CM2202：Scientific Computing and Multimedia Applications
 Linear Algebra：1．Introduction

Dr．Yukun Lai

School of Computer Science \＆Informatics

Linear Algebra, Vectors and Matrices

Vectors and Matrices are a staple data structure in many areas of Computer Science.

Computer Graphics is one prime example - here linear algebra permeates almost every area.

We will use some simple examples from Computer Graphics to visualise some simple aspects of Linear Algebra, Vectors and Matrices.

We will use other examples as appropriate.

We will use MATLAB to demonstrate the ideas.

CARDIFF

Selected Examples of Use in Computer Science

- Basic Linear Algebra - solutions of equations needed in almost every scientific discipline
- Vectors and Matrices - fundamental data structures in computer science e.g. Arrays, Linked Lists
- Numerical Analysis - scientific computing and practical computational mathematics
- Computer Graphics: Transformations, moving object around the screen, 3D deformations...
- Image Processing/Computer Vision: Images = matrices, Tracking objects, Object Recognition, Camera Calibration ...
- Data Compression: JPEG/MPEG, Image/Video/Audio Compression, Vector Quantisation

Matrices Example: Image Representation

88	71	61	51	48	40	35	53	86	88
83	74	53	56	48	46	48	72	85	102
101	68	57	53	54	52	64	82	88	101
107	82	64	63	58	60	81	80	83	100
114	83	76	68	72	85	84	88	85	88
117	108	84	82	87	101	100	108	105	88
116	114	108	106	105	108	108	102	107	110
115	113	108	114	111	111	113	108	111	115
110	113	111	108	106	108	110	115	120	122
103	107	106	108	108	114	120	124	124	132

Algebra/Graphs Example: Finite Element Modelling

CARDIFF
UNIVERSITY
prifyscol CAERDYB

Matrices Example: Computer Graphics Transformations

$$
\left[\begin{array}{l}
\mathbf{X}_{\text {roated }} \\
\mathbf{Y}_{\text {roated }} \\
\mathbf{1}
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & \mathbf{0} \\
\sin (\theta) & \cos (\theta) & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{1}
\end{array}\right] \cdot\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Y} \\
\mathbf{1}
\end{array}\right]
$$

CARDIFF
UNIVERSITY
PRIFYSCOL
PRIFYSCOL
CAERDYD
$6 / 9$

Matrices Example: Object Registration/Matching

Matrices Example: Image Warping (Transformation)

Matrices/Vector Example: Image Compression

CARDIFF
UNIVERSITY
PRIFYSGOL
AERDYD

