CM2202: Scientific Computing and Multimedia Applications Fourier Transform 1: Digital Signal and Image Processing Fourier Theory

Prof. David Marshall

School of Computer Science & Informatics

Frequency	Domain

Discrete Fourier Transform

Fourier Transform

Moving into the Frequency Domain

The **Frequency domain** can be obtained through the transformation, via **Fourier Transform (FT)**, from

• one (Temporal (Time) or Spatial) domain

to the other

- Frequency Domain
 - We do not think in terms of signal or pixel intensities but rather underlying sinusoidal waveforms of varying frequency, amplitude and phase.

Frequency	Domain
000000	

Discrete Fourier Transform

Spectra 00000000

Applications of Fourier Transform

Numerous Applications including:

- Essential tool for Engineers, Physicists, Mathematicians and Computer Scientists
- Fundamental tool for Digital Signal Processing and Image Processing
- Many types of Frequency Analysis:
 - Filtering
 - Noise Removal
 - Signal/Image Analysis
 - Simple implementation of **Convolution**
 - Audio and Image Effects Processing.
 - Signal/Image Restoration *e.g.* **Deblurring**
 - Signal/Image Compression —- MPEG (Audio and Video), JPEG use related techniques.
 - Many more

Discrete Fourier Transform 0000

Spectra 00000000

Introducing Frequency Space

1D Audio Example

Lets consider a 1D (e.g. Audio) example to see what the different domains mean:

Consider a complicated sound such as the a chord played on a piano or a guitar.

We can describe this sound in two related ways:

Temporal Domain : Sample the amplitude of the sound many times a second, which gives an approximation to the sound as a function of time.

Frequency Domain : Analyse the sound in terms of the pitches of the notes, or frequencies, which make the sound up, recording the amplitude of each frequency.

Fundamental Frequencies

- Db : 554.40Hz
- F : 698.48Hz
- Ab : 830.64Hz
- C: 1046.56Hz

plus harmonics/partial frequencies

Fourier Transform

Discrete Fourier Transform

Spectra 00000000

Back to Basics

An 8 Hz Sine Wave

A signal that consists of a sinusoidal wave at 8 Hz.

- 8 Hz means that wave is completing 8 cycles in 1 second
- The frequency of that wave is 8 Hz.

From the **frequency domain** we can see that the composition of our signal is

- one peak occurring with a frequency of 8 Hz — there is only one sine wave here.
 - with a magnitude/fraction of 1.0 i.e. it is the whole signal.

Frequency	Domain
00000000	

Discrete Fourier Transform

2D Image Example

What do Frequencies in an Image Mean?

Now images are no more complex really:

- Brightness along a line can be recorded as a set of values measured at equally spaced distances apart,
- Or equivalently, at a set of spatial frequency values.
- Each of these frequency values is a frequency component.
- An image is a 2D array of pixel measurements.
- We form a 2D grid of spatial frequencies.
 - A given frequency component now specifies what contribution is made by data which is changing with specified x and y direction spatial frequencies.

Frequency Domain	Fourier Transform 00000	Discrete Fourier Transform 0000
-		

Spectra 00000000

Frequency components of an image

What do Frequencies in an Image Mean? (Cont.)

- Large values at **high** frequency components then the data is changing rapidly on a short distance scale.
 - e.g. a page of text
 - However, Noise contributes (very) High Frequencies also
- Large **low** frequency components then the large scale features of the picture are more important.

e.g. a single fairly simple object which occupies most of the image.

Frequency Domain	Fourier Transform	Discrete Fourier Transform	Spectra
○○○○○●●○○○○○	00000	0000	0000000
Visualising Frequ	uency Domain Tr	ansforms	

Sinusoidal Decomposition

- Any digital signal (function) can be decomposed into purely sinusoidal components
 - Sine waves of different size/shape varying amplitude, frequency and phase.
- When added back together they reconstitute the original signal.
- The Fourier transform is the tool that performs such an operation.

Frequency Domain ○○○○○○●○○○○○	Fourier Transform 00000	Discrete Fourier Transform 0000	Spectra 00000000
Summing Sine W Wave	Vaves. Example:	to give a Square(ish))

Digital signals are composite signals made up of many sinusoidal frequencies

• A 200Hz digital signal (square(ish) wave) may be a composed of 200, 600, 1000, *etc.* sinusoidal signals which sum to give:

Fourier Transform

Discrete Fourier Transform

Spectra 00000000

Summary so far

So What Does All This Mean?

Transforming a signal into the frequency domain allows us

- To see what sine waves make up our underlying signal
- E.g.
 - One part sinusoidal wave at 50 Hz and
 - Second part sinusoidal wave at 200 Hz.
 - Etc.
- More **complex** signals will give more complex decompositions but the idea is exactly the same.

