
CM2202: Scientific Computing and Multimedia
Applications

MATLAB Programming: 2. More MATLAB

Dr. Yukun Lai

School of Computer Science & Informatics

Statements and Expressions Managing MATLAB Flow Control Summary

More MATLAB

Last lecture focussed on MATLAB Matrices (Arrays) and vectors
which are fundamental to how MATLAB operates in its key
application areas — including Multimedia data processing

We continue our brief overview of MATLAB by looking at some
other areas:

Basic programming and essential MATLAB

MATLAB data and system management

2 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

MATLAB Statements and expressions

We have already met some simple expressions with MATLAB
matrices but let’s formalise things:

MATLAB is an expression language;
the expressions you type are interpreted and evaluated.

MATLAB statements are usually of the form:
variable = expression, or simply: expression

Expressions are usually composed from operators, functions,
and variable names.

Evaluation of the expression produces a matrix, which is
assigned to the variable for future use and/or is then displayed
on the screen.

If the variable name and = sign are omitted, a variable ans

(for answer) is automatically created to which the result is
assigned.

3 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Important Note: MATLAB is case-sensitive

MATLAB is case-sensitive in the names of commands,
functions, and variables.

For example,
IM is not the same as im.

4 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Statement Termination

A statement is normally terminated with the carriage return.

A statement can be continued to the next line with three or
more periods followed by a carriage return.

>> A = 3 + ...

4

A =

7

On the other hand, several statements can be placed on a
single line if separated by commas or semicolons.

>> A= 3 + 4; B = 2*A; C = B + A

C =

21

5 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Statement Termination (cont.)

If the last character of a statement is a semicolon, the
printing is suppressed, but the assignment is carried out.

Recall: This is essential in suppressing unwanted printing
of intermediate results.

Unwanted printing to the command window significantly slows
down MATLAB processing:

Useful for debugging
Avoid in intensive loops/recursion etc. when not debugging.

6 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

MATLAB Variable Spaces

You can find out what variables exist in you program in two ways:

The command who (or whos) will list the variables currently in
the workspace.
The MATLAB IDE Workspace window lists them and their
type and value. Clicking on a Matrix/Array structure brings
up an Array Editor which can be useful.

>> whos

Name Size Bytes Class

A 3x3 72 double array

B 1x1 8 double array

C 1x1 8 double array

d 1x18 36 char array

Grand total is 29 elements using

124 bytes

7 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Clearing Variables, etc.

A variable can be cleared/deleted from the workspace with the
command:

clear variablename.

The command clear alone will clear all nonpermanent variables.

Other forms of clear include:

clear global: removes all global variables.
clear functions: removes all compiled M- and MEX-functions.
clear all: removes all variables, globals, functions and MEX
links.

8 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

MATLAB Sessions

A MATLAB begins when the application starts up and ends when
quits MATALAB:

Generally on exit MATLAB all variables are lost.

Unless, however, you save your MATLAB workspace or a
selection of variables:

Invoking the command save before exiting causes all
variables to be written to a (binary format) file named
matlab.mat.

When one later reenters MATLAB, the command load will
restore the workspace to its former state.

save FILENAME will save all variables to the named file

save FILENAME X Y Z will save the listed variables (X
Y Z in this case) to the named file

See help save and help load for more details

9 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Managing MATLAB

The following few slides summarise a few useful commands for
managing MATLAB from the command window:

help help facility
which locate functions and files
demo run demonstrations
path control MATLAB’s search path
why Try it and see!

Useful: A runaway display or computation can be stopped on most
machines without leaving MATLAB with CTRL-C
(CTRL-BREAK on a PC).

10 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Managing Variables and the Workspace

who list current variables
whos list current variables, long form
save save workspace variables to disk
load retrieve variables from disk
clear clear variables and functions from memory
pack consolidate workspace memory
size size of matrix
length length of vector
disp display matrix or text

11 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Files and the Operating System

cd change current working directory
pwd show current working directory
dir, ls directory listing
delete delete file
getenv get environment variable
! execute operating system command
unix execute operating system command; return result
diary save text of MATLAB session

12 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Controlling the Command Window

clc clear command window
home send cursor home—to top of screen
format set output format

Example:

>> A=rand(2, 2);

>> format long; A

A =

0.075966691690842 0.123318934835166

0.239916153553658 0.183907788282417

>> format short; A

A =

0.0760 0.1233

0.2399 0.1839

13 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Starting and Quitting from Matlab

quit terminate MATLAB
startup.m Special (M-file) executed when MATLAB is started
matlabrc.m MATLAB master startup M-file

If exists, startup.m is actually called from matlabrc.m. It is
recommended to create/modify your own startup.m for
operations that are supposed to be done every time MATLAB
starts.

14 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

for, while, if statements

In their basic forms, these MATLAB flow control statements
operate like those in most computer languages. Note: these
keywords should NOT be capitalised.
for:

For example, for a given n, the statement:
x = []; for i = 1:n, x=[x,i^2], end

or

x = [];

for i = 1:n

x = [x,i^ 2]

end

will produce a certain n-vector and the statement
Note: x = []; for i = n:-1:1, x=[x,i^2], end

will produce the same vector in reverse order.
Note: a matrix may be empty (such as x = []).

15 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Matrix Elements: Vectorise NOT loops

Avoid using for loops etc. to index and manipulate matrix
elements where ever possible, Vectorise: loops significantly slow
down MATLAB.

