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A problem when solving some equations

There are some equations, for example x2 + 1 = 0, for which we
cannot yet find solutions.

x2 + 1 = 0

x2 = −1

x = ±
√
−1?

The Problem: We cannot (yet) find the square root of a
negative number using real numbers since:

When any real number is squared the result is either positive
or zero, i.e. for all real numbers n2 ≥ 0, n ∈ R1.

1we use the symbol R to denote the set of all real numbers
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Imaginary Numbers

We need another category of numbers, the set of numbers
whose squares are negative real numbers.

Members of this set are called imaginary numbers.

We define
√
−1 = i (or j in some texts)2

Every imaginary number can be written in the form: ni
where n is real and i =

√
−1

2If you read engineering books rather than maths books you may see j used
in place of i - this is just a quirk in notation
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Imaginary Numbers
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Imaginary Numbers
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Examples: Imaginary Numbers

Examples:√
−16 =

√
16×−1 =

√
16×

√
−1 = ±4i

√
−3 =

√
3×−1 =

√
3×
√
−1 = ±i

√
3

(−121)
1
2 =
√
−121 =

√
123×−1 =

√
121×

√
−1 = ±11i
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Imaginary Number Arithmetic: Addition

Imaginary numbers can be added to or subtracted only from
other imaginary numbers.

Examples:

7i − 2i = 5i

4i +
√

3i = (4 +
√

3)i

(Note: i behaves like a special algebraic variable)
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Imaginary Number Arithmetic: Multiplication

When imaginary numbers are multiplied together the result is a
real number.

Example:
2i × 5i = 10× i2

but we know i =
√
−1 , and therefore i2 = −1

Hence 10× i2 = 10×−1 = −10
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Imaginary Number Arithmetic: Division

Imaginary numbers when divided give a real number result.

Example:
6i

3i
= 2

Powers of i may be simplified

Examples:

i3 = i2 × i = −− 1× i = −i

i−1 = 1
i = 1√

−1
= 1√

−1
×
√
−1√
−1

=
√
−1
−1 = −

√
−1 = −i
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Complex Numbers

Case 1: The need for Complex Numbers

Consider the quadratic equation x2 + 2x + 2 = 0.

Using the quadratic formula we get:

x =
−b ±

√
b2 − 4ac

2a
=
−2±

√
22 − 4(2)

2
=
−2±

√
−4

2
=
−2± 2i

2
= −1± i

So x = −1 + i or−1− i

x is now a number with a real number part (1) and an
imaginary number part (±i).

x is an example of a complex number.

Recall: If b2 − 4ac < 0 then the equation has complex roots.
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Complex Numbers

Case 2: The need for Complex Numbers
Very Useful Mathematical Representation, to name a few:

Widely used in many branches of Mathematics, Engineering,
Physics and other scientific disciplines

Control theory
Advanced calculus: Improper integrals, Differential equations, Dynamic
equations
Fluid dynamics — potential flow, flow fields
Electromagnetism and electrical engineering: Alternating current, phase
induced in systems
Quantum mechanics
Relativity
Geometry: Fractals (e.g. the Mandelbrot set and Julia sets), Triangles —
Steiner inellipse
Algebraic number theory

Analytic number theory

Signal analysis: Essential for digital signal and image
processing (Phasors) — studied later.
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Definition: Complex Numbers

A complex number is a number of the form z = a + bi

that is a number which has a real and an imaginary part.

a and b can have any real value including 0. (a, b ∈ R )

E.g. 3 + 2i , 6− 3i , −2 + 4i .

Note: the real term is always written first, even where
negative.

Note: This means that

when a = 0 we have numbers of the form bi i.e. only
imaginary numbers

when b = 0 we have numbers of the form a i.e. real numbers.

The set of all complex numbers is denoted by C.
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Real and Imaginary Parts, Notation

Mathematical Notation:

The set of all real numbers is denoted by R
The set of all complex numbers is denoted by C
The real part of a complex number z is denoted by
Re(z) or <(z)

The imaginary part of a complex number z is denoted by
Im(z) or =(z)
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Example: Real and Imaginary Parts

Find the real and imaginary parts of:

z = 1 + 7i — real part <(z) = 1 , imaginary part =(z) = 7

z = 2− 4i — real part <(z) = 2, imaginary part =(z) = −4

z = −3 — real part <(z) = −3, imaginary part =(z) = 0

z = i
√

3 — real part <(z) = 0, imaginary part =(z) =
√

3
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Addition and Subtraction of Complex Numbers

Complex Numbers can be added (or subtracted) by adding (or
subtracting) their real and imaginary parts separately.

