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2- 3- and n-dimensional vectors

Vector basics

Definition (2-dimensional vectors)

We define two-dimensional vectors as directed arrows in the plane.
A vector is determined by the length and the direction of the
arrow. Two vectors are called equivalent if they have the same
length and direction.

Equivalent Vectors

1
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Example (2-dimensional vectors)

A

B

C

D

1

Vectors can be determined by two points. E.g. the vectors AB and
CD.

In the above example:

A is called the tail of the vector AB.

B is called the head of the vector AB.
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Definition (Equivalence of vectors)

A

B

C

D

1

Although AB and CD have different heads and tails,
they are equivalent.

We distinguish vectors only by their direction and length.

Thus we treat equivalent vectors as equal.
E.g.

AB = CD
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Example (Some Real World Examples of Vectors)

Vectors can be used to represent translation (motion), velocity,
acceleration:

Vector Translation
(dx, dy)

1

Vector Velocity

(dx
dt ,

dy
dt )

1

Vector Acceleration
(d2x

dt2
,

d2y
dt2

)

1
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Vector Representation/Notation

Vectors can be defined in a variety of ways:

As we have seen already by two points.

In which case we use the notation AB.

Alternative notations (which we do not use but you may see

in some books) are AB or AB∼ or ÃB

A vector may also be defined as a line whose tail is the origin
and whose head coordinates are given as a (x , y) pair (and
similar for higher dimensions — more soon.

In this case we use the notation a = (x , y) or a = (x , y)
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Some Other Vector Notations You May See

An alternative notations 〈x , y〉, a, ã or, even, a∼.

Standard Vector/Matrix Notation Conventions

Note: It is standard notation to use a lower case letter for vectors
(along with bold, vector etc. of course)

Bold upper case letters are reserved for matrices — more later.
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Definition (The triangle law)

We add two vectors v and w in the following way.

We arrange w such that its tail coincides with the head of v.

u = v + w is then defined as the vector with the tail of v and the
head of the newly arranged vector w.

v

w

v + w

1
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Definition (0 and opposite vectors)

We define 0 as the vector with length 0.

If v is not 0, then we define −v as the vector with the same length
and the opposite direction as v.

We see that v + (−v) = 0.

v −v

1
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Definition (The difference of two vectors)

The difference of two vectors v and w is defined as

v −w = v + (−w)

v

−w

v − w

1
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Definition (Scalar multiplication)

Let v be a vector and k a real number.

The vector kv is defined as the vector with the same direction as v
if k is positive and the opposite direction if k is negative.

v

kv

−kv

1

The length of kv is |k|× the length of v.
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Vectors in coordinate systems

We can simplify the analysis of vectors by introducing coordinate
systems.
We consider the standard coordinate system in the x − y (2D R2)
plane:

v v

(v1, v2)

x

y

1

If v is a two-dimensional vector we can always arrange it such that
its tail coincides with the origin.

The coordinates (v1, v2) of its head uniquely identify v and are
called the components of v.
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Vector Definition in R2

Since the coordinates of the head determine any vector
uniquely, we make the following definition:

Definition (Vectors in the space R2)

We identify the space of two-dimensional vectors with

R2 = {(x , y)| x ∈ R, y ∈ R}

v v

(v1, v2)

x

y

1

We now write the notation v for the vector (v1, v2).
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Calculating Vectors from 2 Points in R2

If a vector v is defined by two points A = (a1, a2) and B = (b1, b2)
we can get the components of v by the simple calculation:

v = (b1 − a1, b2 − a2) Head - Tail

v = (b1 − a1, b2 − a2)

B = (b1, b2)

A = (a1, a2)

x

y

1

Thus two vectors v = (v1, v2) and w = (w1,w2) are equivalent if
v1 = w1 and v2 = w2.
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Calculating Vectors from 2 Points in R2 using MATLAB

If a vector v is defined by two points A = (a1, a2) and B = (b1, b2)
we can get the components of v in MATLAB:

% Symbolic

>> syms a1 a2 b1 b2

>> A=[a1, a2]

A =

[ a1, a2]

>> B=[b1, b2]

B =

[ b1, b2]

>> AB=B-A

AB =

[ b1 - a1, b2 - a2]

% assume A(-1, 2), B(3, 5)

>> A=[-1, 2]

A =

-1 2

>> B=[3, 5]

B =

3 5

>> AB=B-A

AB =

4 3
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Vectors in Higher Dimensional Spaces

Since we identified the space of two-dimensional vectors with the
space of all ordered 2-tuples we can define higher
dimensional vector spaces in the same way.

