CM2202: Scientific Computing and Multimedia Applications Digital Signal Processing 1. Introduction Analogue and Digital Signals, and Sampling

Prof. David Marshall

School of Computer Science & Informatics

《曰》 《聞》 《臣》 《臣》 三臣

Digital Signal Processing and Digital Audio

Issues to be covered (Over next few lectures):

- Digital Signal Processing and Digital Audio
 - Sampling Theorem
 - Digital Audio Signal Processing
 - Digital Audio Effects

What is Digital Signal Processing (DSP)?

Digital Signal Processing (DSP)

- DSP includes many different topics, such as:
 - Digital filters
 - Analysis of signals and systems (especially in terms of frequency)
 - Synthesis of signals
 - Detection of signals and estimation of signal and system parameters
 - Data compression
 - and on and on ...

4 / 51

DSP	Sound	Sampling	Processing	Recap	Effects	DSP Definitions
o	00	000000000000000000	000000	000000000	O	
DSP	Relate	d Subjects				

Related Topics

DSP is the intersection of a number of different areas of study:

- Mathematics
- Electrical engineering
- Signals and systems
- Analog circuit theory
- Computer architecture, (and more)
- Probability and statistics
- Computer programming

Strong Link to Image and Video Processing — more soon

ARDIFF UNIVERSITY PRIFYSGOL CAERDYD

・ロン ・四と ・ヨン ・ヨン

DSP •	Sound 00	Sampling 000000000000	Processing	Recap 000000000	Effects O	DSP Definitions
Di	gital Aud	io Applica	ations			
	Applicatio	n of Digital	Audio — Select	ed Examples		
	Music Pro	duction				
		a a a	Hard Disk Rec Sound Synthes Samplers	ording sis		
		C C	Effects Proces	sing		
		Video				
		e	 Audio Importa Effects 	nt Element:	Music an	d
		Web				
		e	Many uses on	Web:		

- Streaming Audio
 - Spotify
 - Listen to Web Radio
- Element of a Web Page

DSP o	Sound	Sampling 000000000000000000	Processing 000000	Recap 000000000	Effects O	DSP Definitions
What	t is Sou	und?				

Sound Generation

- Source Generates Sound
 - Air Pressure changes
 - Electrical Loud Speaker
 - Acoustic Direct Pressure Variations

Sound Reception

Destination — Receives Sound

- Electrical Microphone produces electric signal
- *Ears* Responds to pressure **hear** sound (MPEG Audio exploits this fact)

Also known as Digital Sampling

DSP	Sound	Sampling	Processing	Recap	Effects	DSP Definitions
	00					

Computer Manipulation of Sound

Digital Audio Examples

Digital Signal Processing routines range from being **trivial** to **highly complex** :

- Volume
- Cross-Fading
- Looping
- Echo/Reverb/Delay
- Filtering
- Signal Analysis

DSP	Sound	Sampling	Processing	Recap	Effects	DSP Definitions
o	00	●000000000000000000000000000000000000	000000	000000000	O	
Sample Rates and Bit Size						

Bit Size — Quantisation

How do we store each sample value (Quantisation)?

8 Bit Value (0-255)

16 Bit Value (Integer) (0-65535)

Sample Rate

How many Samples to take? 11.025 KHz — Speech (Telephone 8 KHz) 22.05 KHz — Low Grade Audio (WWW Audio, AM Radio) 44.1 KHz — CD Quality

DSP	Sound	Sampling	Processing	Recap	Effects	DSP Definitions
o	00	000000000000000000000000000000000000	000000	000000000	O	
Digita	al Sam	pling (1)				

Sampling process basically involves:

- Measuring the analog signal at regular discrete intervals
- Recording the value at these points

11/51

(人間) トイヨト イヨト

12/51

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

The **Sampling Frequency** is **critical** to the **accurate reproduction** of a **digital version** of an analog waveform

Nyquist's Sampling Theorem

The Sampling frequency for a signal must be **at least twice** the **highest frequency component** in the signal.

