CM2202：Scientific Computing and Multimedia Applications
 Linear Algebra：2．Vectors

Dr．Yukun Lai

School of Computer Science \＆Informatics

2- 3 - and n-dimensional vectors

Vector basics

Definition (2-dimensional vectors)

We define two-dimensional vectors as directed arrows in the plane. A vector is determined by the length and the direction of the arrow. Two vectors are called equivalent if they have the same length and direction.

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYD

Example (2-dimensional vectors)

Vectors can be determined by two points. E.g. the vectors $\mathbf{A B}$ and CD.

In the above example:

- A is called the tail of the vector $\mathbf{A B}$.
- B is called the head of the vector $\mathbf{A B}$.

CARDIFF
UNIVERSITY
PRIFYSCOL
CARDM

Definition (Equivalence of vectors)

Although $\mathbf{A B}$ and $C D$ have different heads and tails, they are equivalent.

- We distinguish vectors only by their direction and length.

Thus we treat equivalent vectors as equal.
E.g.
$A B=C D$

CARDIFF

Example (Some Real World Examples of Vectors)

Vectors can be used to represent translation (motion), velocity, acceleration:

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYG

Vector Representation/Notation

Vectors can be defined in a variety of ways:

- As we have seen already by two points.

In which case we use the notation $\mathbf{A B}$.

Alternative notations (which we do not use but you may see in some books) are $\underline{A B}$ or ${ }_{\sim}^{A B}$ or $\tilde{A B}$

- A vector may also be defined as a line whose tail is the origin and whose head coordinates are given as a (x, y) pair (and similar for higher dimensions - more soon.

In this case we use the notation $\mathbf{a}=(x, y)$ or $\mathbf{a}=(x, y)$

CARDIFF
UNIVERSITY

Some Other Vector Notations You May See

An alternative notations $\langle x, y\rangle, \underline{a}, \tilde{a}$ or, even, $\underset{\sim}{a}$.

Standard Vector/Matrix Notation Conventions

Note: It is standard notation to use a lower case letter for vectors (along with bold, vector etc. of course)

Bold upper case letters are reserved for matrices - more later.

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYD

Definition (The triangle law)

We add two vectors \mathbf{v} and \mathbf{w} in the following way.

We arrange \mathbf{w} such that its tail coincides with the head of \mathbf{v}.
$\mathbf{u}=\mathbf{v}+\mathbf{w}$ is then defined as the vector with the tail of \mathbf{v} and the head of the newly arranged vector \mathbf{w}.

Definition ($\mathbf{0}$ and opposite vectors)

We define $\mathbf{0}$ as the vector with length 0 .

If \mathbf{v} is not $\mathbf{0}$, then we define $-\mathbf{v}$ as the vector with the same length and the opposite direction as \mathbf{v}.

We see that $\mathbf{v}+(-\mathbf{v})=\mathbf{0}$.

CARDIFF
UNIVERSITY
PRIFYSCOL
CAERDYB

Definition (The difference of two vectors)

The difference of two vectors \mathbf{v} and \mathbf{w} is defined as

$$
\mathbf{v}-\mathbf{w}=\mathbf{v}+(-\mathbf{w})
$$

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYD

Definition (Scalar multiplication)

Let \mathbf{v} be a vector and k a real number.

The vector $k \mathbf{v}$ is defined as the vector with the same direction as \mathbf{v} if k is positive and the opposite direction if k is negative.

The length of $k \mathbf{v}$ is $|k| \times$ the length of \mathbf{v}.

CARDIFF
UNIVERSITY
PRIFYSGOL
CARDO

Vectors in coordinate systems

We can simplify the analysis of vectors by introducing coordinate systems.
We consider the standard coordinate system in the $x-y\left(2 D \mathbb{R}^{2}\right)$ plane:

If \mathbf{v} is a two-dimensional vector we can always arrange it such that its tail coincides with the origin.

The coordinates (v_{1}, v_{2}) of its head uniquely identify \mathbf{v} and are called the components of \mathbf{v}.