Examples:

(2 + 3i) + (4− i) = 6 + 2i

(4− 2i)− (3 + 5i) = 1− 7i
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Multiplication of Complex Numbers

Complex Number Multiplication:

Follows the basic laws of polynomial multiplication and
imaginary number multiplication (recall i2 = −1)

Then gather real and imaginary terms to simplify the
expression.

Examples:

2(5− 3i) = 10− 6i

(2 + 3i)(4− i) = 8− 2i + 12i − 3i2 = 8 + 10i − 3(−1) =
8 + 10i + 3 = 11 + 10i

(−3−5i)(2+3i) = −6−9i−10i−15i2 = −6−19i+15 = 9−19i

(2 + 3i)(2− 3i) = 4− 6i + 6i − 9i2 = 4 + 9 = 13

Note that in the last example the product of the two complex
numbers is a real number.
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The Complex Conjugate

In general (a + bi)(a− bi) = a2 + b2

A pair of complex numbers of this form are said to be
conjugate.

Examples:

4 + 5i and 4− 5i are conjugate complex numbers.

7− 3i is the conjugate of 7 + 3i

If z is a complex number (z ∈ C) the notation for its conjugate
is z orz∗.

Example:

z = 7− 3i then z = 7 + 3i
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Division of Complex Numbers

Problem: How to evaluate/simplify:

z =
a + bi

c + di
, a, b, c , d ∈ R

Can we express z in the normal complex number form:
z = e + fi, e, f ∈ R?

Direct division by a complex number cannot be carried out:

The denominator is made up of two independent terms

The real and imaginary part of the complex number c + di

We have to follow the basic laws of algebraic division.

The complex conjugate comes to the rescue.
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Complex Number Division: Realising the Denominator

Problem: Express z (below) in the form z = e + fi , a, b ∈ R:

z =
a + bi

c + di
, a, b, c, d ∈ R

We need to deal with the denominator, zd . Here zd = c + di .

We can readily obtain the complex conjugate of zd ,
zd = c − di

We have already observed that any complex number × its
conjugate is a real number, zd × zd ∈ R: c2 + d2

So to remove i from the denominator we can multiply both
numerator and denominator by zd

This process is known as realising the denominator.
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Example: Division of Complex Numbers

Express z (below) in the form z = a + bi , a, b ∈ R:

z =
2 + 9i

5− 2i

We need to deal with the denominator,zd . Here zd = 5− 2i .

Obtain complex conjugate of zd , zd = 5 + 2i

Multiply both numerator and denominator byzd

2 + 9i

5− 2i
× 5 + 2i

5 + 2i
=

10 + 4i + 45i + 18i2

25− 4i2

=
−8 + 49i

29

=
−8

29
+

49

29
i
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Comparing Complex Numbers: Equality

Two complex numbers, z1 = a + bi and z2 = c + di , are equal if
and only if

the real parts of each are equal

AND

the imaginary parts are equal.

That is to say:

<(z1) = <(z2) or a = c ,

AND

=(z1) = =(z2) or b = d
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Example: Comparing Complex Numbers

Example:
If x + iy = (3− 2i)(5 + i) what are the values of x and y?

x + iy = (3− 2i)(5 + i)

= 15 + 3i − 10i + 2i2

= 13− 7i

So x = 13 and y = −7.
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Corollary: The complex number zero

A complex number is zero if and only if the real part and the
imaginary part are both zero i.e.

a + bi = 0↔ a = 0 and b = 0.
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Visualising Complex Numbers: The Complex Plane

A complex number, z = a + ib, is made up of two parts,

The real part, a and,

The imaginary part, b

One way we may visualise this is by plotting these on a 2D graph:

The x-axis represents the real numbers, and

The y-axis represents the imaginary numbers.
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Visualising Complex Numbers: Argand Diagrams

The complex number z = a + ib may then be represented in the
complex plane by

the point P whose co-ordinates are (a, b)
or,

the vector OP, where O is the point at the origin, (0, 0)

! or Re

"
or

Im

O a

b P (a, b)

1

, ! or Re

"
or

Im

O a

b a + bi

1

This representation is known as the Argand diagram.
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Exercise: Complex Numbers and Argand Diagram

Given z1 = 3− 2i and z2 = 5 + 2i draw an Argand diagram for:

z1

z2

z1 + z2

z1 − z2
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Visualising Complex Numbers: Adding Complex Numbers

Generally, givenz1 = a1 + b1i and z2 == a2 + b2i then:
z1 + z2 = (a1 + a2) + (b1 + b2)i

z1

z2

z1 + z2

z2

z1

1

If we plot two complex numbers on an Argand diagram then
we see

that they form two adjacent sides of a parallelogram

their sum forms the diagonal.

