CM2202: Scientific Computing and Multimedia Applications

Geometric Computing: 3. Lines and Surfaces in 3D

Dr. Yukun Lai

School of Computer Science \& Informatics

Lines in 3D

In 3D the implicit equation of a line is defined as the intersection of two planes. (More on this shortly)

The parametric equation is a simple extension to 3D of the 2D form:

$$
\begin{aligned}
& x=x_{0}+f t \\
& y=y_{0}+g t \\
& z=z_{0}+h t
\end{aligned}
$$

CARDIFF
UNIVERSITY
PRIFYSCOL
CARDY

Parametric Lines in 3D

This is simply an extension of the vector form in 3D The line is normalised when $f^{2}+g^{2}+h^{2}=1$

CARDIFF UNIVERSITY
PRIFYSCOL CARDM
$3 / 36$

Perpendicular Distance from a Point to a Line in 3D

For the parametric form,

$$
\begin{aligned}
& x=x_{0}+f t \\
& y=y_{0}+g t \\
& z=z_{0}+h t
\end{aligned}
$$

This builds on the 2D example we met earlier, line_par_point_dist_2d. The 3D form is line_par_point_dist_3d.

```
dx = g*(f*(p(2)-y0) - g*(p(1)-x0)) ) .. 
dy = h*(g*(p(3) - z0 ) - h * ( p(2) - y0 ) ) ...
    - f * ( f * ( p(2) - y0 ) - g * ( p(1) - x0 ) );
dz = - f * ( f * ( p(3) - z0 ) - h * ( p(1) - x0 ) ) ...
    - g*(g * ( p(3) - z0 ) - h * ( p(2) - y0 ) );
dist = sqrt ( dx * dx + dy * dy + dz * dz ) ...
    / ( f * f + g * g + h * h );
```

The value of parameter, t, where the point intersects the line is given by:

```
t = (f*( p(1) - x0) + g*(p(2) - y0) +h*(p(3) - z0)/(f * f + g * g + h*\overline{h});
```

CARDIFF

Line Through Two Points in 3D (parametric form)

The parametric form of a line through two points, $P\left(x_{p}, y_{p}, z_{p}\right)$ and $Q\left(x_{q}, y_{q}, z_{q}\right)$ comes readily from the vector form of line (again a simple extension from 2D):

- Set base to point P
- Vector along line is $\left(x_{q}-x_{p}, y_{q}-y_{p}, z_{q}-z_{p}\right)$
- The equation of the line is:

$$
\begin{aligned}
& x=x_{p}+\left(x_{q}-x_{p}\right) t \\
& y=y_{p}+\left(y_{q}-y_{p}\right) t \\
& z=z_{p}+\left(z_{q}-z_{p}\right) t
\end{aligned}
$$

- As in 2D, $t=0$ gives P and $t=1$ gives Q
- Normalise if necessary.

Plot 3D lines in MATLAB

To plot a line segment with end points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$, you can use plot3([x1 x2], [y1 y2], [z1 z2]); (similar to plot in 2D

- see help plot3).

Example: To plot a line segment from $(1,1,1)$ to $(3,4,5)$:
>> plot3([1 3], [1 4], [1 5], '*-');
To make the 3D line more clearly visible, you may enable the grid and add labels to $x-/ y$-/z-axes.
>> grid on; axis equal; xlabel('x'); ylabel('y'); zlabel('z');

CARDIFF
UNIVERSITY
Prifyscol
CAERDYG
$6 / 36$

Implicit Surfaces

An implicit surface (just like implicit curves in 2D) of the form

$$
f(x, y, z)=0
$$

We simply add the extra z dimension.
For example:

- A plane can be represented

$$
a x+b y+c z+d=0
$$

- A sphere can be represented as

$$
\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}+\left(z-z_{c}\right)^{2}-r^{2}=0
$$

which is just the extension of the circle in 2D to 3D where the centre is now $\left(x_{c}, y_{c}, z_{c}\right)$ and the radius is r.

Implicit Equation of a Plane

The plane equation:

$$
a x+b y+c z+d=0
$$

- Is normalised if $a^{2}+b^{2}+c^{2}=1$.
- Like 2D the normal vector - the surface normal - is given by a vector $\mathbf{n}=(a, b, c)$
- a, b and c are the cosine angles which the normal makes with the $x-, y$ - and z-axes respectively.