CARDIFF

Vector Definition in \mathbb{R}^{2}

Since the coordinates of the head determine any vector uniquely, we make the following definition:

Definition (Vectors in the space \mathbb{R}^{2})

We identify the space of two-dimensional vectors with

$$
\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, \quad y \in \mathbb{R}\}
$$

We now write the notation \mathbf{v} for the vector $\left(v_{1}, v_{2}\right)$,

CARDIFF
UNIVERSITY
PRIFYSGOL
CARDY
클

Calculating Vectors from 2 Points in \mathbb{R}^{2}

If a vector \mathbf{v} is defined by two points $A=\left(a_{1}, a_{2}\right)$ and $B=\left(b_{1}, b_{2}\right)$ we can get the components of \mathbf{v} by the simple calculation:

$$
\mathbf{v}=\left(b_{1}-a_{1}, b_{2}-a_{2}\right) \quad \text { Head - Tail }
$$

Thus two vectors $\mathbf{v}=\left(v_{1}, v_{2}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}\right)$ are equivalent if $v_{1}=w_{1}$ and $v_{2}=w_{2}$.

CARDIFF

Calculating Vectors from 2 Points in \mathbb{R}^{2} using MATLAB

If a vector \mathbf{v} is defined by two points $A=\left(a_{1}, a_{2}\right)$ and $B=\left(b_{1}, b_{2}\right)$ we can get the components of \mathbf{v} in MATLAB:
\% Symbolic
>> syms a1 a2 b1 b2
>> $A=[a 1, a 2]$
>> $A=[-1,2]$
A =
[a1, a2]
A $=$
-1 2
>> $B=[3,5]$
>> $\mathrm{B}=[\mathrm{b} 1, \mathrm{~b} 2]$
B =
B =
[b1, b2]
$\%$ assume $A(-1,2), B(3,5)$
.

>> $\mathrm{AB}=\mathrm{B}-\mathrm{A}$
AB $=$
[b1 - a1, b2 - a2]

CARDIFF

Vectors in Higher Dimensional Spaces

Since we identified the space of two-dimensional vectors with the space of all ordered 2-tuples we can define higher dimensional vector spaces in the same way.

Definition (Vectors in the spaces \mathbb{R}^{3} and \mathbb{R}^{n})

We define the space of three-dimensional vectors as

$$
\mathbb{R}^{3}=\{(x, y, z) \mid x \in \mathbb{R}, \quad y \in \mathbb{R}, \quad z \in \mathbb{R}\}
$$

Let n be a positive integer. We define the space of n-dimensional vectors as

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{1} \in \mathbb{R}, x_{2} \in \mathbb{R}, \ldots, x_{n} \in \mathbb{R}\right\}
$$

Standard coordinate system in \mathbb{R}^{3}

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYB

Vector operators

Definition (Vector Addition, Subtraction and Scalar Multiplication in \mathbb{R}^{n})

Let \mathbf{v} and \mathbf{w} be two vectors in \mathbb{R}^{n} and k a real number. The following rules are well-defined:

- $\mathbf{v}+\mathbf{w}=\left(v_{1}+w_{1}, v_{2}+w_{2}, \ldots, v_{n}+w_{n}\right)$.
- $\mathbf{v}-\mathbf{w}=\left(v_{1}-w_{1}, v_{2}-w_{2}, \ldots, v_{n}-w_{n}\right)$
- $k \mathbf{v}=\left(k v_{1}, k v_{2}, \ldots, k v_{n}\right)$.

These rules coincide with the geometrical interpretation for two-dimensional vectors (see previous definitions).

Example (Vector Addition, Subtraction and Scalar Multiplication in \mathbb{R}^{n})

CARDIFF
UNIVERSITY
PRIFYSCOL
CAERDY
Hnl

Vector Addition, Subtraction and Scalar Multiplication in MATLAB

MATLAB directly supports vector addition, subtraction and scalar multiplication:

```
>> v=[lllll}102 5]
>> w=[lllll
>> v+w
ans =
    4 1
>> v-w
ans =
    -2
    3
    4
>> 3 * v
ans =
    36
    1 5
>> w*(-1)
ans =
    -3 1 -1
```

CARDIFF

Scalar product

Definition (Scalar product)

Given two vectors v and w in \mathbb{R}^{n} with components $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and ($w_{1}, w_{2}, \ldots, w_{n}$). We define the scalar product (or (standard) inner product, dot product) of \mathbf{v} and \mathbf{w} as

$$
\mathbf{v . w} \text { or }\langle\mathbf{v}, \mathbf{w}\rangle=\sum_{i=1}^{n} v_{i} w_{i}
$$

Note what the scalar product does:
It takes two vectors and assigns them a real number.
Problem (Scalar product)
Work out the scalar product of vectors $\mathbf{v}=(1,2)$ and $\mathbf{w}=(2,3)$

Note the notations v.w and $\langle\mathbf{v}, \mathbf{w}\rangle$ are equivalent. We use the v.w notation.

