CM2202: Scientific Computing and Multimedia Applications Fourier Transform 2: Digital Signal and Image Processing Applications and Examples

Prof. David Marshall

School of Computer Science & Informatics

February 25, 2014

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Other Filters

Convolution

Reverb 00000000000 Info

Filtering in the Frequency Domain

Low Pass Filter

Example: Audio Hiss, 'Salt and Pepper' noise in images,

Noise:

- The idea with noise Filtering is to reduce various spurious effects of a local nature in the image, caused perhaps by
 - noise in the acquisition system,
 - arising as a result of transmission of the data, for example from a space probe utilising a low-power transmitter.

	divides areas drained by different river systems.
e term wate fers to a rid	ershed ge that
	divides areas rained by different ver systems.

イロト イポト イヨト イヨト

Frequency Space Filtering Methods

Low Pass Filtering — Remove Noise

Noise = High Frequencies:

- In audio data many spurious peaks in over a short timescale.
- In an image means there are many rapid transitions (over a short distance) in intensity from high to low and back again or vice versa, as faulty pixels are encountered.
- Not all high frequency data noise though!

Therefore **noise** will contribute heavily to the **high frequency** components of the signal when it is **analysed** in **Fourier space**.

Thus if we **reduce** the **high frequency** components — **Low-Pass Filter** should (if tuned properly) **reduce** the amount of noise in the data.

Info

(Low-pass) Filtering in the Fourier Space

Low Pass Filtering with the Fourier Transform

We filter in Fourier space by computing

$$G(u,v) = H(u,v)F(u,v)$$

where:

- F(u, v) is the **Fourier transform** of the **original** image,
- *H*(*u*, *v*) is a filter function, designed to reduce high frequencies, and
- G(u, v) is the Fourier transform of the improved image.
- Inverse Fourier transform G(u, v) to get g(x, y) our improved image

We need to design or compute H(u, v)

- If we know h(x, y) or have a discrete sample of h(x, y) can compute its Fourier Transform
- Can simply design simple filters in Frequency Space

The simplest sort of filter to use is an *ideal low-pass filter*, which in one dimension appears as :

This is a h(x, y) function which is **1** for *u* between 0 and u_0 , the *cut-off frequency*, and **zero** elsewhere.

- So all frequency space information above u₀ is discarded, and all information below u₀ is kept.
- A very simple computational process.

Other Filters

Convolution

Reverb 00000000000 Info

Ideal 2D Low-Pass Filter

Ideal 2D Low-Pass Filter

The two dimensional version of this is the Low-Pass Filter:

$$H(u,v) = \left\{ egin{array}{cc} 1 & ext{if } \sqrt{u^2+v^2} \leq w_0 \ 0 & ext{otherwise,} \end{array}
ight.$$

where w_0 is now the **cut-off frequency** for **both** dimensions.

• Thus, all frequencies inside a radius w₀ are kept, and all others discarded.

Not So Ideal Low-Pass Filter? (1)

In practice, the ideal Low-Pass Filter is no so ideal

The **problem** with this filter is that as well as noise there may be **useful** high frequency content:

- In audio: plenty of other high frequency content: high pitches, rustles, scrapes, wind, mechanical noises, cymbal crashes etc.
- In **images**: **edges** (places of rapid transition from light to dark) also significantly contribute to the high frequency components.

Choosing the most appropriate cut-off frequency is not so easy

• Similar problem to choosing a threshold in **image thresholding**.

イロト イポト イヨト イヨト

Info

Other Filters

Convolution

Reverb 00000000000

Not So Ideal Low-Pass Filter? (2)

What if you set the wrong value for the cut-off frequency?

If you **choose the wrong cut-off frequency** an ideal low-pass filter will tend to *blur* the data:

- High audio frequencies become muffled
- Edges in images become blurred.