Fourier Transform

Discrete Fourier Transform

Spectra 00000000

How is this Useful then?

Basic Idea of Filtering in Frequency Space

Filtering now involves **attenuating** or **removing** certain frequencies — **easily performed**:

- Low pass filter
 - Ignore high frequency noise components make zero or a very low value.
 - Only store lower frequency components
- High Pass Filter opposite of above
- Bandpass Filter only allow frequencies in a certain range.

Fourier Transform

Discrete Fourier Transform

Spectra 00000000

Visualising the Frequency Domain

Think Graphic Equaliser

An easy way to visualise what is happening is to think of a graphic equaliser on a stereo system (or some software audio players, *e.g. iTunes*).

Frequ 0000	ency Domain ○○○○○○○○	Fourier Transform 00000	Discrete Fourier Transform 0000	Spectra 00000
So	are we rea	dy for the Four	ier Transform?	
	We have all the ⁻	Tools		
	This lecturPast Maths	e, so far, (hopefully) set t s Lectures:	he context for Frequency decomp	osition.
	Odd,ComCalco	/Even Functions: $sin(-x)$ plex Numbers: Phasor F ulus Integration: $\int e^{kx} dx$	$) = -\sin(x), \cos(-x) = \cos(x) orm re^{i\phi} = r(\cos\phi + i\sin\phi) = \frac{e^{kx}}{k} $	
	 Digital Signature 	nal Processing:		
	 Basic wher the s Relat 	: Waveform Theory. Sine e: $A = \text{amplitude}$, $F_w = \text{ample index}$. tionship between Amplitu.	Wave $y = A.sin(2\pi.n.F_w/F_s)$ wave frequency, F_s = sample freq de, Frequency and Phase:	uency, <i>n</i> is

 $\bullet~$ Cosine is a Sine wave $90^\circ~$ out of phase

• Impulse Responses

• DSP + Image Proc.: Filters and other processing, Convolution

Snapshots at jasonlove.com

Professor Herman stopped when he heard that unmistakable thud -- another brain had imploded.

Frequency Domain	Fourier Transform	Discrete Fourier Transform	Spectra
Fourier Theory			

Introducing The Fourier Transform

The tool which **converts** a **spatial** or **temporal** (real space) **description** of **audio/image** data, for example, into one in terms of its **frequency components** is called the **Fourier transform**

The new version is usually referred to as the **Fourier space description** of the data.

We then essentially process the data:

• *E.g.* for **filtering** basically this means attenuating or setting certain frequencies to zero

We then need to **convert data back** (or **invert**) to **real audio**/imagery to use in our applications.

The corresponding **inverse** transformation which turns a Fourier space description back into a real space one is called the **inverse Fourier transform**.

Frequency	Domain

Discrete Fourier Transform 0000

1D Fourier Transform

1D Case (e.g. Audio Signal)

Considering a **continuous** function f(x) of a single variable x representing distance (or time).

The **Fourier transform** of that function is denoted F(u), where *u* represents **spatial** (or **temporal**) **frequency** is defined by:

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x u} dx.$$

Note: In general F(u) will be a complex quantity *even though* the original data is purely **real**.

- The meaning of this is that not only is the **magnitude** of each **frequency** present important, but that its **phase relationship** is **too**.
- Recall Phasors from Complex Number Lectures.

• $e^{-2\pi i x u}$ above is a **Phasor**.

00000000000	•••••	0000	0000000
Inverse Four	er Transform		

Inverse 1D Fourier Transform

The **inverse Fourier transform** for regenerating f(x) from F(u) is given by

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{2\pi i x u} \, du,$$

which is rather similar to the (forward) Fourier transform

- except that the exponential term has the opposite sign.
- It is not negative

Frequency Domain	Fourier Transform	Discrete Fourier Transform	Spectra
	○●○○○	0000	00000000
Fourier Transf	orm Example		

Fourier Transform of a Top Hat Function

Let's see how we compute a Fourier Transform: consider a particular function f(x) defined as

 $f(x) = \begin{cases} 1 & \text{if } |x| \le 1 \\ 0 & \text{otherwise,} \end{cases}$

18 / 35

Frequency	Domain
	00000

Discrete Fourier Transform

Spectra 00000000

The Sinc Function (1)

We derive the Sinc function

So its Fourier transform is:

$$F(\mathbf{u}) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ixu} dx$$
$$= \int_{-1}^{1} 1 \times e^{-2\pi ixu} dx$$
$$= \frac{-1}{2\pi iu} (e^{2\pi iu} - e^{-2\pi iu})$$

Now (refer to Complex Numbers Lectures/Maths Formula Sheet Handout)

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}, So$$
$$F(u) = \frac{\sin 2\pi u}{\pi u}.$$

In this case, F(u) is purely real, which is a consequence of the original data being symmetric in x and -x.