Parametric Equation of a Plane

- This is an extension of parametric line into 3D where we now have two variable parameters u and v that vary.
- $\left(f_{1}, g_{1}, h_{1}\right)$ and (f_{2}, g_{2}, h_{2}) are two different vectors parallel to the plane.

CARDIFF UNIVERSITY

Parametric Equation of a Plane (Cont.)

- A point in the plane is found by adding proportion u of one vector to a proportion v of the other vector
- If the two vectors are of unit length and are perpendicular, then:

$$
\begin{aligned}
f_{1}^{2}+g_{1}^{2}+h_{1}^{2} & =1 \\
f_{2}^{2}+g_{2}^{2}+h_{2}^{2} & =1 \\
f_{1} f_{2}+g_{1} g_{2}+h_{1} h_{2} & =0 \text { (scalar product) }
\end{aligned}
$$

CARDIFF
UNIVERSITY
PRIFYSGOL
CARDY
$10 / 36$

Distance from a 3D point and a Plane

The distance, d, between a point, $J\left(x_{j}, y_{j}, z_{j}\right)$, and an implicit plane, $a x+b y+c z+d=0$ is:

$$
d=\frac{a x_{j}+b y_{j}+c z_{j}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

This is very similar to the 2D distance of a point to a line. The MATALB code to achieve this is, plane_imp_point_dist_3d.m:

```
norm = sqrt ( a * a + b * b + c * c );
if ( norm == 0.0 )
    error ( 'PLANE Normal = 0!' );
end
dist = abs (a * p(1) + b * p(2) + c * p(3) + d ) / norm;
```

CARDIFF

Angle Between a Line and a Plane

If the plane is in implicit form $a x+b y+c z+d=0$ and line is in parametric form:

$$
\begin{aligned}
& x=x_{0}+f t \\
& y=y_{0}+g t \\
& z=z_{0}+h t
\end{aligned}
$$

then the angle, γ between the line and the normal the plane (a, b, c) is:

$$
\gamma=\cos ^{-1}(a f+b g+c h)
$$

The angle, θ, between the line and the plane is then:

$$
\theta=\frac{\pi}{2}-\gamma
$$

CARDIFF

Angle Between a Line and a Plane (cont)

If either line or plane equations are not normalised the we must normalise:
$\gamma=\cos ^{-1} \frac{(a f+b g+c h)}{\sqrt{\left(a^{2}+b^{2}+c^{2}\right)}}, \gamma=\cos ^{-1} \frac{(a f+b g+c h)}{\sqrt{\left(f^{2}+g^{2}+h^{2}\right)}}, \gamma=\cos ^{-1} \frac{(a f+b g+c h)}{\sqrt{\left(a^{2}+b^{2}+c^{2}\right)\left(f^{2}+g^{2}+h^{2}\right)}}$
The angle, θ, is as before:

$$
\theta=\frac{\pi}{2}-\gamma
$$

The MATLAB code to so this is planes_imp_angle_line_3d.m:

```
norm1 = sqrt ( a1 * a1 + b1 * b1 + c1 * c1 );
    if ( norm1 == 0.0 )
        angle = Inf;
        return
    end
norm2 = sqrt (f * f + g *g + h * h );
if ( norm2 == 0.0 )
        angle = Inf;
        return
    end
```

```
cosine = ( a1 * f + b1 * g + c1 * h) / ( norm1 * norm2 );
```

cosine = (a1 * f + b1 * g + c1 * h) / (norm1 * norm2);
angle = pi/2 - acos(cosine);

```
angle = pi/2 - acos( cosine );
```


Angle Between Two Planes

Given two normalised implicit planes

$$
a_{1} x+b_{1} y+c_{1} z+d_{1}=0
$$

and

$$
a_{2} x+b_{2} y+c_{2} z+d_{2}=0
$$

The angle between them, θ, is the angle between the normals:

$$
\theta=\cos ^{-1}\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)
$$

CARDIFF
UNIVERSITY
PRIFYSGOL
CARDM

14 / 36

Angle Between Two Planes (MATLAB Code)