The lower the cut-off frequency is made, the more pronounced this effect becomes in *useful data content*

9/54

Convolution

Reverb 00000000000

Ideal Low Pass Filter Example 1

(a) Input Image

(c) Ideal Low Pass Filter

(b) Image Spectra

イロン イロン イヨン イヨン

(d) Filtered Image

3

Other Filters

Convolution

Reverb

Ideal Low-Pass Filter Example 1 MATLAB Code

low pass.m:

% Compute Ideal Low Pass Filter u0 = 20; % set cut off frequency

```
% Create a white box on a
% black background image
M = 256; N = 256;
image = zeros(M,N)
box = ones(64, 64);
%box at centre
image(97:160.97:160) = box:
```

```
% Show Image
```

```
figure(1);
imshow(image);
```

% compute fft and display its spectra

```
F=fft2(double(image));
figure(2);
imshow(abs(fftshift(F)));
```

```
u = 0: (M - 1):
v = 0: (N-1);
idx = find(u > M/2);
u(idx)=u(idx)-M;
idy=find(v>N/2);
v(idy) = v(idy) - N;
[V,U]=meshgrid(v,u);
D = sgrt(U.^{2}+V.^{2});
H=double(D \le u0);
```

```
% display
figure (3);
imshow(fftshift(H));
```

```
% Apply filter and do inverse FFT
G=H. * F:
g=real(ifft2(double(G)));
```

```
% Show Result
figure (4);
imshow(g);
```


Filtering

Low Pass Filter

Other Filters

Convolution

Reverb 00000000000

Ideal Low Pass Filter Example 2

The term watershed refers to a ridge that divides areas trained by different iver systems.

(a) Input Image

(c) Ideal Low-Pass Filter

(b) Image Spectra

12 / 54

Other Filters

Convolution

Reverb 00000000000

Ideal Low-Pass Filter Example 2 MATLAB Code

lowpass2.m:

```
% Compute Ideal Low Pass Filter
                                            u0 = 50; % set cut off frequency
                                            u = 0: (M - 1):
                                           v = 0: (N - 1);
% read in MATLAB demo text image
                                            idx = find(u > M/2);
image = imread('text.png');
                                            u(idx)=u(idx)-M;
[M N] = size(image)
                                            idy=find(v>N/2);
                                            v(idy) = v(idy) - N;
                                            [V,U]=meshgrid(v,u);
% Show Image
                                           D = sgrt(U.^{2}+V.^{2});
                                           H=double(D \le u0);
figure(1);
imshow(image);
                                           % display
                                            figure (3);
% compute fft and display its spectra
                                            imshow(fftshift(H));
F=fft2(double(image));
                                           % Apply filter and do inverse FFT
figure(2);
                                           G=H. * F:
imshow(abs(fftshift(F))/256);
                                            g=real(ifft2(double(G)));
                                           % Show Result
                                            figure (4);
                                            imshow(g);
```


Low-Pass Butterworth Filter (1)

We introduced the **Butterworth Filter** with **IIR/FIR Filters** (**Temporal Domain Filtering**). Let's now study it in more detail.

• Much easier to visualise in Frequency space

2D Low-Pass Butterworth Filter

Another popular (and general) filter is the **Butterworth low pass** filter.

In the 2D case, H(u, v) takes the form

$$H(u, v) = \frac{1}{1 + \left[(u^2 + v^2) / w_0^2 \right]^n},$$

where *n* is called the **order** of the filter.

Low-Pass Butterworth Filter (2)

Visualising the 1D Low-Pass Butterworth Filter

This keeps some of the high frequency information, as illustrated by the second order **one dimensional** Butterworth filter:

Consequently reduces the blurring.

 Blurring the filter — Butterworth is essentially a smoothed top hat functions — reduces blurring by the filter.

Info

Visualising the 2D Low-Pass Butterworth Filter

The **2D** second order Butterworth filter looks like this:

 Note this is blurred circle — blurring of the ideal 2D Low-Pass Filter.

