CM2202: Scientific Computing and Multimedia Applications General Maths: 3. Complex Numbers

Prof. David Marshall

School of Computer Science & Informatics

A problem when solving some equations

There are some equations, for example $x^2 + 1 = 0$, for which we cannot yet find solutions.

$$x^{2} + 1 = 0$$

 $x^{2} = -1$
 $x = \pm \sqrt{-1}?$

The Problem: We cannot (yet) find the square root of a **negative number** using real numbers since:

 When any real number is squared the result is either positive or zero, *i.e.* for all real numbers n² ≥ 0, n ∈ ℝ¹.

¹we use the symbol $\mathbb R$ to denote the set of all real numbers $\langle \cdot \rangle = \langle \cdot \rangle$

Imaginary Numbers

We need **another category** of numbers, the **set of numbers** whose **squares** are **negative real numbers**.

Members of this set are called imaginary numbers.

We define $\sqrt{-1} = i$ (or *j* in some texts)²

Every imaginary number can be written in the form: **ni** where *n* is **real** and $\mathbf{i} = \sqrt{-1}$

Imaginary Numbers

Complex Numbers

MATLAB 000000000

イロト イポト イヨト イヨト

Imaginary Numbers

Imaginary Numbers

3

イロン イロン イヨン イヨン

Examples: Imaginary Numbers

Examples:

•
$$\sqrt{-16} = \sqrt{16 \times -1} = \sqrt{16} \times \sqrt{-1} = \pm 4i$$

•
$$\sqrt{-3} = \sqrt{3 \times -1} = \sqrt{3} \times \sqrt{-1} = \pm i\sqrt{3}$$

• $(-121)^{\frac{1}{2}} = \sqrt{-121} = \sqrt{123 \times -1} = \sqrt{121} \times \sqrt{-1} = \pm 11i$

Imaginary Number Arithmetic: Addition

Imaginary numbers can be added to or subtracted only from other imaginary numbers.

Examples:

- 7i 2i = 5i
- $4i + \sqrt{3}i = (4 + \sqrt{3})i$

(Note: *i* behaves like a special algebraic variable)

CRDEF Synowscorr Perroscor マルマン マルマン マート ・ (アト・モミト モ シ へへ ア/80

Imaginary Number Arithmetic: Multiplication

When **imaginary numbers** are **multiplied** together the result is a **real number**.

Example:

$$2i \times 5i = 10 \times i^2$$

but we know $i = \sqrt{-1}$, and therefore $i^2 = -1$

Hence $10 \times i^2 = 10 \times -1 = -10$

Imaginary Number Arithmetic: Division

Imaginary numbers when divided give a real number result.

• Example:

$$\frac{6i}{3i} = 2$$

Powers of *i* may be simplified

Examples:

•
$$i^3 = i^2 \times i = --1 \times i = -i$$

• $i^{-1} = \frac{1}{i} = \frac{1}{\sqrt{-1}} = \frac{1}{\sqrt{-1}} \times \frac{\sqrt{-1}}{\sqrt{-1}} = \frac{\sqrt{-1}}{-1} = -\sqrt{-1} = -i$

イロト 不得下 イヨト イヨト

Complex Numbers

Case 1: The need for Complex Numbers

Consider the quadratic equation $x^2 + 2x + 2 = 0$. Using the quadratic formula we get:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{2^2 - 4(2)}}{2} = \frac{-2 \pm \sqrt{-4}}{2} = \frac{-2 \pm 2i}{2} = -1 \pm i$$

So x = -1 + i or -1 - i

• x is now a number with a real number part (1) and an imaginary number part $(\pm i)$.

x is an example of a **complex number**. **Recall**: If $b^2 - 4ac < 0$ then the equation has **complex roots**.

Complex Numbers

Case 2: The need for Complex Numbers Very Useful Mathematical Representation, to name a few:

- Widely used in many branches of Mathematics, Engineering, Physics and other scientific disciplines
 - Control theory
 - Advanced calculus: Improper integrals, Differential equations, Dynamic equations
 - Fluid dynamics potential flow, flow fields
 - Electromagnetism and electrical engineering: Alternating current, phase induced in systems
 - Quantum mechanics
 - Relativity
 - Geometry: Fractals (*e.g.* the Mandelbrot set and Julia sets), Triangles Steiner inellipse
 - Algebraic number theory
 - Analytic number theory
- Signal analysis: Essential for digital signal and image processing (Phasors) — studied later.