Basic Laws of Vector Algebra
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Visualising Complex Numbers: Polar Form

Polar Coordinates: An alternative system of coordinates in
which the position of any point P can be described in terms of

The distance, r , of P from the origin, O, and

The angle/direction, φ, that the line OP makes with the
positive real <-axis (or, more generally x-axis)

O

r

!

"
b

a

φ

P (a, b)

1

This is the polar form of complex numbers
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The Polar Form of Complex Numbers

In relation to complex numbers, we call the polar coordinate terms:

The modulus,r ,

r = |z | =
√

a2 + b2

(Note this is a simple application of Pythagoras’ theorem.)

The argument or phase,φ,

(Simply) φ = arg z = argument z = arctan(
b

a
) = tan−1(

b

a
)

(Note: This is a simple application of basic trigonometry)

to make up what is known as the polar coordinates of a point.
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The Polar Form: More on the Argument

We can measure the Argument is two ways: Both depend on which
quadrant of complex plane the point resides in:

O

r

!

"

φ

P

1

O

r

!

"

φ

P

1

Quadrant 1 Quadrant 2

O

r

!

"

φ

P

1

O

r

!

"

φ

P

1

Quadrant 3 Quadrant 4
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The Polar Form: More on the Argument

φ ∈ [0, 2π) — All angles, φ, were measured anticlockwise from
the +ive real axis: therefore φ must be in the range 0 to 2π

O

r

!

"

φ

P

1

O

r

!

"

φ

P

1

Quadrant 1 Quadrant 2

O

r

!

"

φ

P

1

O

r

!

"

φ

P

1

Quadrant 3 Quadrant 4

All angles given in radians here
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The Polar Form: Argument Alternative Angle
Measurement

Alternatively:

φ ∈ (−π, π] — (not illustrated) measure smallest spanned
angle from +ive real axis: φ measured in range −π to π.

φ = arg z =



arctan(ba ) if x > 0

arctan(ba ) + π if x < 0 and y ≥ 0

arctan(ba )− π if x < 0 and y < 0
π
2 if x = 0 and y > 0
−π

2 if x = 0 and y < 0
indeterminate if x = 0 and y = 0

The polar angle for the complex number 0 is undefined, but usual
arbitrary choice is the angle 0.
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Examples: Modulus and Argument

Find the modulus and argument of each of the following:

1 + i

Modulus r = |1 + i | =
√

12 + 12 =
√

2

Sketching the Argand diagram indicates that we are in the
first quadrant, therefore positive angle, φ between 0 and 90.
Argument = arctan( 1

1 ) = 45◦or π
4 radians

1√
2
− i 1√

2

Modulus

r = | 1√
2
− i 1√

2
| =

√
( 1√

2
)2 + (− 1√

2
)2 =

√
1
2 + 1

2 = 1

Sketching the Argand diagram indicates that we are in the
fourth quadrant, therefore angle is negative between 0 and 90
(or between 270 and 360) degrees.

Argument = arctan(
(− 1√

2
)

1√
2

) = arctan(−1) = −45◦or 315◦

(Radians sim.)
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Exercise: Modulus and Argument

Find the modulus and argument of each of the following:

−1.35 + 2.56i

1
4 +

√
3

4 i
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Converting between Cartesian and Polar forms

The form of a complex number in this system (polar co-ordinates)
are the pairs [r , φ] or [modulus, argument].
We have already seen how to convert from Cartesian (a, b) to
Polar [r , φ] via:

r = |z | =
√

a2 + b2

φ = arg z = arctan(ba )

O

r

!

"
b

a

φ

P (a, b)

1
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Polar to Cartesian Conversion

Can we convert from Polar [r , φ] to Cartesian (a, b)?

Simple trigonometry gives us the solution:

O

r

!