Sampling at Signal Frequency

Sampling at Twice Nyquist Frequency

PRIFYSGOL CAERDYD O Q C 15 / 51

Sampling at above Nyquist Frequency

 $16 \, / \, 51$

NIVERSITY RIFYSGOI

Sampling <u>If you get Nyquist Sampling Wrong? (1)</u>

CARDIF UNIVERSIT AERDYr 17 / 51

DSP Definitions

If you get Nyquist Sampling Wrong? (2)

CARDIFF UNIVERSITY PRIFYSCOL CARDYD $\mathcal{O} \subset \mathcal{O}$ 18 / 51

MATLAB Code for Sine Demos above: <u>Plot Version</u>, <u>Audio Version</u>

Affects Quality of Audio

- Ears do not respond to sound in a linear fashion
- Decibel (dB) a logarithmic measurement of sound
- 16-Bit has a signal-to-noise ratio of 98 dB virtually inaudible
- 8-bit has a signal-to-noise ratio of 50 dB
- Therefore, 8-bit is roughly 8 times as noisy
 - 6 dB increment is twice as loud

DSP	Sound	Sampling	Processing	Recap	Effects	DSP Definitions
o	00	○○○○○○○○○○○○○○○○	000000	000000000	O	
Impli	cations	of Sample Ra	te and B	it Size (2)	

Audio Sample Rate and Bit Size Examples

File Type	Audio File (all mono)
44Hz 16 bit	$(\bigcirc))$
44KHz 8-bit	$(\bigcirc))$
22 KHz 16-bit	$(\bigcirc))$
22KHz 8-Bit	(()))
11KHz 8-bit	(()))

Web Link: Click Here to Hear Sound Examples

DSP Sound of Sampling Processing Recap Effects DSP Definitions of Computer Data and Dit Circle (2)

Implications of Sample Rate and Bit Size (2)

Affects Size of Data

File Type	44.1 KHz	22.05 KHz	11.025 KHz
16 Bit Stereo	10.1 Mb	5.05 Mb	2.52 Mb
16 Bit Mono	5.05 Mb	2.52 Mb	1.26 Mb
8 Bit Mono	2.52 Mb	1.26 Mb	630 Kb

Memory Required for 1 Minute of Digital Audio

Practical Implications of Nyquist Sampling Theory

Filtering of Signal

• Must (low pass) filter signal before sampling:

• Otherwise strange artifacts from high frequency (above Nyquist Limit)signals would appear in the sampled signal.

DSP Sound Sampling Processing Recap Effects DSP Definitions

Why are CD Sample Rates 44.1 KHz?

Why are CD Sample Rates 44.1 KHz?

DSP Sound Sampling Processing Recap Effects DSP Definitions

Why are CD Sample Rates 44.1 KHz?

Why are CD Sample Rates 44.1 KHz?

Upper range of human hearing is around 20-22 KHz — Apply Nyquist Theorem

Basic Digital Audio Signal Processing

In this section we look at some basic aspects of **Digital Audio Signal Processing**:

- Some basic definitions and principles
- Filtering
- Basic Digital Audio Effects

- Frequency is the number of cycles per second and is measured in Hertz (Hz)
- Wavelength is *inversely proportional* to frequency i.e. Wavelength varies as $\frac{1}{frequency}$

The general form of the sine wave we shall use (quite a lot of) is as follows:

$$y = A.sin(2\pi.n.F_w/F_s)$$

where:

A is the amplitude of the wave, F_w is the frequency of the wave, F_s is the sample frequency, n is the sample index. MATLAB function: sin() used — works in radians


```
Sound
                                                       DSP Definitions
                            Processing
                                      Recap
                                                Effects
MATLAB Sine Wave Radian Frequency Period
   Basic 1 period Simple Sine wave — 1 period is 2\pi radians
   Basic 1 period Simple Sine wave
   % Basic 1 period Simple Sine wave
   i = 0:0.2:2*pi;
   y = sin(i);
   figure (1)
   plot(y);
   % use stem(y) as alternative plot as in lecture
                                                             not
   % see sample values
    title('Simple 1 Period Sine Wave');
                                         イロト イポト イヨト イヨト
```

29/51

MATLAB Sine Wave Amplitude

Sine Wave Amplitude is -1 to +1.