Scalar product using MATLAB

MATLAB provides a vector function dot that computes the dot product of two vectors (of any, identical dimension).
>> v = $\left[\begin{array}{lll}3 & 2 & -1\end{array}\right]$
>> w = [2 -1 1]
>> dot(v, w)
ans =
3
$\gg \operatorname{sum}(\mathrm{V} . * \mathrm{~W})$
ans $=$
3
dot (v, w) is equivalent to sum(v.*w) note v.*w is an array multiplication that returns a vector of the same size.

CARDIFF

Theorem (Scalar product properties)

The scalar product has the following properties.
Theorem (Scalar product properties)

- $\mathbf{v . v} \geq 0$, for all $\mathbf{v} \in \mathbb{R}^{n}$ and $\mathbf{v . v}=0 \Longleftrightarrow v=0$.
- $\mathbf{v . w}=\mathbf{w . v}$, for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$.
- $(\mathbf{v}+\mathbf{u}) . \mathbf{w}=\mathbf{v} . \mathbf{w}+\mathbf{u} . \mathbf{w}$, for all $\mathbf{v}, \mathbf{w}, \mathbf{u} \in \mathbb{R}^{n}$.
- (kv).w $=k(\mathbf{v} . \mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and $k \in \mathbb{R}$.

Euclidean norm of a vector

Definition (Euclidean norm of a vector)

For a vector $\mathbf{v} \in \mathbb{R}^{n}$ we define its norm as

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}
$$

This norm is called the Euclidean norm of the vector \mathbf{v}.
The Euclidean norm of a vector coincides with the length of the vector in \mathbb{R}^{2} and \mathbb{R}^{3}.

CARDIFF

Euclidean norm of a vector in MATLAB

The default behaviour of MATLAB function norm for a given vector input is to return the Euclidean norm (also called 2-norm):
>> v = [3 4]
>> norm(v)
ans =
5
>> sqrt(dot(v, v))
ans =
5

CARDIFF
UNIVERSITY
PRIFYSCOL
CARDM

Properties of scalar products

Theorem (Cauchy-Schwarz inequality)

Let v and w be vectors in \mathbb{R}^{n}
Then they satisfy the Cauchy-Schwarz inequality

$$
|\mathbf{v . w}| \leq\|\mathbf{v}\|\|\mathbf{w}\| .
$$

Theorem (Angle Between Two Vectors)

If $n=2,3$ we even have the relation

$$
\mathbf{v . w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos (\theta)
$$

We call θ the angle between v and w.

Geometric Visualisation of Angle Between Two Vectors in \mathbb{R}^{2}

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYD

Properties of scalar products

Proof of Cauchy-Schwarz inequality in \mathbb{R}^{n}
Let $\mathbf{v}=\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right)$ and $\mathbf{w}=\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots, \mathbf{w}_{\mathbf{n}}\right)$ be two vectors in \mathbb{R}^{n}, the quadratic function of z :

$$
\sum_{i=1}^{n}\left(v_{i} z-w_{i}\right)^{2}=\left(v_{1} z-w_{1}\right)^{2}+\left(v_{2} z-w_{2}\right)^{2}+\cdots+\left(v_{n} z-w_{n}\right)^{2}=0
$$

can have at most one solution. Denote this as $a z^{2}+b z+c=0$ where $a=v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}, b=-2\left(v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}\right)$, $\mathrm{c}=w_{1}^{2}+w_{2}^{2}+\cdots+w_{n}^{2}$.
So the discriminant

$$
b^{2}-4 a c=4(\mathbf{v} \cdot \mathbf{w})^{2}-4\|\mathbf{v}\|^{2}\|\mathbf{w}\|^{2} \leq 0
$$

Therefore $|\mathbf{v} . \mathbf{w}| \leq \mid \mathbf{v}\| \| \mathbf{w} \|$.

Properties of scalar products

Proof of Angle Between Two Vectors in \mathbb{R}^{n}
Let $\mathbf{v}=\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right)$ and $\mathbf{w}=\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots, \mathbf{w}_{\mathbf{n}}\right)$ be two vectors in \mathbb{R}^{n},

$$
\mathbf{v . w}=\sum_{i=1}^{n} v_{i} w_{i}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n} .
$$

We need to find out what $\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$ is.

