extension is not supported by GNU C++.

Function Names as Strings

GNU CC predefines two string variables to be the name of the current func-
tion. The variable FUNCTION is the name of the function as it appears in
the source. The variable PRETTY FUNCTION is the name of the function
pretty printed in a language specific fashion.

These names are always the same in a C function, but in a C++ function
they may be different. For example, this program:

extern ’’C’’ {

extern int printf (char *, ...);

}

class a {

public:

sub (int i)

{

printf (’’__FUNCTION__ = %s\n’’, __FUNCTION__);

printf (’’__PRETTY_FUNCTION__ = %s\n’’, __PRETTY_FUNCTION__);

}

};

600APPENDIX A. C COMPILER OPTIONS AND THEGNU C++COMPILER

int

main (void)

{

a ax;

ax.sub (0);

return 0;

}

gives this output:

__FUNCTION__ = sub

__PRETTY_FUNCTION__ = int a::sub (int)

	C/C++ Program Compilation
	Creating, Compiling and Running Your Program
	Creating the program
	Compilation
	Running the program

	The C Compilation Model
	The Preprocessor
	C Compiler
	Assembler
	Link Editor
	Some Useful Compiler Options
	Using Libraries
	UNIX Library Functions
	Finding Information about Library Functions

	Lint — A C program verifier
	Exercises

	C Basics
	History of C
	Characteristics of C
	C Program Structure
	Variables
	Defining Global Variables
	Printing Out and Inputting Variables

	Constants
	Arithmetic Operations
	Comparison Operators
	Logical Operators
	Order of Precedence
	Exercises

	Conditionals
	The if statement
	The ? operator
	The switch statement
	Exercises

	Looping and Iteration
	The for statement
	The while statement
	The do-while statement
	 break and continue
	Exercises

	Arrays and Strings
	Single and Multi-dimensional Arrays
	Strings
	Exercises

	Functions
	void functions
	Functions and Arrays
	Function Prototyping
	Exercises

	Further Data Types
	Structures
	Defining New Data Types

	Unions
	Coercion or Type-Casting
	Enumerated Types
	Static Variables
	Exercises

	Pointers
	What is a Pointer?
	Pointer and Functions
	Pointers and Arrays
	Arrays of Pointers
	Multidimensional arrays and pointers
	Static Initialisation of Pointer Arrays
	Pointers and Structures
	Common Pointer Pitfalls
	Not assigning a pointer to memory address before using it
	Illegal indirection

	Exercise

	Dynamic Memory Allocation and Dynamic Structures
	Malloc, Sizeof, and Free
	Calloc and Realloc
	Linked Lists
	Full Program: queue.c
	Exercises

	Advanced Pointer Topics
	Pointers to Pointers
	Command line input
	Pointers to a Function
	Exercises

	Low Level Operators and Bit Fields
	Bitwise Operators
	Bit Fields
	Bit Fields: Practical Example
	A note of caution: Portability

	Exercises

	The C Preprocessor
	#define
	#undef
	#include
	#if — Conditional inclusion
	Preprocessor Compiler Control
	Other Preprocessor Commands
	Exercises

	C, UNIX and Standard Libraries
	Advantages of using UNIX with C
	Using UNIX System Calls and Library Functions

	Integer Functions, Random Number, String Conversion, Searching and Sorting: <stdlib.h>
	Arithmetic Functions
	Random Numbers
	String Conversion
	Searching and Sorting
	Exercises

	Mathematics: <math.h>
	Math Functions
	Math Constants

	Input and Output (I/O):stdio.h
	Reporting Errors
	perror()
	errno
	exit()

	Streams
	Predefined Streams

	Basic I/O
	Formatted I/O
	Printf

	scanf
	Files
	Reading and writing files

	sprintf and sscanf
	Stream Status Enquiries

	Low Level I/O
	Exercises

	String Handling: <string.h>
	Basic String Handling Functions
	String Searching

	Character conversions and testing: ctype.h
	Memory Operations: <memory.h>
	Exercises

	File Access and Directory System Calls
	Directory handling functions: <unistd.h>
	Scanning and Sorting Directories:<sys/types.h>,<sys/dir.h>

	File Manipulation Routines: unistd.h, sys/types.h, sys/stat.h
	File Access
	File Status
	File Manipulation:stdio.h, unistd.h
	Creating Temporary FIles:<stdio.h>

	Exercises

	Time Functions
	Basic time functions
	Example time applications
	Example 1: Time (in seconds) to perform some computation
	Example 2: Set a random number seed

	Exercises

	Process Control: <stdlib.h>,<unistd.h>
	Running UNIX Commands from C
	execl()
	fork()
	wait()
	exit()
	Exerises

	Interprocess Communication (IPC), Pipes
	Piping in a C program: <stdio.h>
	popen() — Formatted Piping
	pipe() — Low level Piping
	Exercises

	IPC:Interrupts and Signals: <signal.h>
	Sending Signals — kill(), raise()
	Signal Handling — signal()
	 sig_talk.c — complete example program
	Other signal functions

	IPC:Message Queues:<sys/msg.h>
	Initialising the Message Queue
	IPC Functions, Key Arguments, and Creation Flags: <sys/ipc.h>
	Controlling message queues
	Sending and Receiving Messages
	POSIX Messages: <mqueue.h>
	Example: Sending messages between two processes
	message_send.c — creating and sending to a simple message queue
	message_rec.c — receiving the above message

	Some further example message queue programs
	msgget.c: Simple Program to illustrate msget()
	msgctl.cSample Program to Illustrate msgctl()
	msgop.c: Sample Program to Illustrate msgsnd() and msgrcv()