To change amplitude multiply by some gain (amp):

```
Sine Wave Amplitude Amplification
% Now Change amplitude
amp = 2.0;
y = amp * sin(i);
figure (2)
plot(y);
title ('Simple 1 Period Sine Wave Modified Amplitude');
                                                                   ARDIF
                                                                  CAERDY
```

イロト イポト イヨト イヨト

30 / 51

```
DSP Sound Sampling Processing Conditions Con
```

Sine Wave Change Frequency

```
% Natural frequency is 2*pi radians
% If sample rate is F_s HZ then 1 HZ is 2*pi/F_s
% If wave frequency is F_w then freequency is F_w * (2*pi/F_s)
% set n samples steps up to sum duration nsec*F_s where
% nsec is the duration in seconds
% So we get y = amp * sin(2 * pi * n * F_w/F_s);
F_{-s} = 11025:
F_{-w} = 440:
nsec = 2;
dur= nsec * F_s:
n = 0:dur;
y = amp * sin (2 * pi * n * F_w / F_s);
figure(3)
plot(y(1:500));
title ('N second Duration Sine Wave');
```



```
DSP Sound Sampling Processing October Recap Effects DSP Definitions
```

MATLAB Sine Wave Plot of *n* cycles

Plotting of *n* cycles of a Sine Wave

```
\% To plot n cycles of a waveform
```

```
ncyc = 2;
```

```
n=0:floor(ncyc*F_s/F_w);
```

```
y = amp * sin (2 * pi * n * F_w / F_s);
```

```
figure(4)
plot(y);
title('N Cycle Duration Sine Wave');
```



```
% Natural frequency is 2*pi radians
% If sample rate is F_s HZ then 1 HZ is 2*pi/F_s
% If wave frequency is F_w then frequency is
%
         F_{w*} (2*pi/F_s)
% set n samples steps up to sum duration nsec * F_s where
% nsec is the duration in seconds
% So we get y = amp * sin(2 * pi * n * F_w / F_s);
F_{-s} = 11025:
F_{-w} = 440:
nsec = 2;
dur= nsec * F_s:
n = 0:dur;
y = amp * sin (2 * pi * n * F_w / F_s);
figure(1)
plot(y(1:500));
title ('N second Duration Sine Wave');
```

4/51

```
Recap
                                                                    DSP Definitions
       Sound
                Sampling
                                                           Effects
                                               00000000
Amplitudes of a Sine Wave
    Code for sinampdemo.m
    % Simple Sin Amplitude Demo
    samp_freg = 400;
    dur = 800; % 2 seconds
    amp = 1; phase = 0; freq = 1;
    s1 = mysin(amp, freq, phase, dur, samp_freq);
    axisx = (1:dur)*360/samp_freq; % x axis in degrees
    plot(axisx,s1);
    set(gca, 'XTick', [0:90: axisx(end)]);
    fprintf('Initial Wave: \ t \ Amplitude = \ldots \ n', \ amp,
                   freq, phase ....);
    % change amplitude
    amp = input(' \setminus nEnter Amplitude: (n \setminus n');
    s2 = mysin(amp, freq, phase, dur, samp_freq);
    hold on:
    plot(axisx, s2,'r');
    set(gca, 'XTick', [0:90: axisx(end)]);
```