Definition (Vectors in the spaces R3 and Rn)

We define the space of three-dimensional vectors as

R3 = {(x , y , z)| x ∈ R, y ∈ R, z ∈ R}

Let n be a positive integer. We define the space of n-dimensional
vectors as

Rn = {(x1, x2, . . . , xn)| x1 ∈ R, x2 ∈ R, . . . , xn ∈ R}
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Standard coordinate system in R3

v

z
v

(v1, v2, v3)

x

y

1
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Vector operators

Definition (Vector Addition, Subtraction and Scalar Multiplication
in Rn)

Let v and w be two vectors in Rn and k a real number. The
following rules are well-defined:

v + w = (v1 + w1, v2 + w2, . . . , vn + wn).

v −w = (v1 − w1, v2 − w2, . . . , vn − wn)

kv = (kv1, kv2, . . . , kvn).

These rules coincide with the geometrical interpretation for
two-dimensional vectors (see previous definitions).
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Example (Vector Addition, Subtraction and Scalar
Multiplication in Rn)

z

v + w

w

v

x

y

1
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Vector Addition, Subtraction and Scalar Multiplication in
MATLAB

MATLAB directly supports vector addition, subtraction and scalar
multiplication:

>> v=[1 2 5];

>> w=[3 -1 1];

>> v+w

ans =

4 1 6

>> v-w

ans =

-2 3 4

>> 3 * v

ans =

3 6 15

>> w*(-1)

ans =

-3 1 -1

20 / 50



2- 3- and n-dimensional vectors Vectors in coordinate systems Vector operators

Scalar product

Definition (Scalar product)

Given two vectors v and w in Rn with components (v1, v2, . . . , vn)
and (w1,w2, . . . ,wn). We define the scalar product (or (standard)
inner product, dot product) of v and w as

v.w or 〈v,w〉 =
n∑

i=1

viwi

Note what the scalar product does:
It takes two vectors and assigns them a real number.

Problem (Scalar product)

Work out the scalar product of vectors v = (1, 2) and w = (2, 3)

Note the notations v.w and 〈v,w〉 are equivalent.
We use the v.w notation.
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Scalar product using MATLAB

MATLAB provides a vector function dot that computes the dot
product of two vectors (of any, identical dimension).

>> v = [3 2 -1]

>> w = [2 -1 1]

>> dot(v, w)

ans =

3

>> sum(v.*w)

ans =

3

dot(v, w) is equivalent to sum(v.*w) note v.*w is an array
multiplication that returns a vector of the same size.
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Theorem (Scalar product properties)

The scalar product has the following properties.

Theorem (Scalar product properties)

v.v ≥ 0, for all v ∈ Rn and v.v = 0 ⇐⇒ v = 0.

v.w = w.v, for all v,w ∈ Rn.

(v + u).w = v.w + u.w, for all v,w,u ∈ Rn.

(kv).w = k(v.w) for all v,w ∈ Rn and k ∈ R.
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Euclidean norm of a vector

Definition (Euclidean norm of a vector)

For a vector v ∈ Rn we define its norm as

‖v‖ =
√
v.v

This norm is called the Euclidean norm of the vector v.

The Euclidean norm of a vector coincides with the length of the
vector in R2 and R3.

v

(v1, v2)

x

y

v1

v2

‖v‖

1

By Pythagoras’ Theorem, ‖v‖ =
√
v21 + v22 =

√
v.v
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Euclidean norm of a vector in MATLAB

The default behaviour of MATLAB function norm for a given
vector input is to return the Euclidean norm (also called 2-norm):

>> v = [3 4]

>> norm(v)

ans =

5

>> sqrt(dot(v, v))

ans =

5
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Properties of scalar products

Theorem (Cauchy-Schwarz inequality)

Let v and w be vectors in Rn

Then they satisfy the Cauchy-Schwarz inequality

|v.w| ≤ ‖v‖‖w‖.