The MATLAB code to do this is planes_imp_angle_3d.m:

```
norm1 = sqrt ( a1 * a1 + b1 * b1 + c1 * c1 );
if ( norm1 == 0.0 )
        angle = Inf;
        return
    end
```

```
norm2 = sqrt ( a 2 * \(\mathrm{a} 2+\mathrm{b} 2\) * b2 + c2 * c2 );
if ( norm2 == 0.0 )
    angle = Inf;
        return
    end
cosine \(=(\mathrm{a} 1 * \mathrm{a} 2+\mathrm{b} 1\) * b2 + c1 * c2 ) / ( norm1 * norm2 );
```

angle $=$ acos (cosine);

Intersection of a Line and Plane

If the plane is in implicit form $a x+b y+c z+d=0$ and line is in parametric form:

$$
\begin{aligned}
& x=x_{0}+f t \\
& y=y_{0}+g t \\
& z=z_{0}+h t
\end{aligned}
$$

The the point, $P(x, y)$, where the is given by parameter, t :

$$
t=\frac{-\left(a x_{0}+b y_{0}+c z_{0}+d\right)}{a f+b g+c h}
$$

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYD

Intersection of a Line and Plane (MATLAB Code)

The MATLAB code to do this is plane_imp_line_par_int_3d.m

```
tol = eps;
norm1 = sqrt ( a * a + b * b + c * c );
if ( norm1 == 0.0 )
    error ( 'Norm1 = 0 - Fatal error!' )
end
norm2 = sqrt ( f * f + g * g + h * h );
if ( norm2 == 0.0 )
    error ( 'Norm2 = 0 - Fatal error!' )
end
denom = a * f + b * g + c * h;
if ( abs ( denom ) < tol * norm1 * norm2 ) % The line and the plane may be parallel.
    if (a* x0 + b * y0 + c * z0 + d == 0.0 )
        intersect = 1;
        p(1) = x0;
        p(2) = y0;
        p(3) = z0;
    else
            intersect = 0;
            p(1:dim_num) = 0.0;
    end
else
    intersect = 1;
    t = - ( a * x0 + b * y0 + c * z0 + d ) / denom; % they must intersect.
    p(1) = x0 + t * f;
    p(2) = y0 + t * g;
    p(3) = z0 + t * h;
```

end

CARDIFF UNIVERSITY
PRIFYSCOL CAERDYB

Intersection of Three Planes

- Three planes intersect at point.
- Two planes intersect in a line \rightarrow two lines intersect at a point
- Similar problem to solving in 2D for two line intersecting:
- Solve three simultaneous linear equations:

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z+d_{1}=0 \\
& a_{2} x+b_{2} y+c_{2} z+d_{2}=0 \\
& a_{3} x+b_{3} y+c_{3} z+d_{3}=0
\end{aligned}
$$

Intersection of Three Planes (MATLAB Code)

The MATLAB code to do this is, planes_3d_3_intersect.m:

```
tol = eps;
bc = b2*c3 - b3*c2;
ac = a2*c3 - a3*c2;
ab = a2*b3 - a3*b2;
det = a1*bc - b1*ac + c1*ab
if (abs(det) < tol)
    error('planes_3d_3_intersct: At least to planes are parallel');
end;
else
    dc = d2*c3 - d3*c2;
    db = d2*b3 - d3*b2;
    ad = a2*d3 - a3*d2;
    detinv = 1/det;
    p(1) = (b1*dc - d1*bc - c1*db)*detinv;
    p(2) = (d1*ac - a1*dc - c1*ad)*detinv;
    p(3) = (b1*ad + a1*db - d1*ab)*detinv;
    return;
end;
end;
```


Intersection of Two Planes

Two planes

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z+d_{1}=0 \\
& a_{2} x+b_{2} y+c_{2} z+d_{2}=0
\end{aligned}
$$

intersect to form a straight line:

$$
\begin{aligned}
& x=x_{0}+f t \\
& y=y_{0}+g t \\
& z=z_{0}+h t
\end{aligned}
$$

CARDIFF
UNIVERSITY
PRIFYSGOL
CARDY
$20 / 36$

Intersection of Two Planes (Cont.)