Definition: Complex Numbers

- A **complex number** is a number of the form z = a + bi
 - that is a **number** which has a **real** and an **imaginary** part.
 - a and b can have any real value including 0. $(a, b \in \mathbb{R})$
 - E.g. 3 + 2i, 6 3i, -2 + 4i.
 - Note: the real term is always written first, even where negative.
- Note: This means that
 - when *a* = 0 we have numbers of the form *bi i.e.* only **imaginary numbers**
 - when b = 0 we have numbers of the form *a* i.e. real numbers.

The set of all complex numbers is denoted by \mathbb{C} .

- 12

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Real and Imaginary Parts, Notation

Mathematical Notation:

- The set of all real numbers is denoted by $\mathbb R$
- The set of all complex numbers is denoted by $\mathbb C$
- The **real part** of a complex number z is denoted by $\operatorname{Re}(z)$ or $\Re(z)$
- The **imaginary part** of a complex number z is denoted by Im(z) or $\Im(z)$

Example: Real and Imaginary Parts

Find the real and imaginary parts of:

• z = 1 + 7i — real part $\Re(z) = 1$, imaginary part $\Im(z) = 7$ • z = 2 - 4i — real part $\Re(z) = 2$, imaginary part $\Im(z) = -4$ • z = -3 — real part $\Re(z) = -3$, imaginary part $\Im(z) = 0$ • $z = i\sqrt{3}$ — real part $\Re(z) = 0$, imaginary part $\Im(z) = \sqrt{3}$

イロト 不得下 イヨト イヨト

14 / 80

Addition and Subtraction of Complex Numbers

Complex Numbers can be **added** (or **subtracted**) by adding (or subtracting) their **real** and **imaginary** parts **separately**.

・ロン ・四と ・ヨン ・ヨン

15 / 80

Examples:

Multiplication of Complex Numbers

Complex Number Multiplication:

- Follows the basic laws of polynomial multiplication and imaginary number multiplication (recall $i^2 = -1$)
- Then **gather** real and imaginary terms to **simplify** the expression.

Examples:

- 2(5-3i) = 10-6i
- $(2+3i)(4-i) = 8 2i + 12i 3i^2 = 8 + 10i 3(-1) = 8 + 10i + 3 = 11 + 10i$

•
$$(-3-5i)(2+3i) = -6-9i-10i-15i^2 = -6-19i+15 = 9-19i$$

•
$$(2+3i)(2-3i) = 4 - 6i + 6i - 9i^2 = 4 + 9 = 13$$

Note that in the last example the product of the **two** complex numbers is a **real number**.

Imaginary Numbers

イロト イポト イヨト イヨト

The Complex Conjugate

n general
$$(a + bi)(a - bi) = a^2 + b^2$$

• A pair of complex numbers of this form are said to be **conjugate**.

Examples:

- 4 + 5i and 4 5i are **conjugate complex numbers**.
- 7-3i is the **conjugate** of 7+3i

If z is a complex number $(z \in \mathbb{C})$ the **notation** for its **conjugate** is \overline{z} or z^* .

Example:

• z = 7 - 3i then $\overline{z} = 7 + 3i$

CARDIFF UNIVERSITY PRIFYSCOL CARDYD SO Q C 17 / 80

Division of Complex Numbers

Problem: How to evaluate/simplify:

$$z = rac{\mathsf{a} + bi}{\mathsf{c} + \mathsf{di}}, \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{R}$$

Can we express z in the normal complex number form: $z = e + fi, e, f \in \mathbb{R}$?

Direct division by a complex number cannot be carried out:

- The denominator is made up of two independent terms
 - $\bullet\,$ The real and imaginary part of the complex number c+di
- We have to follow the basic laws of algebraic division.

The **complex conjugate** comes to the **rescue**.

イロト 不得下 イヨト イヨト

Complex Number Division: Realising the Denominator

Problem: Express *z* (below) in the form z = e + fi, $a, b \in \mathbb{R}$:

$$z = rac{\mathbf{a} + bi}{\mathbf{c} + \mathbf{di}}, \ \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R}$$

- We need to deal with the denominator, z_d . Here $z_d = c + di$.
- We can readily obtain the **complex conjugate** of z_d , $\overline{z_d} = c - di$
- We have already observed that any complex number × its conjugate is a real number, z_d × z_d ∈ ℝ: c² + d²
- So to **remove** *i* from the **denominator** we can multiply **both** numerator and denominator by $\overline{z_d}$

This process is known as realising the denominator.

Example: Division of Complex Numbers

Express z (below) in the form $z = a + bi, a, b \in \mathbb{R}$:

$$z = \frac{2+9i}{5-2i}$$

- We need to deal with the denominator, z_d . Here $z_d = 5 2i$.
- Obtain complex conjugate of z_d , $\overline{z_d} = 5 + 2i$
- Multiply **both** numerator and denominator by $\overline{z_d}$

$$\frac{2+9i}{5-2i} \times \frac{5+2i}{5+2i} = \frac{10+4i+45i+18i^2}{25-4i^2}$$
$$= \frac{-8+49i}{29}$$
$$= \frac{-8}{29} + \frac{49}{29}i$$

3

Comparing Complex Numbers: Equality

Two complex numbers, $z_1 = a + bi$ and $z_2 = c + di$, are **equal** if and **only** if

• the real parts of each are equal

AND

• the imaginary parts are equal.

That is to say:

• $\Re(z_1) = \Re(z_2)$ or a = c,

AND

• $\Im(z_1) = \Im(z_2)$ or b = d

Example: Comparing Complex Numbers

Example:

If x + iy = (3 - 2i)(5 + i) what are the values of x and y?

$$x + iy = (3 - 2i)(5 + i)$$

= 15 + 3i - 10i + 2i²
= 13 - 7i

イロト イポト イヨト イヨト

22 / 80

So x = 13 and y = -7.

Corollary: The complex number zero

A complex number is zero if and only if the real part and the imaginary part are both zero *i.e.*

$$\mathbf{a} + \mathbf{bi} = \mathbf{0} \leftrightarrow \mathbf{a} = \mathbf{0} \text{ and } \mathbf{b} = \mathbf{0}.$$

CARDIFE

Visualising Complex Numbers: The Complex Plane

- A complex number, z = a + ib, is made up of two parts,
 - The real part, a and,
 - The imaginary part, b

One way we may visualise this is by plotting these on a 2D graph:

イロト イポト イヨト イヨト

24 / 80

- The x-axis represents the real numbers, and
- The y-axis represents the imaginary numbers.

Visualising Complex Numbers: Argand Diagrams

The complex number z = a + ib may then be represented in the **complex plane** by

- the point P whose co-ordinates are (a, b) or,
- the vector **OP**, where **O** is the **point** at the **origin**, (0,0)

Exercise: Complex Numbers and Argand Diagram

Given $z_1 = 3 - 2i$ and $z_2 = 5 + 2i$ draw an Argand diagram for:

Visualising Complex Numbers: Adding Complex Numbers

Generally, given $z_1 = a_1 + b_1 i$ and $z_2 == a_2 + b_2 i$ then: $z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$

If we **plot two complex numbers** on an **Argand diagram** then we **see**

- that they form two adjacent sides of a parallelogram
- their sum forms the diagonal.
- Basic Laws of Vector Algebra

イロト イポト イヨト イヨト

Visualising Complex Numbers: Polar Form

Polar Coordinates: An **alternative system** of **coordinates** in which the position of any **point** P can be **described** in terms of

- The distance, r, of P from the origin, O, and
- The angle/direction, φ, that the line OP makes with the positive real ℜ-axis (or, more generally x-axis)

This is the polar form of complex numbers

The Polar Form of Complex Numbers

In relation to complex numbers, we call the polar coordinate terms:

• The **modulus**,*r*,

$$r = |z| = \sqrt{a^2 + b^2}$$

(Note this is a simple application of **Pythagoras' theorem**.)

• The **argument** or **phase**, ϕ ,

(Simply)
$$\phi = \arg z = \operatorname{argument} z = \arctan(\frac{b}{a}) = \tan^{-1}(\frac{b}{a})$$

(Note: This is a simple application of **basic trigonometry**) to make up what is known as the polar coordinates of a point.

イロト 不得下 不足下 不足下

The Polar Form: More on the Argument

We can measure the Argument is two ways: Both depend on which **quadrant** of complex plane the point resides in:

CAFRDY √) Q () 30 / 80

The Polar Form: More on the Argument

 φ ∈ [0, 2π) — All angles, φ, were measured anticlockwise from the +ive real axis: therefore φ must be in the range 0 to 2π

31 / 80

The Polar Form: Argument Alternative Angle Measurement

Alternatively:

φ ∈ (-π, π] — (not illustrated) measure smallest spanned angle from +ive real axis: φ measured in range -π to π.

$$\phi = \arg z = \begin{cases} \arctan\left(\frac{b}{a}\right) & \text{if } x > 0\\ \arctan\left(\frac{b}{a}\right) + \pi & \text{if } x < 0 \text{ and } y \ge 0\\ \arctan\left(\frac{b}{a}\right) - \pi & \text{if } x < 0 \text{ and } y < 0\\ \frac{\pi}{2} & \text{if } x = 0 \text{ and } y > 0\\ -\frac{\pi}{2} & \text{if } x = 0 \text{ and } y < 0\\ \text{indeterminate} & \text{if } x = 0 \text{ and } y = 0 \end{cases}$$

The polar angle for the complex number **0** is **undefined**, but usual arbitrary choice is the **angle 0**.

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD 2 < 2 < 32 / 80

Examples: Modulus and Argument

Find the modulus and argument of each of the following:

● 1 + *i*

• Modulus $r = |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2}$

Sketching the **Argand diagram** indicates that we are in the **first quadrant**, therefore positive angle, ϕ between 0 and 90. **Argument** = arctan $(\frac{1}{1}) = 45^{\circ}$ or $\frac{\pi}{4}$ radians

•
$$\frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}}$$

Modulus

$$\mathbf{r} = \left|\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}\right| = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(-\frac{1}{\sqrt{2}}\right)^2} = \sqrt{\frac{1}{2} + \frac{1}{2}} = 1$$

Sketching the Argand diagram indicates that we are in the **fourth quadrant**, therefore angle is negative between 0 and 90 (or between 270 and 360) degrees.

Argument =
$$\arctan(\frac{(-\frac{1}{\sqrt{2}})}{\frac{1}{\sqrt{2}}}) = \arctan(-1) = -45^{\circ} \text{ or } 315^{\circ}$$

(Radians sim.)

Exercise: Modulus and Argument

Find the modulus and argument of each of the following:

● -1.35 + 2.56*i*

• $\frac{1}{4} + \frac{\sqrt{3}}{4}i$

Converting between Cartesian and Polar forms

The form of a complex number in this system (polar co-ordinates) are the pairs $[r, \phi]$ or [modulus, argument]. We have already seen how to **convert** from **Cartesian** (a, b) to **Polar** $[r, \phi]$ via:

イロト イポト イヨト イヨト

Polar to Cartesian Conversion

Can we **convert** from **Polar** $[r, \phi]$ to **Cartesian** (a, b)?

Simple trigonometry gives us the solution:

- $a = r \cos \phi$
- $b = r \sin \phi$
- Giving **z** = **a** + **bi**

Exercise

Find the **Cartesian Co-ordinates** of the **Complex Point** $P[4, 30^{\circ}]$.

Trigonometric form

From last slide

- $a = r \cos \phi$
- $b = r \sin \phi$
- Giving **z** = **a** + **bi**

So if we substitute for *a* and *b* we get:

 $z = r \cos \phi + r \sin \phi \times i$ $= r(\cos \phi + i \sin \phi)$

This is known as the trigonometric form of a complex number

Imaginary Numbers Complex Numbers

mplex Numbers

MATLAB

MATLAB and Complex Numbers

MATLAB knows about complex numbers

```
>> sqrt(-1)
ans = 0 + 1.0000i
% Symbolic Eqns Soln
>> syms x;
>> f = x^2 + 1:
>> solve(f)
ans =
 — i
% Polynomial Roots
>> p = [1 \ 0 \ 1];
>> roots(p)
ans =
         0 + 1.0000i
         0 - 1.0000 i
```


Declaring Complex Numbers in MATLAB

Simply use *i* in an expression or the complex() function

```
\% Must use * operator with i even though this is not displayed
>> c1 = 3 + 4*i
c1 =
   3.0000 + 4.0000i
% MATLAB also allows the use of j
>> c2 = 2 + 4*i
c^{2} =
   2\ 0000\ +\ 4\ 0000\ i
% What I already have a variable i (or j) e.g. for i=1:n?
>> c3 = complex(1,2)
c3 =
   1.0000 + 2.0000i
                                                                   ARDIF
                                           イロト イポト イヨト イヨト
                                                               3
```

40 / 80

MATLAB: real, imaginary, magnitude and phase

```
MATLAB provides functions to obtain these
```

```
>> c = 4+3*i
c =
   4.0000 + 3.0000i
% Real part, Imaginary part, and Absolute value
>> [real(c), imag(c), abs(c)]
ans =
        3
                 5
     4
% A complex number of magnitude 11 and phase angle 0.7 radians
>> z = 11*(cos(0.7)+sin(0.7)*i)
7 =
   8.4133 + 7.0864 i
% Recover the magnitude and phase of "z"
>> [abs(z), angle(z)]
ans =
   11.0000 0.7000
```

MATLAB understands Trig. form of a complex number

From the last slide example:

You can declare in trig. form but MATLAB coverts to normal representation

```
% Trig. Form: A complex number of
%
    magnitude 11 and phase angle 0.7 radians
>> z = 11*(cos(0.7)+sin(0.7)*i)
7 =
   8.4133 + 7.0864 i
% So Need to use abs() and angle() to
% Recover the magnitude and phase of "z"
>> [abs(z), angle(z)]
ans =
   11.0000 0.7000
```


MATLAB Complex Arithmetic

Behaves as one would expect

```
>> c1 = 3 + 4*i;
>> c2 = 2 + 4*j;
>> c1 + c2
ans = 5.0000 + 8.0000 i
>> c1 - c2
ans = 1
>> i^2
ans = -1
>> c1*c2
ans = -10.0000 + 20.0000 i
>> c1/c2
ans = 1.1000 - 0.2000i
```


43 / 80

3

イロト イヨト イヨト -

Plotting Polar Coordinates in MATLAB

MATLAB provide useful **plotting** functions for general **Polar Coordinates**

• This is not exclusively for Complex Numbers.

The MATLAB function polar() achieves this:

polar() — Polar coordinate plot

- polar(Theta , Radius) makes a plot using polar coordinates of the angle Theta , in radians, versus the radius Radius. polar(Theta, Radius, S) uses the linestyle specified in string S.
 - similar to plot() in terms of styles
- Note the order! Theta first then Radius!

44 / 80

イロト イポト イヨト イヨト

polar() Example

Plotting Polar Representation of a Complex Number

z =

 $8.4133\ +\ 7.0864\,i$

>> polar([0 angle(z)],[0 abs(z)],'-r');

polar(angle(z),abs(z)) Plot Output

2

compass() Plot

The compass() knows how to plot a complex number directly:

compass() Example >> c1 = 3 + 4*i; >> compass(c1);

Imaginary Numbers

Complex Numbers

MATLAB

compass(c1); Plot Output

Euler's Formula: Phasor Form

Euler's Formula³ states that we can express the trigonometric form as:

$$\mathbf{e}^{\mathbf{i}\phi} = \cos\phi + \mathbf{i}\sin\phi, \ \phi \in \mathbb{R}$$

Exercise: Show that

 $\mathbf{e}^{-\mathbf{i}\phi} = \cos\phi - \mathbf{i}\sin\phi$

This is also known as $\ensuremath{\text{phasor form}}$ or $\ensuremath{\text{Phasors}}$, for short.

Note: Phasors and the related trigonometric form are **very important** to **Fourier Theory** which we study later.

³we won't prove this here. <u>Proof here if interested</u> $\rightarrow \langle \neg \rangle \langle \neg \rangle \langle \neg \rangle$

Phasor Notation

General Phasor Form: $re^{i\phi}$

More generally we use $re^{i\phi}$ where:

$$re^{i\phi} = r(\cos\phi + i\sin\phi)$$

MATLAB Speaks the Phasor Language

MATLAB Complex No. Phasor Declaration

ans =
$$0.7071 + 0.7071i$$

$$>>$$
 [abs(z), angle(z)]

ans = 1.0000 0.7854

Phasors are stunning!

Phasers on stun!

STAR TREK

Phasors are stunning!

Phasors are very useful mathematical tools

- Can simplify Trigonometric proofs, Trig. expression manipulation *etc*
 - Can do Trigonometry without Trigonometry (well almost!)
- Electrical Signals: Can apply simplify AC circuits to DC circuit theory (*e.g.* Ohm's Law)!
- Power engineering: Three phase AC power systems analysis
- Signal Processing: Fourier Theory, Filters

Trig. Example: sin and \cos as functions of e

From Euler's Formula we can write:

$$\cos\phi = \frac{\mathbf{e}^{\mathbf{i}\phi} + \mathbf{e}^{-\mathbf{i}\phi}}{2}$$

$$\sin\phi = \frac{\mathbf{e}^{\mathbf{i}\phi} - \mathbf{e}^{-\mathbf{i}\phi}}{2\mathbf{i}}$$

Prove the above

Trig. Exercise: Powers of the Trigonometric Form (de Moivre's Theorem)

If *n* is an **integer** then show that:

 $(\cos\theta + \mathbf{i}\sin\theta)^{\mathbf{n}} = \cos\mathbf{n}\theta + \mathbf{i}\sin\mathbf{n}\theta.$

This is known as de Moivre's Theorem

イロト イヨト イヨト イヨト

Complex Number Multiplication in Polar Form

Let $z_1 = [r_1, \phi_1]$ and $z_2 = [r_2, \phi_2]$ then $z_1 = r_1(\cos \phi_1 + i \sin \phi_1)$ and $z_2 = r_2(\cos \phi_2 + i \sin \phi_2)$ Therefore:

$$z_1 z_2 = [r_1(\cos \phi_1 + i \sin \phi_1)] \times [r_2(\cos \phi_2 + i \sin \phi_2)]$$

 $= r_1 r_2 [(\cos \phi_1 + i \sin \phi_1) \times (\cos \phi_2 + i \sin \phi_2)]$

$$= r_1 r_2 [\cos \phi_1 \cos \phi_2 - \sin \phi_1 \sin \phi_2]$$

$$+i(\cos\phi_1\sin\phi_2+\sin\phi_1\cos\phi_2)]$$

From trigonometry we have the following relations:

- $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$,
- $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$,

So finally we have:

$$z_{1}z_{2} = r_{1}r_{2}[\cos(\phi_{1} + \phi_{2}) + i\sin(\phi_{1} + \phi_{2})]$$

$$z_{1}z_{2} = [r_{1}r_{2}, \phi_{1} + \phi_{2}]$$

Complex Number Multiplication via Phasors

Alternatively, we can multiply complex numbers via Phasors: $z_1 = r_1 e^{i\phi_1}$ and $z_2 = r_2 e^{i\phi_2}$. Therefore:

$$z_1 z_2 = r_1 e^{i\phi_1} \times r_2 e^{i\phi_2}$$
$$= r_1 r_2 e^{i\phi_1} e^{i\phi_2}$$

Now in general, $e^{x}e^{y} = e^{(x+y)}$

So we get: $z_1 z_2 = r_1 r_2 e^{i(\phi_1 + \phi_2)}$ which (as we should expect) gives:

$$z_1 z_2 = [r_1 r_2, \phi_1 + \phi_2]$$

This is a much **easier** way to prove this fact — **Agree?**⁴

⁴This sort of algebra is important for Fourier Theory later 🚊 🛌 🛓 🕨

Complex Number Division in Phasor Form

Sticking with the **Phasor** formulation, we can **divide** two complex numbers:

 $z_1 = r_1 e^{i\phi_1}$ and $z_2 = r_2 e^{i\phi_2}$. Therefore:

yawn!.

$$\frac{z_1}{z_2} = \frac{r_1 e^{i\phi_1}}{r_2 e^{i\phi_2}}$$

$$= \frac{r_1}{r_2} \frac{e^{i\phi_1}}{e^{i\phi_2}}$$

$$= \frac{r_1}{r_2} e^{i\phi_1} e^{-i\phi_2}, \text{ by a same argument as in multiplication}$$

$$= \frac{r_1}{r_2} e^{i(\phi_1 - \phi_2)}$$

$$\frac{z_1}{z_2} = [\frac{r_1}{r_2}, \phi_1 - \phi_2]$$
Exercise: Prove this formula via the trigonometric polar form —

CAERDY∯ ∽) Q (~ 58 / 80

3

イロト イポト イヨト イヨト

Exercises: Complex Number Multiplication and Division

• If $z_1 = 3\sqrt{2} + 3\sqrt{2}i$ and $z_2 = \frac{3\sqrt{3}}{2} + \frac{3}{2}i$, find z_1z_2 and $\frac{z_1}{z_2}$, leave your answer in **polar form**.

• Evaluate $(\frac{1}{2} + \frac{\sqrt{3}}{2}i)^3$, give your answer in **Cartesian form**.

Complex Number Multiplication: Geometric Representation

Multiplying a complex number z = x + iy by *i* rotates the vector representing *z* through 90° anticlockwise Example: Let z1 = 1. Then

$$z_2=iz_1=i.$$

イロト イポト イヨト イヨト

60 / 80

- Polar form of $z_1 = [1, 0^\circ]$.
- Polar form of $z_2 = [1, 90^\circ]$, **Q.E.D**.

Back to Phase: Important Example

Concept: A **phasor** is a **complex number** used to represent a **sinusoid**.

In particular:

Sinusoid : $x(t) = M \cos(\omega t + \phi)$, $-\infty < t < \infty$ — a function of time Phasor : $X = Me^{i\phi} = M \cos(\phi) + iM \sin(\phi)$ — a complex number

> CALDIFF UNIXENT PRIVACU CALDIFF イロト イ 団 ト イ 王 ト イ 王 ト 王 - シ Q (~ 61 / 80

Complex Numbers and Phase: Important Example

Phasors and Sinusoids are related:

$$\begin{aligned} \Re[Xe^{i\omega t}] &= \Re[Me^{i\phi}e^{i\omega t}] \\ &= \Re[Me^{i(\omega t+\phi)}] \\ &= \Re[M(\cos(\omega t+\phi)+i\sin(\omega t+\phi))) \\ &= M\cos(\omega t+\phi) \\ &= \mathbf{x}(\mathbf{t}) \end{aligned}$$

 Imaginary Numbers
 Complex Numbers
 Complex Numbers
 MATLAB
 Phasors

 Observation
 <t

CARDIFF UNIVERSITY PRIFYSCOL CAERDYD $\mathcal{O} \ \mathcal{O} \ \mathcal{O}$ 63 / 80

イロト イポト イヨト イヨト

MATLAB Sine Wave Frequency and Amplitude (only)

```
% Natural frequency is 2*pi radians
% If sample rate is F_s HZ then 1 HZ is 2*pi/F_s
% If wave frequency is F_w then frequency is
%
         F_w* (2*pi/F_s)
% set n samples steps up to sum duration nsec * F_s where
% nsec is the duration in seconds
% So we get y = amp * sin(2 * pi * n * F_w / F_s);
F_{-s} = 11025:
F_{-w} = 440:
nsec = 2;
dur= nsec * F_s :
n = 0:dur:
y = amp * sin (2 * pi * n * F_w / F_s);
figure(1)
plot(y(1:500));
title ('N second Duration Sine Wave');
```

4/80

MATLAB Cos v Sin Wave

```
% Cosine is same as Sine (except 90 degrees out of phase)
yc = amp*cos(2*pi*n*F_w/F_s);
figure (2);
hold on;
plot(yc,'b');
plot(y,'r');
title('Cos (Blue)/Sin (Red) Plot (Note Phase Difference)');
hold off;
```


Sin and Cos (stem) plots

MATLAB functions cos() and sin().

Amplitudes of a Sine Wave

Code for sinampdemo.m

```
% Simple Sin Amplitude Demo
samp_freq = 400;
dur = 800; % 2 seconds
amp = 1; phase = 0; freq = 1;
s1 = mysin(amp, freq, phase, dur, samp_freq);
axisx = (1:dur)*360/samp_freq; % x axis in degrees
plot(axisx,s1);
set(gca, 'XTick', [0:90: axisx(end)]);
fprintf('Initial Wave: \ t \ Amplitude = \ldots \ n', \ amp,
               freq, phase ....);
% change amplitude
amp = input(' \setminus nEnter Amplitude: \setminus n \setminus n');
s2 = mysin(amp, freq, phase, dur, samp_freq);
hold on:
plot(axisx, s2,'r');
set(gca, 'XTick', [0:90: axisx(end)]);
```


Imaginary Numbers

Complex Numbers MATLAB

イロト 不得下 イヨト イヨト

 $\frac{\text{mysin.m}}{\text{phase}}$ — a modified version of previous MATLAB sin example to account for phase

```
function s = mysin(amp, freq, phase, dur, samp_freq)
% example function to so show how amplitude, frequency and
                                                               ph
% are changed in a sin function
\% Inputs: amp - amplitude of the wave
%
           freq - frequency of the wave
%
           phase - phase of the wave in degree
%
           dur - duration in number of samples
%
           samp_freg - sample freguncy
x = 0: dur - 1;
phase = phase * pi / 180;
s = amp * sin(2 * pi * x * freq / samp_freq + phase);
                                                             AERDY
```

Amplitudes of a Sine Wave: sinampdemo output

C^{AE}RDY6 ୬୦ ବ. ୯ 69 / 80

Frequencies of a Sine Wave

Code for sinfreqdemo.m

```
% Simple Sin Frequency Demo
samp_freq = 400;
dur = 800; % 2 seconds
amp = 1; phase = 0; freq = 1;
s1 = mysin(amp, freq, phase, dur, samp_freq);
axisx = (1:dur)*360/samp_freq; \% x axis in degrees
plot(axisx.s1);
set(gca, 'XTick', [0:90: axisx(end)]);
fprintf('Initial Wave: \ t \ Amplitude = \dots \ n', \ amp, \ freq, \ phase, \dots
% change amplitude
freq = input ('\ nEnter Frequency: (n n');
s2 = mysin(amp, freq, phase, dur, samp_freq);
hold on:
plot(axisx, s2,'r');
set(gca, 'XTick', [0:90: axisx(end)]);
```

0 / 80

Frequencies of a Sine Wave: sinfreqdemo output

RDIE

Phase of a Sine Wave

sinphasedemo.m

```
% Simple Sin Phase Demo
samp_freq = 400;
dur = 800; % 2 seconds
amp = 1; phase = 0; freq = 1;
s1 = mysin(amp, freq, phase, dur, samp_freq);
axisx = (1:dur)*360/samp_freq; \% x axis in degrees
plot(axisx.s1);
set(gca, 'XTick', [0:90: axisx(end)]);
fprintf('Initial Wave: \ t \ Amplitude = \dots \ n', \ amp, \ freq, \ phase, \dots
% change amplitude
phase = input('\nEnter Phase:\n\n');
s2 = mysin(amp, freq, phase, dur, samp_freq);
hold on:
plot(axisx, s2,'r');
set(gca, 'XTick', [0:90: axisx(end)]);
```

2 / 80
Phase of a Sine Wave: sinphasedemo output

73 / 80

Sum of Two Sinusoids of Same Frequency (1)

Hopefully we now have a good understanding and can visualise Sinusoids of different phase, amplitude and frequency.

Back to Phasors: $X = Me^{i\phi} = M\cos(\phi) + iM\sin(\phi)$

Consider two sinusoids: Same frequency, ω but different phase, θ and ϕ and amplitude, A and B

 $A \cos(\omega t + \theta)$, and $B \cos(\omega t + \phi)$

Let's add them together

Sum of Two Sinusoids of Same Frequency (2)

$$\begin{aligned} A\cos(\omega t + \theta) + B\cos(\omega t + \phi) &= \Re[Ae^{i(\omega t + \theta)} + Be^{i(\omega t + \phi)}] \\ &= \Re[e^{i\omega t}(Ae^{i\theta} + Be^{i\phi})] \end{aligned}$$

Now let $Ae^{i\theta} + Be^{i\phi} = Ce^{i\gamma}$ for some C and γ , then

$$\begin{aligned} \Re[e^{i\omega t}(Ae^{i\theta} + Be^{i\phi})] &= \Re[e^{i\omega t}(Ce^{i\gamma})] \\ &= C\cos(\omega t + \gamma) \end{aligned}$$

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

イロト イヨト イヨト イヨト

Sum of Two Sinusoids of Same Frequency (3)

Trigonometry Equation

$$A\cos(\omega t + \theta) + B\cos(\omega t + \phi) = C\cos(\omega t + \gamma)$$

Equivalent Complex Number Equation

$$Ae^{i\theta} + Be^{i\phi} = Ce^{i\gamma}$$

Which is neater?

Example: Sum of Two Sinusoids of Same Frequency (1)

Simplify

$5\cos(\omega t + 53^\circ) + \sqrt{2}\cos(\omega t + 45^\circ)$

Hard way via trigonometry

- Use the cosine addition formula three times
 - see maths formula sheet handout for formula
- Third time to simplify the result.
- Not difficult but tedious!

Example: Sum of Two Sinusoids of Same Frequency (2)

Easy Way Phasors

$$\Re[5e^{i53^{\circ}} + \sqrt{2}e^{i45^{\circ}}] = (3+4i) + (1+i)$$

= (4+5i)
= 6.4e^{i51^{\circ}}

So:

$$5\cos(\omega t + 53^{\circ}) + \sqrt{2}\cos(\omega t + 45^{\circ}) = \Re[6.4e^{i(\omega t + 51^{\circ})}] \\ = 6.4\cos(\omega t + 51^{\circ})$$

This is a very important example - make sure you understand it.

78 / 80

Another Example (1)

Simplify

```
\cos(\omega \mathbf{t} + \mathbf{30}^{\circ}) + \cos(\omega \mathbf{t} + \mathbf{150}^{\circ}) + \sin(\omega \mathbf{t})
```

First trick to note:

```
\sin(\omega t) = \cos(\omega t - 90^\circ)
```

So now simplify:

```
\cos(\omega t + 30^\circ) + \cos(\omega t + 150^\circ) + \cos(\omega t - 90^\circ)
```

Hard way via trigonometry

- Use the cosine addition formula three times
 - see maths formula sheet handout for formula
- Not difficult but tedious!

Imaginary Numbers

Complex Numbers

MATLAB

Phasors

ARDI

4ERDY#

80 / 80

Another Example (2)

Easy Way Phasors

$$e^{i30^{\circ}} + e^{i150^{\circ}} + e^{-i90^{\circ}} = e^{i90}(=i)$$

So we get:
 $\Re[e^{i90}] = \cos(90^{\circ})$
 $= 0$

So:

 $\cos(\omega \mathbf{t} + \mathbf{30}^\circ) + \cos(\omega \mathbf{t} + \mathbf{150}^\circ) + \cos(\omega \mathbf{t} - \mathbf{90}^\circ) = \mathbf{0}$

or

$$\cos(\omega \mathbf{t} + \mathbf{30}^\circ) + \cos(\omega \mathbf{t} + \mathbf{150}^\circ) + \sin(\omega \mathbf{t}) = \mathbf{0}$$

This fact is used in three-phase AC to conserve current flow