5/51

Amplitudes of a Sine Wave: sinampdemo output


```
Sound
               Sampling
                                            Recap
                                                        Effects
                                                                 DSP Definitions
                                            000000000
Frequencies of a Sine Wave
    Code for sinfregdemo.m
    % Simple Sin Frequency Demo
    samp_freq = 400;
    dur = 800; % 2 seconds
    amp = 1; phase = 0; freq = 1;
    s1 = mysin(amp, freq, phase, dur, samp_freq);
    axisx = (1:dur)*360/samp_freq; % x axis in degrees
    plot(axisx.s1);
    set(gca, 'XTick', [0:90:axisx(end)]);
    fprintf('Initial Wave: t Amplitude = ... n', amp, freq, phase,...
    % change amplitude
    freq = input ('\ nEnter Frequency: (n n');
    s2 = mysin(amp, freq, phase, dur, samp_freq);
    hold on:
    plot(axisx, s2,'r');
    set(gca, 'XTick', [0:90: axisx(end)]);
```


Frequencies of a Sine Wave: sinfreqdemo output


```
Sound
                                             Recap
                                                         Effects
                                                                  DSP Definitions
                                             0000000000
Phase of a Sine Wave
    sinphasedemo.m
    % Simple Sin Phase Demo
    samp_freq = 400;
    dur = 800; % 2 seconds
    amp = 1; phase = 0; freq = 1;
    s1 = mysin(amp, freq, phase, dur, samp_freq);
    axisx = (1:dur)*360/samp_freq; % x axis in degrees
    plot(axisx.s1);
    set(gca, 'XTick', [0:90:axisx(end)]);
    fprintf('Initial Wave: \ t \ Amplitude = \dots \ n', \ amp, \ freq, \ phase, \dots
    % change amplitude
    phase = input('\nEnter Phase:\n\n');
    s2 = mysin(amp, freq, phase, dur, samp_freq);
    hold on:
    plot(axisx, s2,'r');
    set(gca, 'XTick', [0:90: axisx(end)]);
```

9/51

Phase of a Sine Wave: sinphasedemo output

^{40 / 51}

MATLAB Square and Sawtooth Waveforms

MATLAB Square and Sawtooth Waveforms

```
% Square and Sawtooth Waveforms created using Radians
ysq = amp*square(2*pi*n*F_w/F_s);
ysaw = amp*sawtooth(2*pi*n*F_w/F_s);
figure(6);
hold on
plot(ysq,'b');
plot(ysaw,'r');
title('Square (Blue)/Sawtooth (Red) Waveform Plots');
hold off;
```


3

Cosine, Square and Sawtooth Waveforms

MATLAB functions cos() (cosine), square() and sawtooth() similar.

Digital Audio Effects (DAFX) Example

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Effects

DSP Definitions

DSP Sound Sampling Processing October Processing October Octob

DAFX: Sample Interval and Sample Frequency

- An analog signal, x(t) with signal amplitude continuous over time, t.
- Following ADC the signal is converted into a a discrete-time and quantised amplitude signal, x(n) — a stream of samples over discrete time index, n
 - The time distance between two consecutive samples, the sample interval, *T* (or sampling period).
 - The the sampling frequency is $f_s = \frac{1}{T}$ the number of samples per second measured in Hertz (Hz).
- Next we apply some simple **DAFX** *E.g* here we multiply the signal by a factor of 0.5 to produce y(n) = 0.5.x(n).
- The signal y(n) is then forwarded to the **DAC** which reconstruct an analog signal y(t)

イロト 不得 とくき とくきとう き

DSP Sound Sampling Processing Recap Effects DSP Definitions Basic DSP Concepts and Definitions: The Decibel (dB)

When referring to measurements of power or intensity, we express these in decibels (dB):

$$X_{dB} = 10 \log_{10} \left(\frac{X}{X_0} \right)$$

where:

- X is the actual value of the quantity being measured,
- X₀ is a specified or implied reference level,
- X_{dB} is the quantity expressed in units of decibels, relative to X_{0} .
- X and X₀ must have the same dimensions they must measure the same type of quantity in the the same units.
- The reference level itself is **always at 0 dB** as shown by setting $X = X_0$ (**note:** $\log_{10}(1) = 0$).

