# CM2202: Scientific Computing and Multimedia Applications MATLAB Programming: 2. More MATLAB

#### Dr. Yukun Lai

School of Computer Science & Informatics

More MATLAB

Last lecture focussed on MATLAB Matrices (Arrays) and vectors which are fundamental to how MATLAB operates in its key application areas — including Multimedia data processing

We continue our brief overview of MATLAB by looking at some other areas:

- Basic programming and essential MATLAB
- MATLAB data and system management

CARDIF UNIVESITY PUTYSOL CARDYD イロト イ 伊 ト イ 王 ト イ 王 ト 王 ・ ヘ ヘ 2 / 28

イロト 不良 とうせい かけい

## MATLAB Statements and expressions

We have already met some simple expressions with MATLAB matrices but let's formalise things:

- MATLAB is an *expression* language; the expressions you type are interpreted and evaluated.
- MATLAB statements are usually of the form: *variable* = *expression*, or simply: *expression*
- Expressions are usually composed from operators, functions, and variable names.
- Evaluation of the expression produces a matrix, which is assigned to the variable for future use and/or is then displayed on the screen.
- If the variable name and = sign are omitted, a variable ans (for answer) is automatically created to which the result is assigned.



Managing MATLAB

Flow Control

Summary

### Important Note: MATLAB is case-sensitive

- MATLAB is **case-sensitive** in the names of commands, functions, and variables.
- For example, IM is not the same as im.



Managing MATLAB

Flow Control

イロン イロン イヨン イヨン

### Statement Termination

- A statement is *normally terminated* with the carriage return.
- A statement can be continued to the next line with three or more periods followed by a carriage return.

• On the other hand, several statements can be placed on a single line if separated by commas or semicolons.

イロト イヨト イヨト イヨト

### Statement Termination (cont.)

• If the last character of a statement is a **semicolon**, the printing is suppressed, but the assignment is carried out.

Recall: This is essential in suppressing unwanted printing of intermediate results.

- Unwanted printing to the command window significantly slows down MATLAB processing:
  - Useful for debugging
  - Avoid in intensive loops/recursion etc. when not debugging.



Managing MATLAB

Flow Control

Summary

## MATLAB Variable Spaces

You can find out what variables exist in you program in two ways:

- The command who (or whos) will list the variables currently in the workspace.
- The MATLAB IDE Workspace window lists them and their type and value. Clicking on a Matrix/Array structure brings up an Array Editor which can be useful.

| 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MATLAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          |                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-------------------|
| File Edit View Graphics Debug Desktop Windo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          |                   |
| 🗅 🧀 🕺 🐘 🛍 🗠 🖓 🗱 💕 🛃 💡 /Users/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dave/matlab 🔹 🗔 😰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >> 1.7h | 09       |                   |
| Shortcuts 🗷 How to Add 🗷 What's New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | // WI   | 103      |                   |
| × • Workspace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x + 12 X 12 12 | Name    | e Size   | Bytes Class       |
| A         [1 2 3/4 5 6/7 8 9]         double           B         14         double           C         21         double           6         7Lisensidave/matab'         drar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α       | 3x3      | 72 double array   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6<br>7<br>8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В       | 1x1      | 8 double array    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.<br>12.<br>13.<br>14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С       | 1x1      | 8 double array    |
| x · Command History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16<br>17<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d       | 1x18     | 36 char array     |
| bip ingray<br>bip ingray<br>bip ingray<br>bip ingray<br>bip movie<br>bip movie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * Command Window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Grand   | total is | 29 elements using |
| man svireed<br>holp quadree<br>belp quadree<br>V t11/2/17 3:46 TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A = 4<br>4 2 3<br>4 2 6<br>7 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 124 by  | rtes     |                   |
| $ \begin{array}{c} A_{1} \ 3 + 4_{1} \ 3 = 2^{n}A_{1} \ C = 3 + A_{1} \\ W_{0} \\ h = \left( 1 \ 2 \ 3_{1} \ 4 \ 3 \ 6_{1} \ 7 \ 3 \ 3 \right) \\ W_{0} \ - 10^{1/2} \ C \left( 1 \ 2 \ 1 \ - 1 \ 3 \ 2 \ 1 \ 3 \ - 1 \ 3 \ 1 \ 3 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 3$ | >> Who<br>Tour variables are<br>A a C d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |          |                   |
| & Surt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |                   |

イロト イポト イヨト イヨト

## Clearing Variables, etc.

A variable can be cleared/deleted from the workspace with the command:

clear variablename.