Basic Trigonometric Formulae / Pythagoras' Theorem

We review some simple trigonometry here.
For a right-angle triangle

$\sin \theta=A / C, \cos \theta=B / C$ and $\tan \theta=A / B$
Also Pythagoras' Theorem states that

$$
A^{2}+B^{2}=C^{2}
$$

Law of Consines

A generalisation of Pythagoras's Theorem:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \gamma .
$$

If $\gamma=90^{\circ}, \cos \gamma=0$, this is equivalent to Pythagoras' Theorem.

Properties of scalar products

Proof of Angle Between Two Vectors in \mathbb{R}^{n} (cont.)
According to Law of Cosines,

$$
\begin{gathered}
\|\mathbf{w}-\mathbf{v}\|^{2}=\|\mathbf{v}\|^{2}+\|\mathbf{w}\|^{2}-2\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta \\
\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta=\frac{1}{2}\left(\|\mathbf{v}\|^{2}+\|\mathbf{w}\|^{2}-\|\mathbf{w}-\mathbf{v}\|^{2}\right)
\end{gathered}
$$

Note $\left(v_{i}^{2}+w_{i}^{2}-\left(w_{i}-v_{i}\right)^{2}\right) / 2=v_{i} w_{i}$, we have

$$
\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta=\sum_{i=1}^{n} v_{i} w_{i}=\mathbf{v . w .}
$$

Example (Orthogonal vectors in \mathbb{R}^{2} and \mathbb{R}^{3})

Let $\mathbf{v}=\left(v_{1}, v_{2}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}\right)$ be two vectors in \mathbb{R}^{2}.
We call \mathbf{v} and \mathbf{w} orthogonal if the angle between them is 90°.

Since $\cos (\theta)=0$ if and only if $\theta=90^{\circ}$ for $\theta \in\left[0,180^{\circ}\right]$ we can conclude that orthogonal vectors are characterized by the relation

$$
\mathbf{v . w}=0
$$

This expression is also meaningful in \mathbb{R}^{n} and we say that two vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^{n} are orthogonal, if their scalar product is zero.

CARDIFF
Unversitr
prafrscol
CARRDYi
三

The Vector Cross Product

Besides the scalar product that maps two vectors from \mathbb{R}^{n} to \mathbb{R} we also need a product that maps two vectors from \mathbb{R}^{n} to a vector in \mathbb{R}^{n}.

Definition (The vector cross product in \mathbb{R}^{2})

We define the vector cross product of $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{2}$ as a mapping $\times: \mathbb{R}^{2} \times \mathbb{R}^{2} \mapsto \mathbb{R}$ with

$$
\mathbf{v} \times \mathbf{w}=v_{1} w_{2}-v_{2} w_{1}
$$

The vector product in \mathbb{R}^{2} is anti-symmetric, i.e.

$$
\mathbf{v} \times \mathbf{w}=-\mathbf{w} \times \mathbf{v}
$$

The Vector Cross Product (cont.)

Definition (The vector cross product in \mathbb{R}^{3})

We define the vector cross product of $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ as a mapping $\times: \mathbb{R}^{3} \times \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ with

$$
\mathbf{v} \times \mathbf{w}=\left(\begin{array}{l}
v_{2} w_{3}-v_{3} w_{2} \\
v_{3} w_{1}-v_{1} w_{3} \\
v_{1} w_{2}-v_{2} w_{1}
\end{array}\right) .
$$

The vector product in \mathbb{R}^{3} is also anti-symmetric, i.e.

$$
\mathbf{v} \times \mathbf{w}=-\mathbf{w} \times \mathbf{v}
$$

The vector cross product has very useful properties, especially:

- for finding orthogonal vectors in \mathbb{R}^{3}.
- for area and volume calculations in \mathbb{R}^{2} and \mathbb{R}^{3} respectively.

CARDIFF UNIVERSITY

Example (Vector cross product: Orthogonal Vectors)

Work out the vector cross product of the vectors $\mathbf{v}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and
$\mathbf{w}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
It is easy to show that:

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \times\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Now $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ is orthogonal to both \mathbf{v} and \mathbf{w}.

CARDIFF
UNIVERSITY
PRIFYSGOL
CARDY

Example (Vector cross product: parallel vectors)

Let $n=2$.