Theorem (Angle Between Two Vectors)

If n = 2, 3 we even have the relation

v.w = ‖v‖‖w‖ cos(θ)

We call θ the angle between v and w.
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Geometric Visualisation of Angle Between
Two Vectors in R2

v

w

θ

x

y

1
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Properties of scalar products

Proof of Cauchy-Schwarz inequality in Rn

Let v = (v1, v2, . . . , vn) and w = (w1,w2, . . . ,wn) be two vectors
in Rn, the quadratic function of z :

n∑
i=1

(viz −wi )
2 = (v1z −w1)2 + (v2z −w2)2 + · · ·+ (vnz −wn)2 = 0

can have at most one solution. Denote this as az2 + bz + c = 0
where a = v21 + v22 + · · ·+ v2n , b = −2(v1w1 + v2w2 + · · ·+ vnwn),
c=w2

1 + w2
2 + · · ·+ w2

n .
So the discriminant

b2 − 4ac = 4(v.w)2 − 4‖v‖2‖w‖2 ≤ 0

Therefore |v.w| ≤ |v‖‖w‖.
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Properties of scalar products

Proof of Angle Between Two Vectors in Rn

Let v = (v1, v2, . . . , vn) and w = (w1,w2, . . . ,wn) be two vectors
in Rn,

v.w =
n∑

i=1

viwi = v1w1 + v2w2 + · · ·+ vnwn.

We need to find out what ‖v‖‖w‖ cos θ is.
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Basic Trigonometric Formulae / Pythagoras’ Theorem

We review some simple trigonometry here.
For a right-angle triangle

sin θ = A/C , cos θ = B/C and tan θ = A/B
Also Pythagoras’ Theorem states that

A2 + B2 = C 2
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Law of Consines

A generalisation of Pythagoras’s Theorem:

c2 = a2 + b2 − 2ab cos γ.

If γ = 90◦, cos γ = 0, this is equivalent to Pythagoras’ Theorem.
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Properties of scalar products

Proof of Angle Between Two Vectors in Rn (cont.)

According to Law of Cosines,

‖w − v‖2 = ‖v‖2 + ‖w‖2 − 2‖v‖‖w‖ cos θ,

‖v‖‖w‖ cos θ =
1

2

(
‖v‖2 + ‖w‖2 − ‖w − v‖2

)
Note

(
v2i + w2

i − (wi − vi )
2
)
/2 = viwi , we have

‖v‖‖w‖ cos θ =
n∑

i=1

viwi = v.w.

v

w

w
-v

θ
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Example (Orthogonal vectors in R2 and R3)

Let v = (v1, v2) and w = (w1,w2) be two vectors in R2.

We call v and w orthogonal if the angle between them is 90◦.

Since cos(θ) = 0 if and only if θ = 90◦ for θ ∈ [0, 180◦] we can
conclude that orthogonal vectors are characterized by the relation

v.w = 0.

This expression is also meaningful in Rn and we say that two
vectors v and w in Rn are orthogonal , if their scalar product is
zero.

vw

1
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The Vector Cross Product

Besides the scalar product that maps two vectors from Rn to R we
also need a product that maps two vectors from Rn to a vector in
Rn.

Definition (The vector cross product in R2)

We define the vector cross product of v,w ∈ R2 as a mapping
× : R2 × R2 7→ R with

v ×w = v1w2 − v2w1

The vector product in R2 is anti-symmetric, i.e.

v ×w = −w × v
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The Vector Cross Product (cont.)

Definition (The vector cross product in R3)

We define the vector cross product of v,w ∈ R3 as a mapping
× : R3 × R3 7→ R3 with

v ×w =

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

 .

The vector product in R3 is also anti-symmetric, i.e.

v ×w = −w × v

The vector cross product has very useful properties, especially:

for finding orthogonal vectors in R3.

for area and volume calculations in R2 and R3 respectively.
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Example (Vector cross product: Orthogonal Vectors)

Work out the vector cross product of the vectors v =

 1
0
0

 and

w =

 0
1
0


It is easy to show that: 1

0
0

×
 0

1
0

 =

 0
0
1



Now

 0
0
1

 is orthogonal to both v and w.
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Example (Vector cross product: parallel vectors)

Let n = 2.

If v = (v1, v2) then the vector vperp = (−v2, v1) is orthogonal to v .

It follows from the definition of the vector and scalar product, that

v ×w = v1w2 − v2w1 = −v2w1 + v1w2 = vperp.w

This expression is 0 if w and vperp are orthogonal.

However this means that v and w are parallel.
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Vector cross products in MATLAB

MATLAB provides a vector function cross to compute the cross
product of two vectors in R3:

>> v=[1 2 3];

>> w=[-1 1 2];

>> cross(v, w)

ans =

1 -5 3
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Theorem (Parallel vectors in R2)

We call two vectors v and w in R2 parallel if we have v ×w = 0.

We even have
v ×w = ‖v‖‖w‖ sin(θ)

where θ is the angle between v and w counted positive
counter-clockwise and negative clockwise starting from v.