16/54

イロト イポト イヨト イヨト

(c) Butterworth Low-Pass Filter

(b) Image Spectra

イロト 不得下 イヨト イヨト

CARDIFF UNIVERSITY PRIFYSGOL CARDYD $\mathcal{O} \mathrel{\bigcirc} \mathrel{\bigcirc} \mathrel{\bigcirc}$ 17 / 54

3

 Filtering
 Low Pass Filter
 Other Filters
 Convolution
 Reverb

 0
 0
 0
 0
 0
 0

 Butterworth Low-Pass Filter Example 1 (2)

Comparison of Ideal and Butterworth Low Pass Filter:

Other Filters

Convolution

Reverb

イロト イポト イヨト イヨト

Butterworth Low-Pass Filter Example 1 (3)

butterworth.m:

```
% Load Image and Compute FFT as
% in Ideal Low Pass Filter Example 1
% Compute Butterworth Low Pass Filter
u0 = 20; % set cut off frequency
u = 0: (M-1);
v = 0: (N - 1);
idx = find(u > M/2):
u(idx)=u(idx)-M;
idy = find(v > N/2);
v(idy) = v(idy) - N;
[V.U]=meshgrid(v.u):
for i = 1: M
    for i = 1:N
      %Apply a 2nd order Butterworth
      UVw = double((U(i,j)*U(i,j) + V(i,j)*V(i,j))/(u0*u0));
      H(i,i) = 1/(1 + UVw*UVw);
    end
end
% Display Filter and Filtered Image as before
```


19/54

3

Filtering

Low Pass Filter

Other Filters

Convolution

Reverb 00000000000

Butterworth Low-Pass Butterworth Filter Example 2 (1)

(a) Input Image

(c) Butterworth Low-Pass Filter

(b) Image Spectra

・ロト ・四ト ・ヨト ・ヨト

э

 Filtering
 Low Pass Filter
 Other Filters
 Convolution

 0
 0
 0
 0
 0

 Butterworth Low-Pass Filter Example 2 (2)

Comparison of Ideal and Butterworth Low-Pass Filter:

Reverb 00000000000 Info.

The term watershed The term watershed refers to a ridge that ... refers to a ridge that Ideal Low Pass Butterworth Low-Pass **NRDIF** イロト イポト イヨト イヨト 21 / 54

イロト イポト イヨト イヨト

Butterworth Low Pass Filter Example 2 MATLAB (3)

<u>butterworth2.m</u>:

```
% Load Image and Compute FFT as in Ideal Low Pass Filter
% Example 2
% Compute Butterworth Low Pass Filter
u0 = 50; % set cut off frequency
u = 0: (M-1);
v = 0: (N - 1);
idx = find(u > M/2):
u(idx)=u(idx)-M;
idy = find(v > N/2);
v(idy) = v(idy) - N;
[V.U]=meshgrid(v.u):
for i = 1: M
    for i = 1:N
      %Apply a 2nd order Butterworth
      UVw = double((U(i,j)*U(i,j) + V(i,j)*V(i,j))/(u0*u0));
      H(i,i) = 1/(1 + UVw*UVw);
    end
end
% Display Filter and Filtered Image as before
```


22 / 54

Other Filters

Convolution

Reverb 00000000000

Low Pass Filtering Noisy Images

How to create noise and results of Low Pass Filtering

Use Matlab function, imnoise() to add noise to image (lowpass.m, lowpass2.m):

(a) Input Noisy Image

(c) Input Noisy Image

(b) Deconvolved Noisy Image (Low Cut Off)

(d) Deconvolved Noisy Image (Higher Cut Off)

Filterin 0	ng Low Pass Filter 000000000000000000000	Other Filters 0	Convolution 00000000000	Reverb 00000000000	Info.
Otl	her Filters				
1	Other Filters				
	High-Pass Filters — oppos frequencies, a	site of low- attenuate t	pass, select hig hose <mark>below</mark> <i>u</i> 0	h	
	Band-pass — allow freq those outside	uencies in this range	a range <i>u</i> ₀ <i>u</i>	y_1 attenuate	L
	$\frac{\text{Band-reject}}{\text{within } u_0 \dots}$	of band-pas u ₁ select t	ss, attenuate fre hose <mark>outside</mark> t	equencies his range	L
	Notch — attenuate around cut-ot	frequencie ff frequenc	s in a narrow b y, <i>u</i> 0	andwidth	