	Exercises

	IPC:Semaphores
	Initializing a Semaphore Set
	Controlling Semaphores
	Semaphore Operations
	POSIX Semaphores: <semaphore.h>
	semaphore.c: Illustration of simple semaphore passing
	Some further example semaphore programs
	semget.c: Illustrate the semget() function
	semctl.c: Illustrate the semctl() function
	semop() Sample Program to Illustrate semop()

	Exercises

	IPC:Shared Memory
	Accessing a Shared Memory Segment
	Controlling a Shared Memory Segment

	Attaching and Detaching a Shared Memory Segment
	Example two processes comunicating via shared memory:shm_server.c, shm_client.c
	shm_server.c
	shm_client.c

	POSIX Shared Memory
	Mapped memory
	Address Spaces and Mapping
	Coherence
	Creating and Using Mappings
	Other Memory Control Functions

	Some further example shared memory programs
	shmget.c:Sample Program to Illustrate shmget()
	shmctl.c: Sample Program to Illustrate shmctl()
	shmop.c: Sample Program to Illustrate shmat() and shmdt()

	Exercises

	IPC:Sockets
	Socket Creation and Naming
	Connecting Stream Sockets
	Stream Data Transfer and Closing
	Datagram sockets
	Socket Options
	Example Socket Programs:socket_server.c,socket_client
	socket_server.c
	socket_client.c

	Exercises

	Threads: Basic Theory and Libraries
	Processes and Threads
	Benefits of Threads vs Processes
	Multithreading vs. Single threading
	Some Example applications of threads

	Thread Levels
	User-Level Threads (ULT)
	Kernel-Level Threads (KLT)
	Combined ULT/KLT Approaches

	Threads libraries
	The POSIX Threads Library:libpthread, <pthread.h>
	Creating a (Default) Thread
	Wait for Thread Termination
	A Simple Threads Example
	Detaching a Thread
	Create a Key for Thread-Specific Data
	Delete the Thread-Specific Data Key
	Set the Thread-Specific Data Key
	Get the Thread-Specific Data Key
	Global and Private Thread-Specific Data Example
	Getting the Thread Identifiers
	Comparing Thread IDs
	Initializing Threads
	Yield Thread Execution
	Set the Thread Priority
	Get the Thread Priority
	Send a Signal to a Thread
	Access the Signal Mask of the Calling Thread
	Terminate a Thread

	Solaris Threads: <thread.h>
	Unique Solaris Threads Functions
	Similar Solaris Threads Functions

	Compiling a Multithreaded Application
	Preparing for Compilation
	Debugging a Multithreaded Program

	Further Threads Programming:Thread Attributes (POSIX)
	Attributes
	Initializing Thread Attributes
	Destroying Thread Attributes
	Thread's Detach State
	Thread's Set Scope
	Thread Scheduling Policy
	Thread Inherited Scheduling Policy
	Set Scheduling Parameters

	Thread Stack Size
	Building Your Own Thread Stack

	Further Threads Programming:Synchronization
	Mutual Exclusion Locks
	Initializing a Mutex Attribute Object
	Destroying a Mutex Attribute Object
	The Scope of a Mutex
	Initializing a Mutex
	Locking a Mutex
	Destroying a Mutex
	Mutex Lock Code Examples
	Nested Locking with a Singly Linked List
	Solaris Mutex Locks

	Condition Variable Attributes
	Initializing a Condition Variable Attribute
	Destoying a Condition Variable Attribute
	The Scope of a Condition Variable
	Initializing a Condition Variable
	Block on a Condition Variable
	Destroying a Condition Variable State
	Solaris Condition Variables

	Threads and Semaphores
	POSIX Semaphores
	Basic Solaris Semaphore Functions

	Thread programming examples
	Using thr_create() and thr_join()
	Arrays
	Deadlock
	Signal Handler
	Interprocess Synchronization
	The Producer / Consumer Problem
	A Socket Server
	Using Many Threads
	Real-time Thread Example
	POSIX Cancellation
	Software Race Condition
	Tgrep: Threadeds version of UNIX grep
	Multithreaded Quicksort

	Remote Procedure Calls (RPC)
	What Is RPC
	How RPC Works
	RPC Application Development
	Defining the Protocol
	Defining Client and Server Application Code
	Compliling and running the application

	Overview of Interface Routines
	Simplified Level Routine Function
	Top Level Routines

	Intermediate Level Routines
	Expert Level Routines
	Bottom Level Routines

	The Programmer's Interface to RPC
	Simplified Interface
	Passing Arbitrary Data Types
	Developing High Level RPC Applications
	Sharing the data

	Exercise

	Protocol Compiling and Lower Level RPC Programming
	What is rpcgen
	An rpcgen Tutorial
	Converting Local Procedures to Remote Procedures

	Passing Complex Data Structures
	Preprocessing Directives
	cpp Directives
	Compile-Time Flags
	Client and Server Templates
	Example rpcgen compile options/templates

	Recommended Reading
	Exercises

	Writing Larger Programs
	Header files
	External variables and functions
	Scope of externals

	Advantages of Using Several Files
	How to Divide a Program between Several Files
	Organisation of Data in each File
	The Make Utility
	Make Programming
	Creating a makefile
	Make macros
	Running Make

	Further Reading, Information and References
	C References
	Basic C and UNIX
	Threads and Remote Procedure Calls
	Internet Resources on C

	Motif/X Window Programming
	Motif/CDE/X Books
	Motif distribution
	WWW and Ftp Access
	Valuable Information Resources

	C++

	C Compiler Options and the GNU C++ compiler
	Common Compiler Options
	GCC - The GNU C/C++ Compiler
	Introduction to GCC
	Languages compiled by GCC
	Portability and Optimization
	GNU CC Distribution Policy
	Compile C, C++, or Objective C
	GNU CC Command Options

	Extensions to the C Language Family