Can you prove this?
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Generalisation of sinusoidal relation

In general for any dimension it can be stated that:

‖v ×w‖ = ‖v‖‖w‖ sin(θ)

We also have:

v ×w = ‖v‖‖w‖ sin(θ)n̂

where n̂ is a unit vector (of
length 1) perpendicular to both
v and w

w

θ

v

v ×w

n̂

w × v

1
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Generalisation of sinusoidal relation (cont.)

We prove this using MATLAB symbolic toolbox:

To prove the first equation, note that v.w = ‖v‖‖w‖ cos θ, it is
sufficient to show if

‖v ×w‖2 + |v.w|2 = ‖v‖2‖w‖2.

(since sin2 θ + cos2 θ = 1)

>> syms v1 v2 v3 real

>> syms w1 w2 w3 real

>> v=[v1 v2 v3];

>> w = [w1 w2 w3];

>> f=dot(cross(v, w),cross(v, w))+dot(v, w).^2

f =

(v1*w2 - v2*w1)^2 + (v1*w3 - v3*w1)^2 + (v2*w3 - v3*w2)^2

+ (v1*w1 + v2*w2 + v3*w3)^2

>> simplify(f)

ans =

(v1^2 + v2^2 + v3^2)*(w1^2 + w2^2 + w3^2)
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Generalisation of sinusoidal relation (cont.)

We prove this using MATLAB symbolic toolbox:

To prove the second equation, we need to verify that v.w is
orthogonal to both v and w:

>> syms v1 v2 v3 real

>> syms w1 w2 w3 real

>> v=[v1 v2 v3];

>> w = [w1 w2 w3];

>> f1=dot(cross(v, w),v)

f1 =

v3*(v1*w2 - v2*w1) - v2*(v1*w3 - v3*w1) + v1*(v2*w3 - v3*w2)

>> simplify(f1)

ans =

0

>> f2=dot(cross(v, w),w)

f2 =

w3*(v1*w2 - v2*w1) - w2*(v1*w3 - v3*w1) + w1*(v2*w3 - v3*w2)

>> simplify(f2)

ans =

0
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Back to our Volume Calculation

If a parallelogram is spanned by v and w then its area A is given by

A = |v ×w|.

Av

w

1
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Volume Calculation in R3

Now let n = 3 and let v and w be vectors in R3.

We have similar relationships as in the case n = 2.

One can show that

‖v ×w‖ = ‖v‖‖w‖| sin θ|

where θ is the angle between v and w.

In particular v and w are parallel only if

v ×w = 0 0 is the zero vector in R3.
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Volume Calculation in R3: Scalar product/Cross Product

Now consider the expression: v.(v ×w)

It holds that

v.(v×w) = v1(v2w3−v3w2)+v2(v3w1−v1w3)+v3(v1w2−v2w1) = 0

Similarly we can show

w.(v ×w) = 0

and we have seen that the vector v ×w is orthogonal to v and w.

w

θ

v

v ×w

n̂

w × v

1
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Volume in R3: A parallelepiped

As in the two-dimensional case we get an easy formula for the
volume of a parallelepiped spanned by three vectors v, w and u.

V = |v.(w × u)| = |w.(v × u)| = |u.(v ×w)|

V

w

v

u

1
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Example (Volume Worked Example in R2)

The area of the parallelogram spanned by the two vectors

(
1
1

)
and

(
2
0

)
is given by

A = |
(

1
1

)
×
(

2
0

)
| = ‖1 · 0− 1 · 2‖ = 2
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Example (Volume Worked Example in R3)

The volume,V , of the parallelepiped spanned by the three vectors 1
0
2

,

 1
1
1

 and

 0
4
0

 is given by:

V = |

 0
4
0

 .

 1
1
1

×
 1

0
2

 |
= |

 0
4
0

 .

 2
−1
−1

 |
= | − 4|
= 4
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Identities for the vector and the scalar product

Theorem (Identities for the vector and the scalar product)

Let u, v,w and x ∈ R3. Then we have the following identities.

v ×w = −w × v.

‖v ×w‖ = ‖v‖‖w‖| sin(θ)|.
u× (v ×w) = (u.w)v − (u.v)w (Grassmann-expansion).

(u× v).(w × x) = (u.w)(v.x)− (v.w)(u.x). (Lagrange
identity).

You can prove them by using the definitions of cross and scalar
products and expand the equations. Using MATLAB can save a lot
of tedious calculation.
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Summary

We have discussed

2, 3 and n-dimensional vectors.

Representing vectors in coordinate systems.

Vector addition, subtraction and scalar multiplication.

Vector scalar and cross products and their properties.

Using MATLAB to calculate vector operations and
verify/prove properties.
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