"
r sin φ

r cosφ

φ

P (r cos φ, r sin φ)

1

a = r cosφ

b = r sinφ

Giving z = a + bi
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Exercise

Find the Cartesian Co-ordinates of the Complex Point
P[4, 30◦].
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Trigonometric form

From last slide

a = r cosφ

b = r sinφ

Giving z = a + bi

So if we substitute for a and b we get:

z = r cosφ+ r sinφ× i

= r(cosφ+ i sinφ)

This is known as the
trigonometric form of a complex number
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MATLAB and Complex Numbers

MATLAB knows about complex numbers

>> s q r t (−1)
ans = 0 + 1.0000 i

% Symbol i c Eqns So ln
>> syms x ;
>> f = x ˆ2 + 1 ;
>> s o l v e ( f )
ans =

i
− i

% P o l y n o m i a l Roots
>> p = [ 1 0 1 ] ;
>> r o o t s ( p )
ans =

0 + 1.0000 i
0 − 1 .0000 i
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Declaring Complex Numbers in MATLAB

Simply use i in an expression or the complex() function

% Must use ∗ o p e r a t o r w i t h i even though t h i s i s not d i s p l a y e d
>> c1 = 3 + 4∗ i
c1 =

3.0000 + 4.0000 i

% MATLAB a l s o a l l o w s t h e use o f j
>> c2 = 2 + 4∗ j
c2 =

2.0000 + 4.0000 i

% What I a l r e a d y have a v a r i a b l e i ( o r j ) e . g . f o r i =1:n?
>> c3 = complex ( 1 , 2 )
c3 =

1.0000 + 2.0000 i
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MATLAB: real, imaginary, magnitude and phase

MATLAB provides functions to obtain these

>> c = 4+3∗ i
c =

4.0000 + 3.0000 i

% Rea l par t , I m a g i n a r y par t , and A b s o l u t e v a l u e
>> [ r e a l ( c ) , imag ( c ) , abs ( c ) ]
ans =

4 3 5

% A complex number o f magnitude 11 and phase a n g l e 0 . 7 r a d i a n s
>> z = 11∗( cos (0.7)+ s i n ( 0 . 7 )∗ i )
z =

8.4133 + 7.0864 i

% Recover t h e magnitude and phase o f ” z ”
>> [ abs ( z ) , a n g l e ( z ) ]
ans =

11.0000 0 .7000
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MATLAB understands Trig. form of a complex number

From the last slide example:

You can declare in trig. form but MATLAB coverts to normal
representation

% T r i g . Form : A complex number o f
% magnitude 11 and phase a n g l e 0 . 7 r a d i a n s
>> z = 11∗( cos (0.7)+ s i n ( 0 . 7 )∗ i )
z =

8.4133 + 7.0864 i

% So Need to use abs ( ) and a n g l e ( ) to
% Recover th e magnitude and phase o f ” z ”
>> [ abs ( z ) , a n g l e ( z ) ]
ans =

11.0000 0 .7000

42 / 80



Imaginary Numbers Complex Numbers MATLAB Phasors

MATLAB Complex Arithmetic

Behaves as one would expect

>> c1 = 3 + 4∗ i ;
>> c2 = 2 + 4∗ j ;
>> c1 + c2
ans = 5.0000 + 8.0000 i

>> c1 − c2
ans = 1

>> i ˆ2
ans = −1

>> c1∗ c2
ans = −10.0000 +20.0000 i

>> c1 / c2
ans = 1.1000 − 0 .2000 i
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Plotting Polar Coordinates in MATLAB

MATLAB provide useful plotting functions for general Polar
Coordinates

This is not exclusively for Complex Numbers.

The MATLAB function polar() achieves this:

polar() — Polar coordinate plot

polar(Theta , Radius ) makes a plot using polar
coordinates of the angle Theta , in radians, versus the radius
Radius. polar(Theta, Radius, S) uses the linestyle
specified in string S.

similar to plot() in terms of styles

Note the order! Theta first then Radius!
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polar() Example

Plotting Polar Representation of a Complex Number

>> z = 11∗( cos (0.7)+ s i n ( 0 . 7 )∗ i )

z =

8.4133 + 7.0864 i

>> p o l a r ( [ 0 a n g l e ( z ) ] , [ 0 abs ( z ) ] , ’− r ’ ) ;
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polar(angle(z),abs(z)) Plot Output

