CM2202: Scientific Computing and Multimedia Applications Lab Class Week 9

School of Computer Science \& Informatics

Fitting and Interpolation Using Parametric Polynomials

- Choose a value of t which corresponds to each given point, thus determining the order in which points occur on the curve.
- Chosen values of t and corresponding values of x and y substituted at each point, give a set of linear simultaneous equations to solve for parameters, a_{i}, b_{i}, c_{i} etc.
- If the order of the curve (highest power of t) is one less than the number of points (3 for quadratic, 4 for cubic etc. then the simultaneous equations can be solved.

The above procedure (interpolation through points) is called Lagrangian Interpolation. Lagrangian interpolation demo code

CARDIFF

Lagrangian Interpolation

lagrangian_demo.m

```
%%%% Demo to illustrate Lagrangian Interpolation Code
close all;
clear all;
% Define Lagrangian Polynomial Values
x = [1 3 5 7 7]; % Polynomial Values at x = 1, 3, 5, 7
y = [2 1 8 4 4]; % y values for x = 1, 3, 5, 7
% Compute a Cubic Lagrangian Polynomial
[a b c d] = lagrangian_cubic_interpolate(x,y)
% Now PLOT THE POLYNOMIAL
x = 1:0.05:7; % Step through the clamped x values at some step
% Compute y Values for given cubic from a,b, c and d
[m n] = size(x)
A = [x.*x.*x; x.*x; x; ones(1,n)]';
y = A*[a b c d]';
% Plot the cubic
plot(x,y);
shg; % Show the current graphic
```

Use grid on to read the positions more easily.

CARDIFF
UNIVERSITY
PRIFYSCOL
CAERDYB

Hermite Interpolation

Here we need to introduce and fulfil some slope constraints on the parametric polynomial.

- Slope means gradient or tangent at a point here.

Hermite Interpolation

- We need to compute the partial derivatives of the parametric polynomial. To this we differentiate each equation in x and y with respect to t
For example for a cubic:

$$
\begin{aligned}
& x=a_{1}+b_{1} t+c_{1} t^{2}+d_{1} t^{3} \\
& y=a_{2}+b_{2} t+c_{2} t^{2}+d_{2} t^{3}
\end{aligned}
$$

We get the derivatives:

$$
\begin{aligned}
& \frac{\partial x}{\partial t}=b_{1}+2 c_{1} t+3 d_{1} t^{2} \\
& \frac{\partial y}{\partial t}=b_{2}+2 c_{2} t+3 d_{2} t^{2}
\end{aligned}
$$

CARDIFF

Hermite Interpolation

Some points to note:

- Gradients at each point need to estimated and then they can be substituted into the above equations and solved together with the original (Lagrangian) point
- It is not necessary to have slope constraints at every point - position and slope constraints can be mixed as required (so long as we have enough to satisfy the simultaneous
- If the points are spread evenly then the point can be parameterised at equal intervals of t.
- Setting start $t=0$ and end $t=1$ and having proportional values of t for unequal steps of t is a common approach.
- In Hermite interpolation there are no unique values for $\frac{\partial x}{\partial t}$ and $\frac{\partial y}{\partial t}$ for a required $\frac{d x}{d y}$, only the ratio $\frac{\partial x}{\partial t} / \frac{\partial y}{\partial t}$ must correspond. This can introduce some unwanted results.
- As the order of the curves becomes higher, undesired oscillations, waviness, tends to occur. Higher than order 5 or 6 is not common.
- There are more elaborate parametric curve representation - Bézier curves, Spline curves.