Resonator — amplify frequencies in a narrow bandwidth around cut-off frequency, u_0

Other filters exist that essentially are a combination/variation of the above

Filtering 0	Low Pass Filter ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Other Filters 0	Convolution	Reverb 00000000000	Info
Convo	ution				

Many Useful Applications of Convolution

Several important audio and optical effects can be described in terms of convolutions.

- Flltering In fact the **above Fourier filtering** is applying **convolutions** of a **low pass filter** where the equations are Fourier Transforms of real space equivalents.
- Deblurring high pass filtering
- Reverb impulse response convolution (more soon).

Note we have seen a discrete **real domain** example of Convolution with **Edge Detection**.

26 / 54

Filtering	Low Pass Filter	Other Filters	Convolution	Reverb	Info

Formal Definition of 1D Convolution:

Let us examine the concepts using 1D continuous functions.

The convolution of two functions f(x) and g(x), written f(x) * g(x), is defined by the integral

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(\alpha)g(x-\alpha) d\alpha.$$

• * is the mathematical **notation** for **convolution**.

No Fourier Transform in sight here — but wait!

イロト イポト イヨト イヨト

 Filtering
 Low Pass Filter
 Other Filters
 Convolution
 Reverb

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Convolution of Two Top Hat Functions

For example, let us take two **top hat functions**:

Let $f(\alpha)$ be the top hat function shown:

 $f(\alpha) = \left\{ egin{array}{cc} 1 & ext{if } |lpha| \leq 1 \ 0 & ext{otherwise,} \end{array}
ight.$

and let $g(\alpha)$ be as shown in next slide, defined by

 $g(\alpha) = \left\{ egin{array}{cc} 1/2 & ext{if } 0 \leq lpha \leq 1 \ 0 & ext{otherwise.} \end{array}
ight.$

28 / 54

ð	Þ.	•	3	×.	•	æ	Þ.	12	-	0	۹	C

29 / 54

-5.0

x0.0

イロト イポト イヨト イヨト

5.0

NRDI

30 / 54

range $-1 \le x \le 0$ opposite

1D Convolution Example (4)

So the solution is:

If we now consider x moving from $-\infty$ to $+\infty$, we can see that

- For $x \le -1$ or $x \ge 2$, there is **no overlap**;
- As x goes from -1 to 0 the area of overlap steadily increases from 0 to 1/2;
- As x increases from 0 to 1, the overlap area remains at 1/2;
- Finally as x increases from 1 to 2, the overlap area steadily decreases again from 1/2 to 0.
- Thus the convolution of f(x) and g(x), f(x) * g(x), in this case has the form shown on next slide

3

イロト イポト イヨト イヨト

Result of f(x) * g(x)

э

・ロン ・四と ・ヨン ・ヨン

1D Convolution Example (6)

Mathematically the convolution is expressed by:

5.0

ARDIFF NIVERSITY LIFYSGOL AERDYD 233 / 54

Fourier Transforms and Convolution

Convolution Theorem: Convolution in Frequency Space is Easy

One **major** reason that Fourier transforms are so important in signal/image processing is the **convolution theorem** which states that:

If f(x) and g(x) are two functions with Fourier transforms F(u)and G(u), then the Fourier transform of the convolution f(x) * g(x) is simply the product of the Fourier transforms of the two functions, F(u)G(u).

Recall our Low Pass Filter Example (MATLAB CODE) % Apply filter G=H.*F;

Where ${\bf F}$ was the Fourier transform of the image, ${\bf H}$ the filter

Info

Computing Convolutions with the Fourier Transform

Example Applications:

- To apply some reverb to an audio signal.
- To compensate for a less than ideal image capture system.