  5

  10

  15

30

210

60

240

90

270

120

300

150

330

180 0
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compass() Plot

The compass() knows how to plot a complex number directly:

compass() Example

>> c1 = 3 + 4∗ i ;
>> compass ( c1 ) ;
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compass(c1); Plot Output

  1

  2

  3

  4

  5

30

210

60

240

90

270

120

300

150

330

180 0

Note: c1 automatically converted to polar form
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Euler’s Formula: Phasor Form

Euler’s Formula3 states that we can express the trigonometric form
as:

eiφ = cosφ+ i sinφ, φ ∈ R

Exercise: Show that

e−iφ = cosφ− i sinφ

This is also known as phasor form or Phasors , for
short.
Note: Phasors and the related trigonometric form are very
important to Fourier Theory which we study later.

3we won’t prove this here. Proof here if interested
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Phasor Notation

General Phasor Form: re iφ

More generally we use re iφ where:

re iφ = r(cosφ+ i sinφ)
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MATLAB Speaks the Phasor Language

MATLAB Complex No. Phasor Declaration

>> exp ( i ∗( p i /4) )

ans = 0.7071 + 0.7071 i

>> [ abs ( z ) , a n g l e ( z ) ]

ans = 1.0000 0 .7854
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Phasors are stunning!

Phasers on stun!

Phasors are stunning!
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Phasors are very useful mathematical tools

Can simplify Trigonometric proofs, Trig. expression
manipulation etc

Can do Trigonometry without Trigonometry (well almost!)

Electrical Signals: Can apply simplify AC circuits to DC circuit
theory (e.g. Ohm’s Law)!

Power engineering: Three phase AC power systems analysis

Signal Processing: Fourier Theory, Filters
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Trig. Example: sin and cos as functions of e

From Euler’s Formula we can write:

cosφ =
eiφ + e−iφ

2

sinφ =
eiφ − e−iφ

2i

Prove the above

54 / 80



Imaginary Numbers Complex Numbers MATLAB Phasors

Trig. Exercise: Powers of the Trigonometric Form (de
Moivre’s Theorem)

If n is an integer then show that:

(cos θ + i sin θ)n = cos nθ + i sin nθ.

This is known as de Moivre’s Theorem
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Complex Number Multiplication in Polar Form

Let z1 = [r1, φ1] and z2 = [r2, φ2] then
z1 = r1(cosφ1 + i sinφ1) and z2 = r2(cosφ2 + i sinφ2)
Therefore:

z1z2 = [r1(cosφ1 + i sinφ1)]× [r2(cosφ2 + i sinφ2)]

= r1r2[(cosφ1 + i sinφ1)× (cosφ2 + i sinφ2)]

= r1r2[cosφ1 cosφ2 − sinφ1 sinφ2

+i(cosφ1 sinφ2 + sinφ1 cosφ2)]

From trigonometry we have the following relations:

sin(A± B) = sin A cos B ± cos A sin B,

cos(A± B) = cos A cos B ∓ sin A sin B,

So finally we have:

z1z2 = r1r2[cos(φ1 + φ2) + i sin(φ1 + φ2)]

z1z2 = [r1r2, φ1 + φ2]
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Complex Number Multiplication via Phasors

Alternatively, we can multiply complex numbers via Phasors:
z1 = r1e iφ1 and z2 = r2e iφ2 .
Therefore:

z1z2 = r1e iφ1 × r2e iφ2

= r1r2e iφ1e iφ2

Now in general, exey = e(x+y)

So we get: z1z2 = r1r2e i(φ1+φ2) which (as we should expect) gives:

z1z2 = [r1r2, φ1 + φ2]

This is a much easier way to prove this fact —
Agree?4

4This sort of algebra is important for Fourier Theory later
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Complex Number Division in Phasor Form

Sticking with the Phasor formulation, we can divide two complex
numbers:
z1 = r1e iφ1 and z2 = r2e iφ2 .
Therefore:

z1

z2
=

r1e iφ1

r2e iφ2

=
r1

r2

e iφ1

e iφ2

=
r1

r2
e iφ1e−iφ2 , by a same argument as in multiplication

=
r1

r2
e i(φ1−φ2)

z1

z2
= [

r1

r2
, φ1 − φ2]

Exercise: Prove this formula via the trigonometric polar form —
yawn!.
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Exercises: Complex Number Multiplication and Division

If z1 = 3
√

2 + 3
√

2i and z2 = 3
√

3
2 + 3

2 i , find z1z2 and z1
z2

,
leave your answer in polar form.