DSP	Sound	Sampling	Processing	Recap	Effects	DSP Definitions
o	00	00000000000000000	000000	000000000	O	
Why	Use D	ecibel Scales?				

- When there is a large range in frequency or magnitude, logarithm units often used.
- If X is greater than X_0 then X_{dB} is positive (Power Increase)
- If X is less than X_0 then X_{dB} is negative (Power decrease).
- Power Magnitude = |X(i)|²| so (with respect to reference level)

$$X_{dB} = 10 \log_{10}(|X(i)^2|)$$

= 20 \log_{10}(|X(i)|)

which is an expression of dB we often come across.

3

・ロン ・四と ・ヨン ・ヨン

Deci	bel an	d acoustics				
DSP	Sound	Sampling	Processing	Recap	Effects	DSP Definitions
o	00	000000000000000000000000000000000000	000000	000000000	0	

- dB is commonly used to quantify sound levels relative to some 0 dB reference.
- The reference level is typically set at the *threshold of human perception*
- Human ear is capable of detecting a very large range of sound pressures.

Examples of dB measurement in Sound

Threshold of Pain

The ratio of sound pressure that causes **permanent** damage from short exposure to the limit that (undamaged) ears can hear is above a million:

- The ratio of the maximum power to the minimum power is above one (short scale) trillion (10¹²).
- The log of a trillion is 12, so this ratio represents a **difference** of **120 dB**.
- 120 dB is the quoted Threshold of Pain for Humans.

DSP Sound Sampling Processing Recap Effects DSP Definitions

Examples of dB measurement in Sound (cont.)

Speech Sensitivity

Human ear is not equally sensitive to all the frequencies of sound within the entire spectrum:

- Maximum human sensitivity at noise levels at between 2 and 4 kHz (Speech)
 - These are factored more heavily into sound descriptions using a process called **frequency weighting**.
 - Filter (Partition) into frequency bands concentrated in this range.
 - Used for Speech Analysis
 - Mathematical Modelling of Human Hearing
 - Audio Compression (E.g. MPEG Audio)

49 / 51

Examples of dB measurement in Sound (cont.)

Digital Noise increases by 6dB per bit

In digital audio sample representation (linear pulse-code modulation (PCM)),

- The first bit (least significant bit, or LSB) produces residual quantization noise (bearing little resemblance to the source signal)
- Each subsequent bit offered by the system doubles the resolution, corresponding to a 6 (= 10 * log₁₀(4)) dB.
- So a 16-bit (linear) audio format offers 15 bits beyond the first, for a dynamic range (between quantization noise and clipping) of (15 × 6) = 90 dB, meaning that the maximum signal is 90 dB above the theoretical peak(s) of quantisation noise.
- 8-bit linear PCM similarly gives $(7 \times 6) = 42 \text{ dB}$.
- 48 dB difference between 8- and 16-bit which is (48/6 (dB)) 8 times as noisy.

Signal to Noise

Sound

Sampling

Signal-to-noise ratio is a term for the power ratio between a signal (meaningful information) and the background noise:

Processing

Recap

Effects

DSP Definitions

51/51

$${\sf SNR} = rac{{{P_{{
m signal}}}}}{{{P_{{
m noise}}}}} = {\left({rac{{{A_{{
m signal}}}}}{{{A_{{
m noise}}}}}
ight)^2}$$

where P is average power and A is RMS amplitude.

• Both signal and noise power (or amplitude) must be measured at the same or equivalent points in a system, and within the same system bandwidth.

Because many signals have a very wide dynamic range, SNRs are usually expressed in terms of the logarithmic decibel scale:

$$SNR_{dB} = 10\log_{10}\left(\frac{P_{signal}}{P_{noise}}\right) = 20\log_{10}\left(\frac{A_{signal}}{A_{noise}}\right)$$