For example:

x(1:n)

is MUCH MORE ELEGANT than

for i = 1:n, x(i), end

For more details and examples see:

Mathworks Code Vectorisation guide

Cambridge University Engineering Dept. : Matlab
vectorisation tricks (Web Page) More resources available
following the link.

16 / 28

http://www.mathworks.com/support/tech-notes/1100/1109.html
http://www-h.eng.cam.ac.uk/help/tpl/programs/Matlab/tricks.html

Statements and Expressions Managing MATLAB Flow Control Summary

while

The general form of a while loop is:

while relational expression

statements

end

The statements will be repeatedly executed as long as the
relational expression remains true.

For example:

n = 0;

while n < 10

n = n + 1

end

17 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

if

The general form of a simple if statement is

if relational expression

statements

end

The statements will be executed only if the
relational expression is true.

Simple example:

if grade_average >= 70

pass = 1;

end;

18 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

if elseif else

Multiple branching is also possible, as is illustrated by

for m = 1:k

for n = 1:k

if m == n

a(m,n) = 2;

elseif abs(m-n) == 2

a(m,n) = 1;

else

a(m,n) = 0;

end

end

end

In two-way branching the elseif portion would, of course, be
omitted.

19 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Relational Operators

The relational operators in MATLAB are

< less than
> greater than
<= less than or equal
>= greater than or equal
== equal
~= not equal.

Note that “=” is used in an assignment statement while “==” is
used in a relation (the same as Java or C).

20 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Logical Operators

Relations may be connected or quantified by the logical operators

& and
| or
∼ not

Truth table:

A B A&B

0 0 0
0 1 0
1 0 0
1 1 1

A B A|B
0 0 0
0 1 1
1 0 1
1 1 1

A ∼ A

0 1
1 0

Simple example:
if ((grade_average >= 60) & (grade_average < 70))

pass = ’2.1’;

end;
21 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Relational Operators, Scalars and Matrices

When applied to scalars, the result is actually the scalar 1 or 0
depending on whether the relation is true or false.

For example:
a < 5, b > 5, c == 5, and a == b.

When applied to matrices of the same size, the result is a matrix
of 0’s and 1’s giving the value of the relation between
corresponding entries.

For example: a = rand(5); b = triu(a); a == b gives:

ans = 1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1
22 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Logical Data Type and Submatrices

Scalars/matrices obtained through relational operators are
recognised as logical data type. For example

>> a=rand(1,6)

a =

0.7431 0.3922 0.6555 0.1712 0.7060 0.0318

>> b=a>0.5

b =

1 0 1 0 1 0

>> whos a b

Name Size Bytes Class Attributes

a 1x6 48 double

b 1x6 6 logical

23 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Logical Data Type and Submatrices (cont.)

Submatrices can be addressed using a logical vector of the same
size as a mask. A convenient way to obtain submatrices with
elements satisfying certain condition.

>> a(b)

ans =

0.7431 0.6555 0.7060

produces a subvector with elements > 0.5. This is identical to
a([1 3 5]) if we use an index vector instead.
Note: Logical matrices are different from double matrices. Double
matrices can’t be used as masks:

>> a([1 0 1 0 1 0])

??? Subscript indices must either be real positive integers

or logicals.

24 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Logical Data Type and Submatrices (cont.)

Logical data type can be obtained also by casting double matrices
using logical function.

>> a(logical([1 0 1 0 1 0]))

ans =

0.7431 0.6555 0.7060

find function returns a matrix comprising indexes of non-zero
elements (for both double or logical matrices).

>> b

b =

1 0 1 0 1 0

>> find(b)

ans =

1 3 5

>> a(find(b))

ans =

0.7431 0.6555 0.7060

25 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Matrix relations in while and if

A relation between matrices is interpreted by while and if to be
true if each entry of the relation matrix is nonzero.
So, if you wish to execute statement when matrices A and B are
equal you could type:

if A == B

statement

end

However if you wish to execute statement when A and B are not
equal, you have to be more careful.

Since that the seemingly obvious
if A ∼= B, statement, end will not give what is intended since

statement would execute only if each of the corresponding
entries of A and B differ.

26 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

The Any Function

To execute, statement when A and B are not equal, we can use
the any operator:

if any(any(A ~= B))

statement

end

The functions any and all can be creatively used to reduce matrix
relations to vectors or scalars.

any returns true if any element of a vector is a nonzero
number.
Two any’s are required above since any is a vector operator.

Alternatively, more simply, we could ‘invert’ the logic:

if A == B else

statement

end
27 / 28

Statements and Expressions Managing MATLAB Flow Control Summary

Summary

MATLAB Statements and Expressions

Commands for MATLAB Management

MATLAB Flow Control (for/while/if);
Logical Operators

28 / 28

	MATLAB Statements and expressions
	MATLAB Statements and expressions
	MATLAB is case-sensitive
	Statement Termination
	MATLAB Variable Spaces
	Clearing Variables, etc.
	MATLAB Sessions

	Managing MATLAB
	Managing MATLAB
	Managing Variables and the Workspace
	Files and the Operating System
	Controlling the Command Window
	Starting and Quitting from Matlab

	MATLAB Flow Control Statements
	for, while, if statements
	Matrix Elements: Vectorise NOT loops
	while
	if
	if elseif else
	Relational Operators
	Logical Operators
	Relational Operators, Scalars and Matrices
	Logical Data Type and Submatrices
	Matrix relations in while and if
	The Any Function

	Summary