- (f, g, h) may be found by finding a vector along the line. This is given by the vector cross product of $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$:
$(f, g, h)=\left|\begin{array}{lll}\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=\left(b_{1} c_{2}-b_{2} c_{1}, a_{2} c_{1}-a_{1} c_{2}, a_{1} b_{2}-a_{2} b_{1}\right)$

CARDIFF

- $\left(x_{0}, y_{0}, z_{0}\right)$ then readily follows.

Intersection of Two Planes (cont.)

$P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ can be any point on the intersection line, so it should satisfy both plane equations:

$$
\begin{aligned}
& a_{1} x_{0}+b_{1} y_{0}+c_{1} z_{0}+d_{1}=0 \\
& a_{2} x_{0}+b_{2} y_{0}+c_{2} z_{0}+d_{2}=0
\end{aligned}
$$

Three unknowns (x_{0}, y_{0} and z_{0}) but only two equations. Different possibilities for another equation. We choose the point on the intersection line that is closest to the origin. Geometrically $\mathbf{O P} \mathbf{0}_{\mathbf{0}}$ is orthogonal to (f, g, h), so

$$
f x_{0}+g y_{0}+h z_{0}=0
$$

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYD

Intersection of Two Planes (cont.)

Write this in a matrix form

$$
\left(\begin{array}{ccc}
f & g & h \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-d_{1} \\
-d_{2}
\end{array}\right) .
$$

The determinant

$$
\left|\begin{array}{ccc}
f & g & h \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=f^{2}+g^{2}+h^{2}
$$

The solution can be found using MATLAB Symbolic Toolbox.

CARDIFF
UNIVERSITY
PRIFYSGOL
CARDY

Intersection of Two Planes（Matlab Symbolic Toolbox）

```
>> syms a1 b1 c1 d1 a2 b2 c2 d2
>> v1 = [a1 b1 c1];
>> v2 = [a2 b2 c2];
>> v=cross(v1, v2)
v =
[ b1*c2 - b2*c1, a2*c1 - a1*c2, a1*b2 - a2*b1]
>> f = v(1);
>> g = v(2);
> h = v(3);
>> A=[f g h; a1 b1 c1; a2 b2 c2]
A =
[ b1*c2 - b2*c1, a2*c1 - a1*c2, a1*b2 - a2*b1]
\begin{tabular}{llll}
{\([\)} & a 1, & b 1, & \(\mathrm{c} 1]\) \\
{\([\)} & a 2, & b 2, & \(\mathrm{c} 2]\)
\end{tabular}
```

The determinant of \mathbf{A} ：

```
>> det(A)
ans =
a1^2*b2^2 + a1^2*c2^2 - 2*a1*a2*b1*b2 - 2*a1*a2*c1*c2 + a2^2*b1^2 + a2^2*c1^2 + b1^2*c2^2
    - 2*b1*b2*c1*c2 + b2^2*c1^2
>> simplify(det(A) - (f*f+g*g+h*h))
ans =
0
```

