CM2202: Scientific Computing and Multimedia Applications
 Discrete Probability Theory: Introduction

Dr. Steven Schockaert
School of Computer Science \& Informatics

March 9, 2015

Probability theory

- The first formal treatment of probability theory is due to Girolamo Cardano, who studied games of chance in his book Liber de ludo aleae
- Now it is a crucial component in many domains of computer science, e.g.
- Search engines like Google are based on probabilistic language models to assess the relevance of a web page to a query, and on a random surfer model to assess the importance of a page
- In artificial intelligence, probabilistic models are used to link features of objects to categories

Girolamo Cardano (1501-1576) (machine learning), and to reason about actions with uncertain consequences (planning), among others

- In computer networks, probability theory is used for traffic modelling

Probabilistic reasoning in Al

Definitions

Probability theory deals with (random) experiments, i.e. processes or actions whose outcome cannot be predicted with certainty, and may change when the experiment is repeated:

- Rolling a die (possible outcomes: $1, \ldots, 6$)
- Drawing two cards from a shuffled pack of cards (possible outcomes are pairs of different cards: $\{\boldsymbol{\aleph} 5, \diamond 6\},\{\boldsymbol{\wedge} H, \mathcal{Q} A$, etc.)
- Flipping a coin (possible outcomes: heads and tails)

Probability theory aims at quantifying the uncertainty surrounding the possible outcomes of an experiment

Definitions

The set $S \neq \emptyset$ of all possible outcomes is called the sample space
A probability distribution is a function p from S to $[0,1]$, such that

$$
\sum_{s \in S} p(s)=1
$$

The value $p(s)$ is called the probability of seeing outcome s. It reflects how likely it is that the outcome of the associated experiment is s, relative to the other outcomes in S

In many cases, each of the outcomes in S is equally likely, in which case p is the uniform distribution, defined for all $s \in S$ by

$$
p(s)=\frac{1}{|S|}
$$

Definitions

A subset $A \subseteq S$ is called an event
With each probability distribution p, we can associate a probability measure P, as follows:

$$
\begin{aligned}
P: 2^{S} & \rightarrow[0,1] \\
A & \mapsto \sum_{a \in A} p(a)
\end{aligned}
$$

For $A \in 2^{S}, P(A)$ is called the probability of event A. It reflects how likely it is that the outcome of the associated experiment will be among those in A. Note that for the uniform distribution p, we have

$$
P(A)=\frac{|A|}{|S|}
$$

Basic properties

It is easy to see that

$$
P(\emptyset)=0 \quad P(S)=1 \quad P(c o A)=1-P(A)
$$

where $\operatorname{co} A=S \backslash A$ is called the complement of A
If A_{1}, \ldots, A_{n} are pairwise disjoint (i.e. $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$), we have

$$
P\left(A_{1} \cup \ldots \cup A_{n}\right)=P\left(A_{1}\right)+\ldots+P\left(a_{n}\right)
$$

Note that this implies for arbitrary events A and B that

$$
\begin{aligned}
P(A \cup B) & =P((A \backslash B) \cup(A \cap B) \cup(B \backslash A)) \\
& =P(A \backslash B)+P(A \cap B)+P(B \backslash A) \\
& =(P(A \backslash B)+P(A \cap B))+(P(B \backslash A)+P(A \cap B))-P(A \cap B) \\
& =P((A \backslash B) \cup(A \cap B))+P((B \backslash A) \cup(A \cap B))-P(A \cap B) \\
& =P(A)+P(B)-P(A \cap B)
\end{aligned}
$$

Examples

Rolling a single die

Sample space $S=\{1,2,3,4,5,6\}$

- The probability of rolling an even number: $P(\{2,4,6\})=\frac{3}{6}$
- The probability of not rolling a $6: P(\{1,2,3,4,5\})=\frac{5}{6}$

Rolling two dice

Sample space $S=\{(i, j) \mid 1 \leq i, j \leq 6\}$

- The probability of rolling an even number:

$$
P(\text { sum even })=P(\text { both even })+P(\text { both odd })=\frac{3 \cdot 3}{36}+\frac{3 \cdot 3}{36}=\frac{1}{2}
$$

- The probability of rolling a 7: $P(\{(i, j) \mid i+j=7,1 \leq i, j \leq 6\})=\frac{6}{36}$

Note that for both experiments, the associated probability distribution p is uniform.

Exercise

Identify the sample space and the event A in the following problems:
(1) A coin is tossed three times; A is the event that we obtain at least two times heads
(2) A game of football is played; A is the event that the match ends in a draw.
(3) A couple have two children; A is the event that both are girls.
(4) A shot hits a circular target of radius $10 \mathrm{~cm} ; A$ is the event that the shot hits within 3 cm of the centre of the target.