The command clear alone will clear all nonpermanent variables.

Other forms of clear include:

clear global: removes all global variables.

 $\verb|clear functions: removes all compiled M- and MEX-functions.||$ 

clear all: removes all variables, globals, functions and MEX links.



# MATLAB Sessions

A MATLAB begins when the application starts up and ends when quits MATALAB:

- Generally on exit MATLAB all variables are lost.
- Unless, however, you save your MATLAB workspace or a selection of variables:

Invoking the command **save** before exiting causes **all variables** to be written to a (binary format) file named **matlab.mat**.

- When one later reenters MATLAB, the command load will restore the workspace to its former state.
- save FILENAME will save all variables to the named file
- save FILENAME X Y Z .... will save the listed variables (X Y Z in this case) to the named file
- See help save and help load for more details



3

イロト イヨト イヨト イヨト

# Managing MATLAB

The following few slides summarise a few useful commands for managing MATLAB from the command window:

| help  | help facility                |
|-------|------------------------------|
| which | locate functions and files   |
| demo  | run demonstrations           |
| path  | control MATLAB's search path |
| why   | Try it and see!              |

**Useful**: A runaway display or computation can be stopped on most machines without leaving MATLAB with CTRL-C (CTRL-BREAK on a PC).

・ロン ・四と ・ヨン ・ヨン

### Managing Variables and the Workspace

| who    | list current variables                    |
|--------|-------------------------------------------|
| whos   | list current variables, long form         |
| save   | save workspace variables to disk          |
| load   | retrieve variables from disk              |
| clear  | clear variables and functions from memory |
| pack   | consolidate workspace memory              |
| size   | size of matrix                            |
| length | length of vector                          |
| disp   | display matrix or text                    |

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD DQC 11/28

Managing MATLAB

Flow Control

Summary

## Files and the Operating System

| cd      | change current working directory                |
|---------|-------------------------------------------------|
| pwd     | show current working directory                  |
| dir, ls | directory listing                               |
| delete  | delete file                                     |
| getenv  | get environment variable                        |
| !       | execute operating system command                |
| unix    | execute operating system command; return result |
| diary   | save text of MATLAB session                     |



# Controlling the Command Window

| clc    | clear command window              |
|--------|-----------------------------------|
| home   | send cursor home—to top of screen |
| format | set output format                 |

Example:



Managing MATLAB ○○○○● Flow Control

Summary

### Starting and Quitting from Matlab

| quit       | terminate MATLAB                                 |
|------------|--------------------------------------------------|
| startup.m  | Special (M-file) executed when MATLAB is started |
| matlabrc.m | MATLAB master startup M-file                     |

If exists, startup.m is actually called from matlabrc.m. It is recommended to create/modify your own startup.m for operations that are supposed to be done every time MATLAB starts.



Managing MATLAB

Flow Control

### for, while, if statements

In their basic forms, these MATLAB flow control statements operate like those in most computer languages. Note: these keywords should NOT be capitalised.

#### for:

For example, for a given n, the statement:

```
x = []; for i = 1:n, x=[x,i^2], end
```

or

```
x = [];
for i = 1:n
        x = [x,i<sup>2</sup>]
end
```



### Matrix Elements: Vectorise NOT loops

Avoid using for loops *etc.* to index and manipulate matrix elements where ever possible, Vectorise: loops significantly slow down MATLAB.

For example:

x(1:n)

is MUCH MORE ELEGANT than

for i = 1:n, x(i), end

For more details and examples see:

- Mathworks Code Vectorisation guide
- Cambridge University Engineering Dept. : Matlab vectorisation tricks (Web Page) More resources available following the link.



Managing MATLAB

Flow Control

### while

The general form of a while loop is:

```
while relational expression
statements
end
```

The statements will be repeatedly executed as long as the relational expression remains true.

For example:

```
n = 0;
while n < 10
  n = n + 1
end
```





The general form of a simple if statement is

```
if relational expression
statements
end
```

The statements will be executed only if the relational expression is true.