The solution to $\left(x_{0}, y_{0}, z_{0}\right)$ is $\frac{1}{\operatorname{det} \mathbf{A}}$ times
>> simplify ($\mathrm{A} \backslash \mathrm{b} * \operatorname{det}(\mathrm{~A})$)
ans =
$\mathrm{a} 1 * \mathrm{~b} 1 * \mathrm{~b} 2 * \mathrm{~d} 2-\mathrm{a} 2 * \mathrm{~b} 1 \wedge 2 * \mathrm{~d} 2-\mathrm{a} 1 * \mathrm{c} 2 \wedge 2 * \mathrm{~d} 1-\mathrm{a} 2 * \mathrm{c} 1 \wedge 2 * \mathrm{~d} 2-\mathrm{a} 1 * \mathrm{~b} 2 \wedge 2 * \mathrm{~d} 1+\mathrm{a} 2 * \mathrm{~b} 1 * \mathrm{~b} 2 * \mathrm{~d} 1+\mathrm{a} 1 * \mathrm{c} 1 * \mathrm{c} 2 * \mathrm{~d} 2+\mathrm{a} 2 * \mathrm{c} 1 * \mathrm{c} 2 * \mathrm{~d} 1$
$\mathrm{a} 1 * \mathrm{a} 2 * \mathrm{~b} 1 * \mathrm{~d} 2-\mathrm{a} 1 \wedge 2 * \mathrm{~b} 2 * \mathrm{~d} 2-\mathrm{b} 1 * \mathrm{c} 2 \wedge 2 * \mathrm{~d} 1-\mathrm{b} 2 * \mathrm{c} 1 \wedge 2 * \mathrm{~d} 2-\mathrm{a} 2 \wedge 2 * \mathrm{~b} 1 * \mathrm{~d} 1+\mathrm{a} 1 * \mathrm{a} 2 * \mathrm{~b} 2 * \mathrm{~d} 1+\mathrm{b} 1 * \mathrm{c} 1 * \mathrm{c} 2 * \mathrm{~d} 2+\mathrm{b} 2 * \mathrm{c} 1 * \mathrm{c} 2 * \mathrm{~d} 1$
$\mathrm{a} 1 * \mathrm{a} 2 * \mathrm{c} 1 * \mathrm{~d} 2-\mathrm{a} 1 \wedge 2 * \mathrm{c} 2 * \mathrm{~d} 2-\mathrm{b} 2 \wedge 2 * \mathrm{c} 1 * \mathrm{~d} 1-\mathrm{b} 1 \wedge 2 * \mathrm{c} 2 * \mathrm{~d} 2-\mathrm{a} 2 \wedge 2 * \mathrm{c} 1 * \mathrm{~d} 1+\mathrm{a} 1 * \mathrm{a} 2 * \mathrm{c} 2 * \mathrm{~d} 1+\mathrm{b} 1 * \mathrm{~b} 2 * \mathrm{c} 1 * \mathrm{~d} 2+\mathrm{b} 1 * \mathrm{~b} 2 * \mathrm{c} 2 * \mathrm{~d} 1$

CARDIFF UNIVERSITY

Intersection of Two Planes (Matlab Code)

The MATLAB code to do this is, planes_3d_2intersect_line.m:

```
tol = eps;
f = b1*c2 - b2*c1;
g = c1*a2 - c2*a1;
h = a1*b2 - a2*b1;
det = f*f + g*g + h*h;
if (abs(det) < tol)
    error('planes_3d_2intersect_line: Planes are parallel');
end;
else
    dc = d1*c2 - c1*d2;
    db = d1*b2 - b1*d2;
    ad = a1*d1 - a2*d1;
    detinv = 1/det;
    x0 = (g*dc - h*db)*detinv;
    y0 = -(f*dc +h*ad)*detinv;
    z0 = (f*db +g*ab)*detinv;
    return
end;
end;
```


Plane Through Three Points

Just as two points define a line, three points define a plane (this is the explicit form of a plane):

A plane may be found as follows:

- Let P_{j} be the point $\left(x_{j}, y_{j}, z_{j}\right)$ in the plane
- Form two vectors in the plane $P_{l}-P_{j}$ and $P_{k}-P_{j}$
- Form another vector from a general point $P(x, y)$ in the plane to P_{j}
- The the equation of the plane is given by:

$$
\left|\begin{array}{ccc}
x-x_{j} & y-y_{j} & z-z_{j} \\
x_{k}-x_{j} & y_{k}-y_{j} & z_{k}-z_{j} \\
x_{I}-x_{j} & y_{l}-y_{j} & z_{l}-z_{j}
\end{array}\right|=0
$$

(because the parallelepiped formed by these three vectors $P_{l}-P_{j}, P_{k}-P_{j}$ and $P-P_{j}$ should have zero volume.)

- a, b, c and d can be found by expanding the determinant above

CARDIFF UNIVERSITY

Plane Through Three Points (MATLAB Code)