MATLAB Hermite spline interpolation example, hermite interpolation demo code

Hermite Interpolation (Explicit)

Explicit cubic polynomial: hermite_demo.m (use grid on to show the grid).

```
%%%% Demo to illustrate Hermite Interpolation Code
close all;
clear all;
% Define Hermite Polynomial Values
x = [1 3]; % Polynomial Values at x = 1 and 3
dx = [1 3]; % Derivative Values at x = 1 and 3
y = [2 1]; % y values for x = 1 and 3
dy = [1 2] % Derivative values for dx = 1 and 3
% Compute a CUbic Hermite Polynomial
[a b c d] = hermite_cubic_interpolate(x,y,dx,dy);
% Now PLOT THE POLYNOMIAL
x = 1:0.05:3 % Step through the clamped x values at some step
% Compute y Values for given cubic from a,b, c and d
[m n] = size(x)
A = [x.*x.*x; x.*x; x; ones(1,n)]';
y = A*[a b c d]';
% Plot the cubic
plot(x,y);
shg; % Show the current graphic
```

CARDIFF
UNIVERSITY
PRIFYSCOL
CAERDYD

Hermite Interpolation (Parametric)

Parametric cubic polynomial: hermite_parametric_demo.m (use grid on to show the grid).

```
%%%% Demo to illustrate Hermite Interpolation Code
close all;
clear all;
% Define Hermite Polynomial Values
tx = [1 2];
x = [1 3]; % Polynomial Values at t = 1 and 2
ty = [1 2];
y = [2 1]; % y values for t = 1 and 2
tdy = [1 2]; % Derivative Values at t = 1 and 2
dydx = [1 2]; % Derivative values for dx = 1 and 3
dydxratio = 1;
% Compute a Cubic Hermite Polynomial
[a1,b1,c1,d1,a2,b2,c2,d2] = hermite_parametric_cubic_interpolate(tx,x,ty,y,tdy,dydx,dydxratio)
% Now PLOT THE POLYNOMIAL
t = 1:0.025:2; % Step through the clamped x values at some step
% Compute y Values for given cubic from a,b, c and d
[m n] = size(t);
A = [t.*t.*t; t.*t; t; ones(1,n)]';
x = A*[a1 b1 c1 d1]';
y = A*[a2 b2 c2 d2]';
% Plot the cubic
plot(x,y);
shg; % Show the current graphic
```

CARDIFF UNIVERSITY
prieyscol CAERDYB

Plot 3D lines in MATLAB

To plot a line segment with end points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$, you can use plot3([x1 x2], [y1 y2], [$\left.\begin{array}{ll}z 1 & z 2\end{array}\right]$); (similar to plot in 2D

- see help plot3).

Example: To plot a line segment from $(1,1,1)$ to $(3,4,5)$:
>> plot3([1 3], [1 4], [1 5], '*-');
To make the 3D line more clearly visible, you may enable the grid and add labels to $x-/ y$-/z-axes.
>> grid on; axis equal; xlabel('x'); ylabel('y'); zlabel('z');

CARDIFF
UNIVERSITY
Prifyscol
CARRDY
$9 / 12$

Parametric Surface: Cylinder

For example, a cylindrical may be represented in parametric form as

$$
x=x_{0}+r \cos u \quad y=y_{0}+r \sin u \quad z=z_{0}+v
$$

UNIVERSITY
prifyscol
CAERDYB

Parametric Surface: Cylinder (MATLAB Code)

The MATLAB code to plot the cylinder figure is cyl_plot.m

```
p0 = [2,0,0] % x_0, y_0, z_0
r = 3; %radius
n = 360;
hold on;
for v = 1:10
for u = 1:360
theta = ( 2.0 * pi * ( u - 1 ) ) / n;
x = p0(1) + r * cos(theta);
y = p0(2) + r * sin(theta);
z = p0(3) + v;
plot3(x,y,z);
end
end
```


Parametric Surface: Sphere

A sphere is represented in parametric form as
$x=x_{c}+r \sin (u) \sin (v) \quad y=y_{c}+r \cos (u) \sin (v) \quad z=z_{c}+r \cos (v)$

MATLAB code to produce a parametric sphere is at HyperSphere.m (see help HyperSphere for examples).