Evaluate ( 1
2 +

√
3

2 i)3, give your answer in Cartesian form.
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Complex Number Multiplication: Geometric Representation

Multiplying a complex number z = x + iy by i rotates the vector
representing z through 90◦ anticlockwise
Example: Let z1 = 1.
Then

z2 = iz1 = i .

Polar form of z1 = [1, 0◦].

Polar form of z2 = [1, 90◦], Q.E.D.
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Back to Phase: Important Example

Concept: A phasor is a complex number used to represent a
sinusoid.

In particular:

Sinusoid : x(t) = M cos(ωt + φ), −∞ < t <∞ — a function of
time

Phasor : X = Me iφ = M cos(φ) + iM sin(φ) — a complex
number
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Complex Numbers and Phase: Important Example

Phasors and Sinusoids are related:

<[Xe iωt ] = <[Me iφe iωt ]

= <[Me i(ωt+φ)]

= <[M(cos(ωt + φ) + i sin(ωt + φ))

= M cos(ωt + φ)

= x(t)
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Visualising Sinusoids of differing Phase, Amplitude and
Frequency
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MATLAB Sine Wave Frequency and Amplitude (only)

% N a t u r a l f r e q u e n c y i s 2∗ p i r a d i a n s
% I f sample r a t e i s F s HZ then 1 HZ i s 2∗ p i / F s
% I f wave f r e q u e n c y i s F w then f r e q u e n c y i s
% F w∗ (2∗ p i / F s )
% s e t n s a m p l e s s t e p s up to sum d u r a t i o n n s e c ∗F s where
% n s e c i s t h e d u r a t i o n i n s e c o n d s
% So we g e t y = amp∗ s i n (2∗ p i ∗n∗F w/ F s ) ;

F s = 11025 ;
F w = 4 4 0 ;
n s e c = 2 ;
dur= n s e c ∗F s ;
n = 0 : dur ;

y = amp∗ s i n (2∗ p i ∗n∗F w/ F s ) ;
f i g u r e ( 1 )
p l o t ( y ( 1 : 5 0 0 ) ) ;
t i t l e ( ’N second D u r a t i o n S i n e Wave ’ ) ;
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MATLAB Cos v Sin Wave

% C o s i n e i s same as S i n e ( e x c e p t 90 d e g r e e s out o f phase )

yc = amp∗ cos (2∗ p i ∗n∗F w/ F s ) ;

f i g u r e ( 2 ) ;
h o l d on ;
p l o t ( yc , ’ b ’ ) ;
p l o t ( y , ’ r ’ ) ;
t i t l e ( ’ Cos ( Blue )/ S i n ( Red ) P l o t ( Note Phase D i f f e r e n c e ) ’ ) ;
h o l d o f f ;
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Sin and Cos (stem) plots

MATLAB functions cos() and sin().
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Amplitudes of a Sine Wave

Code for sinampdemo.m

% Simple S i n Ampl i tude Demo
s a m p f r e q = 4 0 0 ;
dur = 8 0 0 ; % 2 s e c o n d s
amp = 1 ; phase = 0 ; f r e q = 1 ;
s1 = mysin (amp , f r e q , phase , dur , s a m p f r e q ) ;

a x i s x = ( 1 : dur )∗360/ s a m p f r e q ; % x a x i s i n d e g r e e s
p l o t ( a x i s x , s1 ) ;
s e t ( gca , ’ XTick ’ , [ 0 : 9 0 : a x i s x ( end ) ] ) ;

f p r i n t f ( ’ I n i t i a l Wave : \ t Ampl i tude = . . . \ n ’ , amp ,
f r e q , phase , . . . ) ;