The MATLAB code to do this, plane_exp2imp_3d.m

$$
\begin{aligned}
\mathrm{a}= & (\mathrm{p} 2(2)-\mathrm{p} 1(2)) *(\mathrm{p} 3(3)-\mathrm{p} 1(3)) \ldots \\
& -(\mathrm{p} 2(3)-\mathrm{p} 1(3)) *(\mathrm{p} 3(2)-\mathrm{p} 1(2)) ; \\
\mathrm{b}= & (\mathrm{p} 2(3)-\mathrm{p} 1(3)) *(\mathrm{p} 3(1)-\mathrm{p} 1(1)) \ldots \\
& -(\mathrm{p} 2(1)-\mathrm{p} 1(1)) *(\mathrm{p} 3(3)-\mathrm{p} 1(3))) \\
\mathrm{c}= & (\mathrm{p} 2(1)-\mathrm{p} 1(1)) *(\mathrm{p} 3(2)-\mathrm{p} 1(2)) \ldots \\
& -(\mathrm{p} 2(2)-\mathrm{p} 1(2)) *(\mathrm{p} 3(1)-\mathrm{p} 1(1)) ; \\
\mathrm{d}= & -\mathrm{p} 2(1) * \mathrm{a}-\mathrm{p} 2(2) * \mathrm{~b}-\mathrm{p} 2(3) * \mathrm{c} ;
\end{aligned}
$$

Parametric Surfaces

The general form of a parametric surface is

$$
\mathbf{r}=(x(u, v), y(u, v), z(u, v)) .
$$

This is just like a parametric curve except we now have two parameters u and v that vary.

u

UNIVERSITY
PRIFYSGOL
CARDO

Parametric Surface: Cylinder

For example, a cylindrical may be represented in parametric form as

$$
x=x_{0}+r \cos u \quad y=y_{0}+r \sin u \quad z=z_{0}+v
$$

CARDIFF
UNIVERSITY
PRIFYSCOL
CAERDYB
三

Parametric Surface: Cylinder (MATLAB Code)

The MATLAB code to plot the cylinder figure is cyl_plot.m

```
p0 = [2,0,0] % x_0, y_0, z_0
r = 3; %radius
n = 360;
```

hold on;
for $v=1: 10$
for $u=1: 360$
theta $=(2.0 * \mathrm{pi} *(\mathrm{u}-1)) / \mathrm{n}$;
$\mathrm{x}=\mathrm{p} 0(1)+\mathrm{r} * \cos ($ theta) ;
$y=p 0(2)+r * \sin ($ theta) $;$
$z=p 0(3)+v$;
plot3(x,y,z);
end
end

Parametric Surface: Sphere

A sphere is represented in parametric form as
$x=x_{c}+r \sin (u) \sin (v) \quad y=y_{c}+r \cos (u) \sin (v) \quad z=z_{c}+r \cos (v)$

MATLAB code to produce a parametric sphere is at HyperSphere.m (see help HyperSphere for examples).

Piecewise Shape Models

Polygons

A polygon is a 2D shape that is bounded by a closed path or circuit, composed of a finite sequence of straight line segments.

We can represent a polygon by a series of connected lines:

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYB

Polygons (Cont.)

- Each line is defined by two vertices - the start and end points.
- We can define a data structure which stores a list of points (coordinate positions) and the edges define by indexes to two points:

Points : $\left\{P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right), P_{3}\left(x_{3}, y_{3}\right), \ldots\right\}$
Points define the geometry of the polygon.
Edges : Edges : $\left\{e_{1}=\left(P_{1}, P_{2}\right), e_{2}=\left(P_{2}, P_{3}\right), \ldots\right.$
Edges define the topology of the polygon.

- If you traverse the polygon points in an ordered direction (clockwise) then the lines define a closed shape with the inside on the right of each line.

3D Objects: Boundary Representation

In 3D we need to represent the object's faces, edges and vertices and how they are joined together:

3D Objects: Boundary Representation

Topology - The topology of an object records the connectivity of the faces, edges and vertices. Thus,

- Each edge has a vertex at either end of it (e_{1} is terminated by v_{1} and v_{2}), and,
- each edge has two faces, one on either side of it (edge e_{3} lies between faces f_{1} and f_{2}).
- A face is either represented as an implicit surface or as a parametric surface
- Edges may be straight lines (like e_{1}), circular arcs (like e_{4}), and so on.

Geometry - This described the exact shape and position of each of the edges, faces and vertices. The geometry of a vertex is just its position in space as given by its (x, y, z) coordinates.

Summary

3D Geometric Computing:

- 3D Line Equations (Parametric)
- Implicit Surfaces (Planes, Spheres)
- Geometric Computation Related to 3D Lines and Planes
- Parametric Surfaces (Planes, Cylinders, Spheres)
- 3D Objects using Boundary Representation