Counting

In many cases, evaluating the probability of an event amounts to counting the number of outcomes in the event and/or the sample space.

- Evaluating the probability that you win the lottery amounts to counting how many ways there are to choose a winning combination, and how many combinations there are in total.
- Evaluating the probability that you roll a 9 using two dice, amounts to counting how many ways there are to get a 9 .
- Evaluating the probability that you are dealt a full house, when given 5 cards, amounts to counting how many possibilities there are to make a full house, and how many combinations of hands there are in total.

Counting rules

Addition rule

Let P_{1}, \ldots, P_{k} be mutually exclusive properties (i.e. no object can satisfy more than one of these properties), and let n_{i} be the number of objects that satisfies property P_{i}. Then the number of objects that satisfies one of the properties P_{1}, \ldots, P_{k} is given by $n_{1}+\ldots+n_{k}$

Example: Consider a box with 15 blue balls, 30 red balls and 10 yellow balls. There are 45 balls we can choose from this box which are either blue or red.

Example: Knowing there are two ways to roll a 3 using two dice, and three ways to roll a 4 , we find that there are 5 ways to roll either a 3 or a 4

Subsets

Suppose the set X contains n objects, then there are 2^{n} ways of choosing a subset from X

Example: A pizza company offers a basic pizza with a selection of 8 possible topics. The total number of different pizzas that can be chosen is given by 2^{8}

Counting rules

Product rule

Suppose we have to choose a sequence $\left(x_{1}, \ldots, x_{k}\right)$ where there are n_{1} options for the first element, for each choice of the first element, there are n_{2} options for the second element, and in general, for each choice of (x_{1}, \ldots, x_{i-1}) there are n_{i} choices for the $i^{t h}$ element. Then there are $n_{1} \cdot \ldots \cdot n_{k}$ ways to choose a sequence

Example: Knowing there are 5 starters to choose from, 4 main courses to choose from, and 6 desserts, we find that there are $5 \cdot 4 \cdot 6=120$ possible three-course menus to choose from

Example: There are $3 \cdot 3 \cdot 3$ ways of rolling only even numbers when using three dice

Note: Number of subsets of X, with $|X|=n$, can be derived from the product rule: there are two choices for the first element of X (include or don't include), two choices for the second element, ... Hence the total number of choices is $2 \cdot \ldots \cdot 2=2^{n}$

Exercise

Poker: straight and straigh flush

In the game of poker, a straight is a hand of 5 consecutive cards in which the 5 cards are not all of the same suit, e.g. $\left\{\begin{array}{c}\infty \\ 5\end{array}, \leqslant 6, \bigcirc 7, \uparrow 8, \uparrow 9\right\}$. A straight flush is a hand of 5 consecutive cards of the same suit, e.g. $\{\boldsymbol{\aleph} 5, \boldsymbol{\infty} 6, \boldsymbol{\infty}, \boldsymbol{\infty} 8, \boldsymbol{\infty} 9\}$.
(1) How many ways are there to make a straight flush (assuming a standard deck of 52 cards)?
(2) How many ways are there to make a straight (which is not a straight flush)?

Ordering

Permutations

There are $n!$ ways of ordering a sequence of n distinct objects.

Indeed, there are n ways of choosing the first object, which leaves us with $n-1$ remaining options for the second option, $n-2$ options for the third option, etc. Using the product rule, we thus find that the total number of possibilities is $n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 1=n$!

Example: In shuffle mode, an MP3 player with 10 songs on it can choose from 10! possible orderings

Example: There are 52! ways in which a deck of cards may be ordered

Ordering

Distinguishable permutations

Assume you have n_{1} identical objects of some kind, n_{2} identical objects of a second kind, $\ldots n_{k}$ identical object of the $k^{\text {th }}$ kind, with $n=n_{1}+\ldots+n_{k}$. Then the number of distinguishable permutations of the n objects is

$$
\frac{n!}{n_{1}!\cdot n_{2}!\cdot \ldots \cdot n_{k}!}
$$

Indeed, there are n ! possible ways to choose the overall ordering. However there are n_{1} ! ways to reorder the positions of the objects of the first kind, n_{2} ! ways to reorder the positions of the objects of the second kind, etc. This means, by the product rule, that there are $n_{1}!\cdot n_{2}!\cdot \ldots \cdot n_{k}$! ways to reorder any initial ordering, without actually changing it. In other words, when counting n ! possible ways to choose the overall ordering, each possible distinguishable ordering is counted $n_{1}!\cdot n_{2}!\cdot \ldots \cdot n_{k}$! times.