• f(x) is an even function.

A graph of F(u) is shown overleaf.

This function is often referred to as the Sinc function.

20 / 35

Frequency Domain	Fourier Transform ○○○○●	Discrete Fourier Transform	Spectra 00000000
The 2D Fourier	Transform		

2D Case (e.g. Image data)

If f(x, y) is a function, for example **intensities** in an **image**, its Fourier transform is given by

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i (xu+yv)} dx dy,$$

and the inverse transform, as might be expected, is

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{2\pi i (xu+yv)} du dv.$$

21 / 35

Fourier Transform

Discrete Fourier Transform

Spectra 00000000

The Discrete Fourier Transform

But All Our Audio and Image data are Digitised!!

Thus, we need a *discrete* formulation of the Fourier transform:

- Assumes regularly spaced data values, and
- **Returns** the **value** of the Fourier transform for a set of values in frequency space which are **equally spaced**.

This is done quite naturally by replacing the integral by a summation, to give the *discrete Fourier transform* or **DFT** for short.

Frequency Domain	Fourier Transform	Discrete Fourier Transform	Spectra
	00000	●○○○	00000000
1D Discrete Fou	rier transform		

1D Case:

In 1D it is convenient now to assume that x goes up in steps of 1, and that there are N samples, at values of x from 0 to N - 1.

So the DFT takes the form

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-2\pi i x u/N},$$

while the inverse DFT is

$$f(x) = \sum_{x=0}^{N-1} F(u) e^{2\pi i x u/\mathbf{N}}.$$

NOTE: Minor changes from the continuous case are a factor of 1/N in the **exponential** terms, and also the factor 1/N in front of the forward transform which **does not appear** in the **inverse** transform.

23 / 35

イロト 不得下 イヨト イヨト 二日

NRDIF

Frequency Domain	Fourier Transform 00000	Discrete Fourier Transform ○●00	Spectra 00000000
2D Discrete F	ourier transform	1	

2D Case

The **2D DFT** works is similar.

So for an $N \times M$ grid in x and y we have

$$F(\mathbf{u},\mathbf{v}) = \frac{1}{\mathsf{NM}} \sum_{x=0}^{\mathsf{N}-1} \sum_{y=0}^{\mathsf{M}-1} f(x,y) e^{-2\pi i (x\mathbf{u}/\mathsf{N}+y\mathbf{v}/\mathsf{M})}$$

and

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{M-1} F(u,v) e^{2\pi i (xu/N + yv/M)}.$$

PRIFYSGOL CAERDYD 24 / 35

イロト イポト イモト イモト 一日

Frequency Domain	Fourier Transform 00000	Discrete Fourier Transform ○○●○	Spectra 0000000
Balancing the	2D DFT		

Most Images are Square

Often N = M, and it is then it is more convenient to redefine F(u, v) by multiplying it by a factor of N, so that the **forward** and **inverse** transforms are more **symmetric**:

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-2\pi i (xu+yv)/N},$$

and

$$f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) e^{2\pi i (xu+yv)/N}.$$

Frequency	Domain

Discrete Fourier Transform

Spectra 00000000

Fourier Transforms in MATLAB

fft() and fft2()

MATLAB provides functions for 1D and 2D **Discrete Fourier Transforms** (**DFT**):

- fft(X) is the 1D discrete Fourier transform (DFT) of vector X. For matrices, the FFT operation is applied to each column — NOT a 2D DFT transform.
- fft2(X) returns the 2D Fourier transform of matrix X. If X is a vector, the result will have the same orientation.
- fftn(X) returns the N-D discrete Fourier transform of the N-D array X.

Inverse DFT ifft(), ifft2(), ifftn() perform the inverse DFT.

See appropriate MATLAB help/doc pages for full details.

Plenty of examples to Follow.

26 / 35

Fourier Transform

Discrete Fourier Transform

Spectra

Visualising the Fourier Transform

Visualising the Fourier Transform

Having computed a DFT it might be useful to visualise its result:

- It's useful to visualise the Fourier Transform
- Standard tools
- Easily plotted in MATLAB

Frequency Domain	Fourier Transform 00000	Discrete Fourier Transform	Spectra • 0000000
The Magnitude	Spectrum of	Fourier Transform	

Recall that the Fourier Transform of our $\ensuremath{\textit{real}}$ audio/image data is always $\ensuremath{\textit{complex}}$

• Phasors: This is how we encode the phase of the underlying signal's Fourier Components.

How can we visualise a complex data array?