If $\mathbf{v}=\left(v_{1}, v_{2}\right)$ then the vector $\mathbf{v}^{\text {perp }}=\left(-v_{2}, v_{1}\right)$ is orthogonal to v.
It follows from the definition of the vector and scalar product, that

$$
\mathbf{v} \times \mathbf{w}=v_{1} w_{2}-v_{2} w_{1}=-v_{2} w_{1}+v_{1} w_{2}=\mathbf{v}^{\text {perp }} . \mathbf{w}
$$

This expression is 0 if \mathbf{w} and $\mathbf{v}^{\text {perp }}$ are orthogonal.

However this means that \mathbf{v} and \mathbf{w} are parallel.

Vector cross products in MATLAB

MATLAB provides a vector function cross to compute the cross product of two vectors in \mathbb{R}^{3} :
>> v=[lll $\left.\begin{array}{ll}1 & 2\end{array}\right] ;$
>> $w=\left[\begin{array}{lll}-1 & 1 & 2\end{array}\right] ;$
>> cross(v, w)
ans =
1 -5
3

CARDIFF
UNIVERSITY
PRIFYSCOL
CAERDYD

Theorem (Parallel vectors in \mathbb{R}^{2})

We call two vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^{2} parallel if we have $\mathbf{v} \times \mathbf{w}=0$.
We even have

$$
\mathbf{v} \times \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \sin (\theta)
$$

where θ is the angle between \mathbf{v} and \mathbf{w} counted positive counter-clockwise and negative clockwise starting from \mathbf{v}.

Can you prove this?

Generalisation of sinusoidal relation

In general for any dimension it can be stated that:

$$
\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin (\theta)
$$

We also have:

$$
\mathbf{v} \times \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \sin (\theta) \hat{\mathbf{n}}
$$

where $\hat{\mathbf{n}}$ is a unit vector (of length 1) perpendicular to both \mathbf{v} and \mathbf{w}

Generalisation of sinusoidal relation (cont.)

We prove this using MATLAB symbolic toolbox:

To prove the first equation, note that $\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$, it is sufficient to show if

$$
\|\mathbf{v} \times \mathbf{w}\|^{2}+|\mathbf{v} . \mathbf{w}|^{2}=\|\mathbf{v}\|^{2}\|\mathbf{w}\|^{2}
$$

(since $\sin ^{2} \theta+\cos ^{2} \theta=1$)
>> syms v1 v2 v3 real
>> syms w1 w2 w3 real
>> v=[v1 v2 v3];
>> w = [w1 w2 w3];
>> f=dot(cross(v, w), cross(v, w))+dot(v, w).^2
f =
$(v 1 * \mathrm{w} 2-\mathrm{v} 2 * \mathrm{w} 1)^{\wedge} 2+(\mathrm{v} 1 * \mathrm{w} 3-\mathrm{v} 3 * \mathrm{w} 1)^{\wedge} 2+(\mathrm{v} 2 * \mathrm{w} 3-\mathrm{v} 3 * \mathrm{w} 2)^{\wedge} 2$
$+\left(\mathrm{v} 1 *_{\mathrm{w}} 1+\mathrm{v} 2 *_{\mathrm{w}} 2+\mathrm{v} 3 *_{\mathrm{w}} 3\right)^{\wedge} 2$
>> simplify(f)
ans =
$\left(v 1^{\wedge} 2+v 2^{\wedge} 2+v 3^{\wedge} 2\right) *\left(w 1^{\wedge} 2+w 2^{\wedge} 2+w 3^{\wedge} 2\right)$

CARDIFF

Generalisation of sinusoidal relation (cont.)

We prove this using MATLAB symbolic toolbox:

To prove the second equation, we need to verify that v.w is orthogonal to both \mathbf{v} and \mathbf{w} :

```
>> syms v1 v2 v3 real
>> syms w1 w2 w3 real
>> v=[v1 v2 v3];
>> w = [w1 w2 w3];
>> f1=dot(cross(v, w),v)
f1 =
v3*(v1*w2 - v2*w1) - v2*(v1*w3 - v3*w1) + v1*(v2*w3 - v3*w2)
>> simplify(f1)
ans =
0
>> f2=dot(cross(v, w),w)
f2 =
w3*(v1*w2 - v2*w1) - w2*(v1*w3 - v3*w1) + w1*(v2*w3 - v3*w2)
>> simplify(f2)
ans =
0
```


Back to our Volume Calculation

If a parallelogram is spanned by \mathbf{v} and \mathbf{w} then its area A is given by

$$
A=|\mathbf{v} \times \mathbf{w}| .
$$

UNIVERSITY
PRIFYSGOL
CAERDYB

Volume Calculation in \mathbb{R}^{3}

Now let $n=3$ and let \mathbf{v} and \mathbf{w} be vectors in \mathbb{R}^{3}.

We have similar relationships as in the case $n=2$.

One can show that

$$
\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\||\sin \theta|
$$

where θ is the angle between \mathbf{v} and \mathbf{w}.

In particular \mathbf{v} and \mathbf{w} are parallel only if

$$
\mathbf{v} \times \mathbf{w}=\mathbf{0} \quad \mathbf{0} \text { is the zero vector in } \mathbb{R}^{3} .
$$

Volume Calculation in \mathbb{R}^{3} : Scalar product/Cross Product

Now consider the expression: $\quad \mathbf{v} .(\mathbf{v} \times \mathbf{w})$
It holds that
$\mathbf{v} .(\mathbf{v} \times \mathbf{w})=v_{1}\left(v_{2} w_{3}-v_{3} w_{2}\right)+v_{2}\left(v_{3} w_{1}-v_{1} w_{3}\right)+v_{3}\left(v_{1} w_{2}-v_{2} w_{1}\right)=0$
Similarly we can show

$$
\mathbf{w} \cdot(\mathbf{v} \times \mathbf{w})=0
$$

and we have seen that the vector $\mathbf{v} \times \mathbf{w}$ is orthogonal to \mathbf{v} and \mathbf{w}.

Volume in \mathbb{R}^{3} : A parallelepiped

As in the two-dimensional case we get an easy formula for the volume of a parallelepiped spanned by three vectors \mathbf{v}, \mathbf{w} and \mathbf{u}.

$$
V=|\mathbf{v} .(\mathbf{w} \times \mathbf{u})|=|\mathbf{w} .(\mathbf{v} \times \mathbf{u})|=|\mathbf{u} .(\mathbf{v} \times \mathbf{w})|
$$

CARDIFF
UNIVERSITY
Prifyscol
CAERDYB

Example (Volume Worked Example in \mathbb{R}^{2})

The area of the parallelogram spanned by the two vectors $\binom{1}{1}$ and $\binom{2}{0}$ is given by

$$
A=\left|\binom{1}{1} \times\binom{ 2}{0}\right|=\|1 \cdot 0-1 \cdot 2\|=2
$$

Example (Volume Worked Example in \mathbb{R}^{3})

The volume, V, of the parallelepiped spanned by the three vectors

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text { and }\left(\begin{array}{l}
0 \\
4 \\
0
\end{array}\right) \text { is given by: } \\
& V=\left|\left(\begin{array}{l}
0 \\
4 \\
0
\end{array}\right) \cdot\left(\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \times\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)\right)\right| \\
& =\left|\left(\begin{array}{l}
0 \\
4 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)\right| \\
& =|-4| \\
& =4
\end{aligned}
$$

CARDIFF

Identities for the vector and the scalar product

Theorem (Identities for the vector and the scalar product)
Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and $\mathbf{x} \in \mathbb{R}^{3}$. Then we have the following identities.

- $\mathbf{V} \times \mathbf{w}=-\mathbf{w} \times \mathbf{v}$.
- $\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\||\sin (\theta)|$.
- $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} . \mathbf{w}) \mathbf{v}-(\mathbf{u} . \mathbf{v}) \mathbf{w}$ (Grassmann-expansion).
- $(\mathbf{u} \times \mathbf{v}) .(\mathbf{w} \times \mathbf{x})=(\mathbf{u} . \mathbf{w})(\mathbf{v} \cdot \mathbf{x})-(\mathbf{v} \cdot \mathbf{w})(\mathbf{u} \cdot \mathbf{x})$. (Lagrange identity).

You can prove them by using the definitions of cross and scalar products and expand the equations. Using MATLAB can save a lot of tedious calculation.

Summary

We have discussed

- 2, 3 and n-dimensional vectors.
- Representing vectors in coordinate systems.
- Vector addition, subtraction and scalar multiplication.
- Vector scalar and cross products and their properties.
- Using MATLAB to calculate vector operations and verify/prove properties.