Note: The permutation rule can be derived from the above rule by considering that when all objects are distinct, we have $n=k$ and $n_{1}=n_{2}=\ldots=n_{k}=1$ and thus $\frac{n!}{n_{1}!\cdot n_{2}!\cdots \cdot n_{k}!}=\frac{n!}{1!\cdot \ldots \cdot 1!}=n!$

Ordering

Example: How many ways are there to reorder the letter tiles on the following Scrabble rack:

The different kinds here are the letters A, E and I , hence $n_{1}=1, n_{2}=5$, $n_{3}=1$, which means that the total number or distinguishable orderings is

$$
\frac{7!}{5!}=7 \cdot 6=42
$$

If we care about the relative position of the different E tiles, on the other hand, there are 7! orderings

Ordering

Recall that X_{1}, \ldots, X_{n} is called a partition of a set Y if $X_{1} \cup \ldots \cup X_{n}=Y$ and $X_{i} \cap X_{j}=\emptyset$ for all $i \neq j$. The sets X_{1}, \ldots, X_{n} are called the partition classes

Counting the number of partitions with fixed sized partition classes is a special case of counting distinguishable permutations. In that case we view the objects as being fixed, and we reorder sequences of partition classes

Example: How many ways are there to divide a team of 15 rugby players into 3 front row players, 2 second row players, 3 back row players, 2 half-backs, 4 three-quarters, and a fullback?

This is equal to the number of ways in which we can order the sequence FFFSSBBBHHTTTTU, hence we arrive at $\frac{15!}{3!\cdot 2!\cdot 3!\cdot 2!\cdot 4!}$

Matlab

```
>> factorial(15)./(6.*2.*6.*2.*24)
ans =
    378378000
```


Exercise

MISSISSIPPI

How many different strings can you form by reordering the letters of the word MISSISSIPPI?

Group work

Eight students need to complete a group assignment. There are four students needed for programming, three students to do a requirement analysis, and one student to write the report. In how many ways can the eight students be assigned a task (programming / requirement analysis / report)?

Combinations

Combinations

The number of ways k objects can be selected among n distinct objects, regardless of the order, is given by

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}
$$

Note: This amounts to counting the number of ways to partition a set of n objects in a class of k objects and a class of $n-k$ objects, so it can be viewed as a special case of counting the number of distinguishable permutations

Combinations

Example: In Texas hold-em poker, each player is dealt two "hole cards" at the beginning. The number of combinations of hole cards a player can receive is given by

$$
\binom{52}{2}=\frac{52!}{2!\cdot 50!}=\frac{52 \cdot 51}{2}=26 \cdot 51=1326
$$

The number of ways in which a player can receive a pair of threes as hole cards is given by

$$
\binom{4}{2}=\frac{4!}{2!\cdot 2!}=\frac{4 \cdot 3 \cdot 2}{2 \cdot 2}=6
$$

The probability of being dealt a pair of threes is thus given by

$$
\frac{6}{1326} \approx 0.004524
$$

The probability of being dealt any pair is given by

$$
13 \cdot \frac{6}{1326}=0.05882
$$

Combinations

Birthday problem

What is the probability to find two people with the same birthday among a group of 30 people (ignoring leap years, and assuming that every day of the year is equally likely to be somebody's birthday)?

We make use of the fact that
P (at least two people have the same birthday $)=1-P($ all people have a different birthday $)$
The total number of ways in which we can assign 30 different birthdays to 30 people is

$$
30!\cdot\binom{365}{30}=30!\cdot \frac{365!}{30!\cdot 335!}=\frac{365!}{335!}
$$

The total number of ways in which we choose 30 birthdays is 365^{30}. Hence the answer is given by

$$
1-P(\text { all people have a different birthday })=1-\frac{365!}{335!\cdot 365^{30}}
$$

Combinations

Matlab

```
>> (factorial(365))./(factorial(335).*(365.`30))
```

ans =
NaN

Matlab

```
>> 1 - factorial(30).*nchoosek(365,30)./(365.^30)
Warning: Result may not be exact. Coefficient is greater than
1.000000e+15 and is only accurate to 15 digits
> In nchoosek at 66
ans =
    0.7063
```


Exercise

Poker: full house

In the game of poker, a full house is a hand consisting of 3 cards of the same kind and 2 cards of another kind, e.g. $\{\boldsymbol{\uparrow} 5, \widehat{\wedge}, \triangle 5, \uparrow 8, \uparrow 8\}$. How many ways are there to make a full house from a standard deck of 52 cards?

Poker: double pair

In the game of poker, a double pair is a hand consisting of 2 cards of the same kind, 2 cards of another kind, and one card from yet another kind, e.g.
$\{\boldsymbol{\$} 5, \diamond 5, \bigcirc 7, \uparrow 7, \uparrow 8\}$. How many ways are there to make a double pair from a standard deck of 52 cards?