Back to Complex Numbers:

Magnitude spectrum Compute the absolute value of the complex data:

$$|F(k)|=\sqrt{F_R^2(k)+F_l^2(k)}$$
 for $k=0,1,\ldots,N-1$

where $F_R(k)$ is the real part and $F_I(k)$ is the imaginary part of the N sampled Fourier Transform, F(k).

```
Recall MATLAB: Sp = abs(fft(X,N))/N;
(Normalised form)
```


28 / 35

3

Fourier Transform

Discrete Fourier Transform 0000

Spectra ○●0○○○○○

The Phase Spectrum of Fourier Transform

The Phase Spectrum

Phase Spectrum

The Fourier Transform also represent phase, the **phase spectrum** is given by:

$$arphi = rctan \, rac{F_l(k)}{F_R(k)} \, \, {f for} \, \, k = 0, 1, \dots, N-1$$

Recall MATLAB: phi = angle(fft(X,N))

Frequency Domain
coocococococoFourier Transform
cococDiscrete Fourier Transform
cococSpectra
cococococococoRelating a Sample Point to a Frequency Point

When **plotting graphs** of *Fourier Spectra* and doing other DFT processing we may wish to **plot** the *x*-axis in **Hz** (Frequency) rather than sample point number k = 0, 1, ..., N - 1

There is a **simple relation** between the two:

- The sample points go in steps k = 0, 1, ..., N 1
- For a given sample point *k* the frequency relating to this is given by:

$$f_k = k \frac{f_s}{N}$$

where f_s is the *sampling frequency* and *N* the **number** of samples.

• Thus we have equidistant frequency steps of $\frac{f_s}{N}$ ranging from 0 Hz to $\frac{N-1}{N}f_s$ Hz

Frequency	Domain

Discrete Fourier Transform 0000

Spectra ○○○●○○○○

MATLAB Fourier Frequency Spectra Example

fourierspectraeg.m

```
N=16:
x=cos(2*pi*2*(0:1:N-1)/N)';
figure(1)
subplot (3,1,1);
stem (0:N-1,x,'.');
axis([-0.2 N - 1.2 1.2]):
legend('Cosine signal x(n)');
vlabel('a)');
xlabel('n \rightarrow');
X = abs(fft(x,N))/N;
subplot (3,1,2); stem (0:N-1,X, '. ');
axis([-0.2 N - 0.1 1.1]):
legend ('Magnitude spectrum |X(k)|');
vlabel('b)');
xlabel ('k \rightarrow')
N=1024;
```

 $x = \cos(2*pi*(2*1024/16)*(0:1:N-1)/N)';$

$$\begin{split} FS &= 40000; \\ f &= ((0:N-1)/N) *FS; \\ X &= abs(fft(x,N))/N; \\ subplot(3,1,3); plot(f,X); \\ axis([-0.2*44100/16 max(f) -0.1 1.1]); \\ legend('Magnitude spectrum |X(f)|'); \\ ylabel('c)'); \\ xlabel('f in Hz \rightarrow') \end{split}$$

```
figure (2)
subplot (3,1,1);
plot (f, 20*log10 (X./(0.5)));
axis([-0.2*44100/16 max(f) ...
-45 20]);
legend ('Magnitude spectrum |X(f)| ...
in dB');
ylabel ('|X(f)| in dB \rightarrow');
xlabel ('f in Hz \rightarrow')
```

イロト イポト イヨト イヨト

PRIFYSGOL CAERDYD

31 / 35

3

 Frequency Domain
 Fourier Transform
 Discrete Fourier Transform
 Spectra

 OOOOO
 OOOO
 OOOO
 OOOO
 OOOOO

 MATLAB Fourier Frequency Spectra Example Output

fourierspectraeg.m produces the following:

	00000	0000	000 00 000
wagnitude Spe	ctrum in ad		

Note: It is common to plot both spectra magnitude (also frequency ranges not show here) on a dB/log scale: (Last Plot in fourierspectraeg.m)

Time-Frequency	Representation:	Spectrogram	
Frequency Domain	Fourier Transform	Discrete Fourier Transform	Spectra
00000000000	00000		○○○○○○

Spectrogram

It is often **useful** to look at the **frequency distribution** over a **short-time**:

- Split signal into N segments
- Do a windowed Fourier Transform Short-Time Fourier Transform (STFT)
 - Window needed to reduce *leakage* effect of doing a shorter sample SFFT.
 - Apply a Blackman, Hamming or Hanning Window
- MATLAB function does the job: Spectrogram see help spectrogram

イロト イポト イヨト イヨト

34/35

• See also MATLAB's specgramdemo

Fourier Transform

Discrete Fourier Transform

Spectra ○○○○○○●

MATLAB spectrogram Example

spectrogrameg.m

```
load ( 'handel ')
[N M] = size(y);
figure(1)
spectrogram(y,512,20,1024,Fs);
```

Produces the following:

