
CM2202: Scientific Computing and Multimedia
Applications

Lab Class Week 9

School of Computer Science & Informatics

Geometric Computing

Fitting and Interpolation Using Parametric Polynomials

1

Choose a value of t which corresponds to each given point,
thus determining the order in which points occur on the curve.

Chosen values of t and corresponding values of x and y
substituted at each point, give a set of linear simultaneous
equations to solve for parameters, ai , bi , ci etc.

If the order of the curve (highest power of t) is one less than
the number of points (3 for quadratic, 4 for cubic etc. then
the simultaneous equations can be solved.

The above procedure (interpolation through points) is called
Lagrangian Interpolation. Lagrangian interpolation demo code

2 / 12

http://www.cs.cf.ac.uk/Dave/CM2202/MATLAB/Geometric_Computing/lagrangian.html

Geometric Computing

Lagrangian Interpolation

lagrangian demo.m

%%%% Demo to illustrate Lagrangian Interpolation Code

close all;

clear all;

% Define Lagrangian Polynomial Values

x = [1 3 5 7]; % Polynomial Values at x = 1, 3, 5, 7

y = [2 1 8 4]; % y values for x = 1, 3, 5, 7

% Compute a Cubic Lagrangian Polynomial

[a b c d] = lagrangian_cubic_interpolate(x,y)

% Now PLOT THE POLYNOMIAL

x = 1:0.05:7; % Step through the clamped x values at some step

% Compute y Values for given cubic from a,b, c and d

[m n] = size(x)

A = [x.*x.*x; x.*x; x; ones(1,n)]’;

y = A*[a b c d]’;

% Plot the cubic

plot(x,y);

shg; % Show the current graphic

Use grid on to read the positions more easily.

3 / 12

Geometric Computing

Hermite Interpolation

Here we need to introduce and fulfil some slope constraints on the
parametric polynomial.

1

Slope means gradient or tangent at a point here.

4 / 12

Geometric Computing

Hermite Interpolation

We need to compute the partial derivatives of the
parametric polynomial. To this we differentiate each equation
in x and y with respect to t
For example for a cubic:

x = a1 + b1t + c1t
2 + d1t

3

y = a2 + b2t + c2t
2 + d2t

3

We get the derivatives:

∂x

∂t
= b1 + 2c1t + 3d1t

2

∂y

∂t
= b2 + 2c2t + 3d2t

2

5 / 12

Geometric Computing

Hermite Interpolation

Some points to note:

Gradients at each point need to estimated and then they can be substituted into
the above equations and solved together with the original (Lagrangian) point

It is not necessary to have slope constraints at every point — position and slope
constraints can be mixed as required (so long as we have enough to satisfy the
simultaneous

If the points are spread evenly then the point can be parameterised at equal
intervals of t.

Setting start t = 0 and end t = 1 and having proportional values of t for
unequal steps of t is a common approach.

In Hermite interpolation there are no unique values for ∂x
∂t

and ∂y
∂t

for a required
dx
dy

, only the ratio ∂x
∂t

/ ∂y
∂t

must correspond. This can introduce some unwanted

results.

As the order of the curves becomes higher, undesired oscillations, waviness,
tends to occur. Higher than order 5 or 6 is not common.

There are more elaborate parametric curve representation — Bézier curves,
Spline curves.

MATLAB Hermite spline interpolation example, hermite interpolation demo code

6 / 12

http://www.cs.cf.ac.uk/Dave/CM2202/MATLAB/Geometric_Computing/hermite.html

Geometric Computing

Hermite Interpolation (Explicit)

Explicit cubic polynomial: hermite demo.m (use grid on to show
the grid).

%%%% Demo to illustrate Hermite Interpolation Code

close all;

clear all;

% Define Hermite Polynomial Values

x = [1 3]; % Polynomial Values at x = 1 and 3

dx = [1 3]; % Derivative Values at x = 1 and 3

y = [2 1]; % y values for x = 1 and 3

dy = [1 2] % Derivative values for dx = 1 and 3

% Compute a CUbic Hermite Polynomial

[a b c d] = hermite_cubic_interpolate(x,y,dx,dy);

% Now PLOT THE POLYNOMIAL

x = 1:0.05:3 % Step through the clamped x values at some step

% Compute y Values for given cubic from a,b, c and d

[m n] = size(x)

A = [x.*x.*x; x.*x; x; ones(1,n)]’;

y = A*[a b c d]’;

% Plot the cubic

plot(x,y);

shg; % Show the current graphic

7 / 12

Geometric Computing

Hermite Interpolation (Parametric)

Parametric cubic polynomial: hermite parametric demo.m (use
grid on to show the grid).
%%%% Demo to illustrate Hermite Interpolation Code

close all;

clear all;

% Define Hermite Polynomial Values

tx = [1 2];

x = [1 3]; % Polynomial Values at t = 1 and 2

ty = [1 2];

y = [2 1]; % y values for t = 1 and 2

tdy = [1 2]; % Derivative Values at t = 1 and 2

dydx = [1 2]; % Derivative values for dx = 1 and 3

dydxratio = 1;

% Compute a Cubic Hermite Polynomial

[a1,b1,c1,d1,a2,b2,c2,d2] = hermite_parametric_cubic_interpolate(tx,x,ty,y,tdy,dydx,dydxratio)

% Now PLOT THE POLYNOMIAL

t = 1:0.025:2; % Step through the clamped x values at some step

% Compute y Values for given cubic from a,b, c and d

[m n] = size(t);

A = [t.*t.*t; t.*t; t; ones(1,n)]’;

x = A*[a1 b1 c1 d1]’;

y = A*[a2 b2 c2 d2]’;

% Plot the cubic

plot(x,y);

shg; % Show the current graphic

8 / 12

Geometric Computing

Plot 3D lines in MATLAB

To plot a line segment with end points (x1, y1, z1) and (x2, y2, z2), you
can use plot3([x1 x2], [y1 y2], [z1 z2]); (similar to plot in 2D
– see help plot3).
Example: To plot a line segment from (1, 1, 1) to (3, 4, 5):

>> plot3([1 3], [1 4], [1 5], ’*-’);

To make the 3D line more clearly visible, you may enable the grid and
add labels to x-/y-/z-axes.

>> grid on; axis equal; xlabel(’x’); ylabel(’y’); zlabel(’z’);

9 / 12

Geometric Computing

Parametric Surface: Cylinder

For example, a cylindrical may be represented in parametric form as

x = x0 + r cos u y = y0 + r sin u z = z0 + v .

−1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3
0

2

4

6

8

10

10 / 12

Geometric Computing

Parametric Surface: Cylinder (MATLAB Code)

The MATLAB code to plot the cylinder figure is cyl plot.m

p0 = [2,0,0] % x_0, y_0, z_0

r = 3; %radius

n = 360;

hold on;

for v = 1:10

for u = 1:360

theta = (2.0 * pi * (u - 1)) / n;

x = p0(1) + r * cos(theta);

y = p0(2) + r * sin(theta);

z = p0(3) + v;

plot3(x,y,z);

end

end

11 / 12

http://www.cs.cf.ac.uk/Dave/CM2202/MATLAB/Geometric_Computing/cyl_plot.m

Geometric Computing

Parametric Surface: Sphere

A sphere is represented in parametric form as

x = xc+r sin(u) sin(v) y = yc+r cos(u) sin(v) z = zc+r cos(v)

MATLAB code to produce a parametric sphere is at
HyperSphere.m (see help HyperSphere for examples).

12 / 12

http://www.cs.cf.ac.uk/Dave/CM2202/MATLAB/Geometric_Computing/HyperSphere.m