Independence

Two events A and B are called independent if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

In such a case, the fact that A occurs does not affect the probability of B occurring, and vice versa.

Example

Sample space $S=\{1,2,3,4\}$ with a uniform probability distribution, $A=\{1,2\}, B=\{1,3\}$. We find:

$$
P(A)=P(B)=\frac{1}{2} \quad P(A \cap B)=P(\{1\})=\frac{1}{4}
$$

Hence

$$
P(A \cap B)=P(A) \cdot P(B)
$$

so A and B are independent.

Conditional probability

In general, knowing that some event B happened (i.e. the outcome of the experiment under consideration is among those in the set B) may affect the probability that the event A has happened, even if we don't have any further information on the exact outcome of the experiment

We write $P(A \mid B)$ for the conditional probability of seeing A, given that B occurs

Consider the example of rolling a die

- We don't know anything: $P(\{1,3\})=\frac{1}{3}$
- We know that the outcome was odd: $P(\{1,3\} \mid\{1,3,5\})=\frac{2}{3}$
- We know that the outcome was even: $P(\{1,3\} \mid\{2,4,6\})=0$
- We know that the outcome was odd and at most 3: $P(\{1,3\} \mid\{1,3\})=1$

Conditional probability

Definition

The conditional probability of A given B is defined as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

provided that $P(B)>0$.

Note: If $P(B)=0$, the conditional probability $P(A \mid B)$ is not defined; its value is then a matter of convention.

Note: From the definition of conditional probability, we can immediately derive the following rule for the probability of an intersection:

$$
P(A \cap B)=P(A \mid B) \cdot P(B)=P(B \mid A) \cdot P(A)
$$

assuming $P(A)>0$ and $P(B)>0$

Bayes' theorem

Bayes' theorem

If $P(A)>0$ and $P(B)>0$, it holds that

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

Indeed, using the definition of conditional probability, we find that

$$
P(A \mid B) \cdot P(B)=P(A \cap B)=P(B \mid A) \cdot P(A)
$$

which immediately leads to the stated theorem
Example: Assume that 5\% of incoming emails are spam. Moreover, assume that 50% of spam emails contain the word account. In contrast, only 10% of all emails contain the word account. What is the probability that an email is spam, given that it contains the word account?

$$
P(\text { spam } \mid \text { account })=\frac{P(\text { account } \mid \text { spam }) \cdot P(\text { spam })}{P(\text { account })}=\frac{0.5 \cdot 0.05}{0.1}=0.25
$$

Partition theorem

Partition theorem

If $B_{1} \cup \ldots \cup B_{k}$ forms a partition of the sample space S, it holds that

$$
P(A)=\sum_{i=1}^{k} P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)
$$

Indeed, since the sets $A \cap B_{1}, \ldots, A \cap B_{k}$ are all pairwise disjoint, and

$$
A=A \cap S=A \cap\left(B_{1} \cup \ldots \cup B_{k}\right)=\left(A \cap B_{1}\right) \cup \ldots \cup\left(A \cap B_{k}\right)
$$

we find

$$
P(A)=P\left(\left(A \cap B_{1}\right) \cup \ldots \cup\left(A \cap B_{k}\right)\right)=P\left(A \cap B_{1}\right)+\ldots+P\left(A \cap B_{k}\right)
$$

from which we find the stated theorem
Note: This theorem is also known as the law of total probability.

Partition theorem

Example: Consider a die which has a probability of $\frac{3}{4}$ of being fair, and a probability of $\frac{1}{4}$ of being biased such that

$$
p(1)=p(2)=p(3)=p(4)=p(5)=\frac{1}{10} \quad p(6)=\frac{1}{2}
$$

What is the probability of rolling an even number?
Using the partition theorem, we find

$$
\begin{aligned}
P(\{2,4,6\}) & =P(\{2,4,6\} \mid \text { fair }) \cdot P(\text { fair })+P(\{2,4,6\} \mid \text { biased }) \cdot P(\text { biased }) \\
& =\frac{1}{2} \cdot \frac{3}{4}+\frac{1+1+5}{10} \cdot \frac{1}{4} \\
& =\frac{3}{8}+\frac{7}{40} \\
& =\frac{22}{40} \\
& =\frac{11}{20}
\end{aligned}
$$

Exercise

A box contains 3 yellow balls and 5 red balls. A ball is chosen at random from the box, then replaced in the box along with two other balls of the same colour.
(1) If a second ball is now chosen at random from the box, what is the probability that it will be red?
(2) Given that the second ball is red, what is the probability that the first ball was yellow?