Simple example:

```
if grade_average >= 70
    pass = 1;
end;
```



Managing MATLAB

Flow Control

Summary

### if .... elseif .... else

Multiple branching is also possible, as is illustrated by

```
for m = 1:k
    for n = 1:k
        if m == n
            a(m.n) = 2;
        elseif abs(m-n) == 2
            a(m,n) = 1;
        else
            a(m,n) = 0;
        end
    end
 end
```

In two-way branching the elseif portion **would**, of course, be **omitted**.



Managing MATLAB

Flow Control

Summary

### **Relational Operators**

The relational operators in MATLAB are

| <  | less than             |
|----|-----------------------|
| >  | greater than          |
| <= | less than or equal    |
| >= | greater than or equal |
| == | equal                 |
| ~= | not equal.            |

**Note** that "=" is used in an assignment statement while "==" is used in a relation (the same as Java or C).



Managing MATLAB

Flow Control

Summary

# Logical Operators

Relations may be connected or quantified by the logical operators



Truth table:

| A | В | A&B |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 0   |
| 1 | 0 | 0   |
| 1 | 1 | 1   |

| Α | В | A B |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 1   |



Simple example:

if ( (grade\_average >= 60) & (grade\_average < 70))
 pass = '2.1';
end;
</pre>



Summary

### Relational Operators, Scalars and Matrices

When applied to **scalars**, the result is actually the scalar 1 or 0 depending on whether the relation is true or false.

For example:

a < 5, b > 5, c == 5, and a == b.

When applied to **matrices** of the **same size**, the result is a matrix of 0's and 1's giving the value of the relation between corresponding entries.

For example: a = rand(5); b = triu(a); a == b gives: ans = イロト イヨト イヨト イヨト - 34



イロト イポト イヨト イヨト

# Logical Data Type and Submatrices

Scalars/matrices obtained through relational operators are recognised as logical data type. For example

```
>> a=rand(1,6)
a =
    0.7431
               0.3922
                          0.6555
                                      0.1712
                                                 0.7060
                                                            0.0318
>> b=a>0.5
b =
                                1
     1
            0
                   1
                         0
                                       0
>> whos a b
  Name
             Size
                               Bytes
                                       Class
                                                   Attributes
             1x6
                                  48
                                       double
  а
             1x6
                                    6
                                       logical
  b
```



3

イロト イポト イヨト イヨト

3

24 / 28

Summary

### Logical Data Type and Submatrices (cont.)

Submatrices can be addressed using a logical vector of the same size as a mask. A convenient way to obtain submatrices with elements satisfying certain condition.

>> a(b) ans = 0.7431 0.6555 0.7060

produces a subvector with elements > 0.5. This is identical to a([1 3 5]) if we use an index vector instead. Note: Logical matrices are different from double matrices. Double matrices can't be used as masks:

```
>> a([1 0 1 0 1 0])
??? Subscript indices must either be real positive integers
or logicals.
```

イロト イポト イヨト イヨト

# Logical Data Type and Submatrices (cont.)

Logical data type can be obtained also by casting double matrices using logical function.

```
>> a(logical([1 0 1 0 1 0]))
ans =
```

0.7431 0.6555 0.7060

find function returns a matrix comprising indexes of non-zero elements (for both double or logical matrices).

```
>> h
b =
     1
            0
                   1
                          0
                                 1
                                        0
>> find(b)
ans =
     1
            3
                   5
>> a(find(b))
ans
    0.7431
               0.6555
                           0.7060
```



3

Flow Control

## Matrix relations in while and if

A relation between matrices is interpreted by while and if to be true if each entry of the relation matrix is **nonzero**. So, if you wish to execute *statement* when matrices *A* and *B* are **equal** you could type:

if A == B

statement

end

**However** if you wish to execute *statement* when A and B are **not** equal, you have to be more careful.

### Since that the seemingly obvious

if A  $\sim=$  B, statement, end will not give what is intended since

• *statement* would execute **only if** *each* of the corresponding entries of *A* and *B* differ.



## The Any Function

To execute, *statement* when A and B are **not equal**, we can use the any operator:

```
if any(any(A ~= B))
statement
```

end

The functions any and all can be creatively used to reduce matrix relations to vectors or scalars.

- any returns **true** if **any** element of a **vector** is a nonzero number.
- Two any's are required above since any is a vector operator.

Alternatively, more simply, we could 'invert' the logic:

statement

end



### Summary

- MATLAB Statements and Expressions
- Commands for MATLAB Management
- MATLAB Flow Control (for/while/if); Logical Operators