Deconvolution: Compensating for undesirable effects

To do this **fast convolution** we simply:

- Take the Fourier transform of the audio/imperfect image,
- Take the Fourier transform of the function describing the effect of the system,
- To remove/compensate for effect: Divide by the effect's Fourier Transform to obtain the Fourier transform of the 'ideal' audio/image.
- Inverse Fourier transform to recover the new improved audio/image.

This process is sometimes referred to as deconvolution.

Image Deblurring Deconvolution Example

Inverting our Previous Low-Pass Filter

Recall our Low Pass (Butterworth) Filter example of a few slides ago: butterworth.m: deconv.m and deconv2.m reuses this code and adds a deconvolution stage:

- Our computed butterworth low pass filter. H is our blurring function
- So to simply invert this we can divide (as opposed to multiply) by H with the blurred image G • effectively a high pass filter

```
Ghigh = G_{.}/H_{:}
ghigh=real(ifft2(double(Ghigh)));
figure(5)
imshow(ghigh)
```

- ٠ In this ideal example we clearly get F back and to get the image simply to inverse Fourier Transfer.
- In the real world we don't really know the exact blurring function H so things are not so easy. •

(a) Input Image

Filtering

ow Pass Filter

Other Filters

Convolution

Reverb Doooooooooooo

deconv2.m results

The term watershed refers to a ridge that	The term watershed refers to a ridge that	The term watershed refers to a ridge that
divides areas drained by different river systems.	divides areas drained by different river systems.	divides areas drained by different river systems.
		() –

(a) Input Image (b) Blurred Low-Pass Filtered Image (c) Deconvolved Image

Filtering

Low Pass Filter

Other Filters

Convolution

Reverb 00000000000

Deconvolution is not always that simple!

Convolution Reverb: Back to Audio

What is Reverb?

Reverberation (reverb for short) is probably one of the most heavily used effects in music.

Reverberation is the result of the many reflections of a sound that occur in a room.

- From any sound source, say a speaker of your stereo, there is a direct path that the sounds covers to reach our ears.
- Sound waves can also take a slightly longer path by reflecting off a wall or the ceiling, before arriving at your ears.

The Spaciousness of a Room

What is Reverb? (Cont.)

- A reflected sound wave like this will arrive a little later than the direct sound, since it travels a longer distance, and is generally a little weaker, as the walls and other surfaces in the room will absorb some of the sound energy.
- Reflected waves can again bounce off another wall before arriving at your ears, and so on.
- This series of delayed and attenuated sound waves is what we call reverb, and this is what creates the *spaciousness* sound of a room.
- Clearly large rooms such as concert halls/cathedrals will have a much more spaciousness reverb than a living room or bathroom.

Filtering	Low Pass Filter	Other Filters	Convolution	Reverb	Info.
0	೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	0	00000000000	○●○○○○○○○○○	
Reverb	Simulation				

How to implement a Digital Audio Effect

There are a few ways to simulate reverb.

We will only study two reverb methods of approach here (there are others):

- Filter Bank/Delay Line methods
- Convolution/Impulse Response methods

Filtering	Low Pass Filter	Other Filters	Convolution	Reverb	Info
	0000000000000000000		00000000000	0000000000	

Schroeder's Reverberator

Reverb via Filters and Delays

• Early digital reverberation algorithms tried to mimic a room's reverberation by primarily using **two types** of infinite impulse response (IIR) filters.

Comb filter — usually in parallel banks Allpass filter — usually sequentially after comb filter banks

 A delay is (set via the feedback loops allpass filter) aims to make the output would gradually decay.

MATLAB Code: schroeder1.m

Filtering	Low Pass Filter	Other Filters	Convolution	Reverb	
⊙	000000000000000000000000	0	00000000000	○○○●○○○○○○	
~					

Convolution Reverb Implementation

Commercial Convolution Reverbs

- <u>Altiverb</u> one of the first mainstream convolution reverb effects units
- Most sample based synthesisers (E.g. Kontakt, Intakt) provide some convolution reverb effect
- Dedicated sample-based software instruments such as <u>Garritan Violin</u> and <u>PianoTeq Piano</u> use convolution not only for reverb simulation but also to simulate key responses of the instruments body vibration.

イロト イポト イヨト イヨト

Info

Filtering	Low Pass Filter	Other Filters	Convolution	Reverb	
				0000000000	

Room Impulse Responses

Record a Room Impulse

Apart from providing a high (professional) quality recording of a room's impulse response, the process of using an impulse response is quite straightforward:

- Record a short impulse (gun shot,drum hit, hand clap) in the room.
- Room impulse responses can be simulated in software also.
- The impulse encodes the rooms reverb characteristics:

 Filtering
 Low Pass Filter
 Other Filters
 Convolution
 Reverb
 Info

 MATLAB Convolution Reverb (1)
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <td

Let's develop a fast convolution routine: fconv.m

```
function [y] = fconv(x, h)
    FCONV East Convolution
%
%
    [y] = FCONV(x, h) convolves x and h,
%
        and normalizes the output to +-1.
%
       x = input vector
%
       h = input vector
%
Ly=length(x)+length(h)-1;
                             %
Ly2=pow2(nextpow2(Ly));
                             % Find smallest power of 2
                                                     %that is > Ly
X = fft(x, Ly2);
                             % Fast Fourier transform
                             % Fast Fourier transform
H=fft(h, Ly2);
Y = X \cdot * H;
                             % DO CONVOLUTION
y=real(ifft(Y, Ly2));
                             % Inverse fast Fourier transform
y = y (1:1:Ly);
                             % Take just the first N elements
y=y/max(abs(y));
                             % Normalize the output
                                                                   ARDIF
```

See also: MATLAB built in function conv() () () () () ()

MATLAB Convolution Reverb (2)

reverb_convolution_eg.m

```
% reverb_convolution_eg.m
% Script to call implement Convolution Reverb
% read the sample waveform
filename = '... / acoustic . wav ';
[x, Fs, bits] = wavread (filename);
% read the impulse response waveform
filename='impulse_room .wav';
[imp, Fsimp, bitsimp] = wavread(filename);
% Do convolution with FFT
y = fconv(x, imp);
% write output
wavwrite(y, Fs, bits, 'out_IRreverb.wav');
```


46 / 54

イロト 不得下 イヨト イヨト

Info

Some example results:

47 / 54

Cathedral Impulse Response Convolution Reverb:

Click on above images or here to hear: original audio, cathedral impulse response audio, <u>cathedral reverberated audio</u>.

Ŭwytestry (CCCD) (CC

It is easy to implement some other (odd?) effects also

Reverse Cathedral Impulse Response Convolution Reverb:

NRDI

49 / 54

< ロト < 同ト < ヨト < ヨト

Click on above images or here to hear: original audio, reverse cathedral impulse response audio, reverse cathedral reverberated audio.

You can basically convolve with anything.

50 / 54

- 4 同 ト 4 ヨ ト 4 ヨ ト

Other Filters

Convolution

Reverb 00000000000 Info.

Further Reading

DAFX: Digital Audio Effects

Udo Zolzer John Wiley and Sons Ltd , 2002 (ISBN-13: 978-0471490784)

Excellent coverage of audio signal processing effects and synthesis plus a lot more

All MATLAB examples

Copies in library

イロト イポト イヨト イヨト

51/54

Further Reading

Digital Image Processing Using MATLAB

Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins Prentice Hall, 2004 (ISBN-13: 978-0130085191)

Excellent coverage of Image processing examples plus a lot more All MATLAB examples Useful for CM0311 Image Processing Copies in library

イロト イポト イヨト イヨト

52 / 54

Info.

See also next Lab Class

Filtering Low Pass Filter Other Filters Convolution Reverb Info.

If you like this sort of stuff

Related Year 3 Modules

• CM3106 Multimedia

• CM3102 Graphics, Visualisation and Computer Vision