% change a m p l i t u d e
amp = i n p u t ( ’\ nEnter Ampl i tude :\ n\n ’ ) ;

s2 = mysin (amp , f r e q , phase , dur , s a m p f r e q ) ;
h o l d on ;
p l o t ( a x i s x , s2 , ’ r ’ ) ;
s e t ( gca , ’ XTick ’ , [ 0 : 9 0 : a x i s x ( end ) ] ) ;
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mysin MATLAB code

mysin.m — a modified version of previous MATLAB sin example to account for
phase

f u n c t i o n s = mysin (amp , f r e q , phase , dur , s a m p f r e q )
% example f u n c t i o n to so show how ampl i tude , f r e q u e n c y and phase
% a r e changed i n a s i n f u n c t i o n
% I n p u t s : amp − a m p l i t u d e o f t h e wave
% f r e q − f r e q u e n c y o f t he wave
% phase − phase o f t he wave i n d e g r e e
% dur − d u r a t i o n i n number o f s a m p l e s
% s a m p f r e q − sample f r e q u n c y

x = 0 : dur−1;
phase = phase ∗ p i / 1 8 0 ;

s = amp∗ s i n ( 2∗ p i ∗x∗ f r e q / s a m p f r e q + phase ) ;
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Amplitudes of a Sine Wave: sinampdemo output
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Frequencies of a Sine Wave

Code for sinfreqdemo.m

% Simple S i n Frequency Demo

s a m p f r e q = 4 0 0 ;
dur = 8 0 0 ; % 2 s e c o n d s
amp = 1 ; phase = 0 ; f r e q = 1 ;
s1 = mysin (amp , f r e q , phase , dur , s a m p f r e q ) ;

a x i s x = ( 1 : dur )∗360/ s a m p f r e q ; % x a x i s i n d e g r e e s
p l o t ( a x i s x , s1 ) ;
s e t ( gca , ’ XTick ’ , [ 0 : 9 0 : a x i s x ( end ) ] ) ;

f p r i n t f ( ’ I n i t i a l Wave : \ t Ampl i tude = . . . \ n ’ , amp , f r e q , phase , . . . ) ;

% change a m p l i t u d e
f r e q = i n p u t ( ’\ nEnter Frequency :\ n\n ’ ) ;

s2 = mysin (amp , f r e q , phase , dur , s a m p f r e q ) ;
h o l d on ;
p l o t ( a x i s x , s2 , ’ r ’ ) ;
s e t ( gca , ’ XTick ’ , [ 0 : 9 0 : a x i s x ( end ) ] ) ;
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Frequencies of a Sine Wave: sinfreqdemo output
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Phase of a Sine Wave

sinphasedemo.m

% Simple S i n Phase Demo

s a m p f r e q = 4 0 0 ;
dur = 8 0 0 ; % 2 s e c o n d s
amp = 1 ; phase = 0 ; f r e q = 1 ;
s1 = mysin (amp , f r e q , phase , dur , s a m p f r e q ) ;

a x i s x = ( 1 : dur )∗360/ s a m p f r e q ; % x a x i s i n d e g r e e s
p l o t ( a x i s x , s1 ) ;
s e t ( gca , ’ XTick ’ , [ 0 : 9 0 : a x i s x ( end ) ] ) ;

f p r i n t f ( ’ I n i t i a l Wave : \ t Ampl i tude = . . . \ n ’ , amp , f r e q , phase , . . . ) ;

% change a m p l i t u d e
phase = i n p u t ( ’\ nEnter Phase :\ n\n ’ ) ;

s2 = mysin (amp , f r e q , phase , dur , s a m p f r e q ) ;
h o l d on ;
p l o t ( a x i s x , s2 , ’ r ’ ) ;
s e t ( gca , ’ XTick ’ , [ 0 : 9 0 : a x i s x ( end ) ] ) ;

The code is sinphasedemo.m
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Phase of a Sine Wave: sinphasedemo output
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Sum of Two Sinusoids of Same Frequency (1)

Hopefully we now have a good understanding and can visualise
Sinusoids of different phase, amplitude and frequency.

Back to Phasors: X = Me iφ = M cos(φ) + iM sin(φ)

Consider two sinusoids: Same frequency, ω but different phase, θ
and φ and amplitude, A and B

A cos(ωt + θ), and

B cos(ωt + φ)

Let’s add them together
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Sum of Two Sinusoids of Same Frequency (2)

A cos(ωt + θ) + B cos(ωt + φ) = <[Ae i(ωt+θ) + Be i(ωt+φ)]

= <[e iωt(Ae iθ + Be iφ)]

Now let Ae iθ + Be iφ = Ce iγ for some C and γ, then

<[e iωt(Ae iθ + Be iφ)] = <[e iωt(Ce iγ)]

= C cos(ωt + γ)
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Sum of Two Sinusoids of Same Frequency (3)

Trigonometry Equation

A cos(ωt + θ) + B cos(ωt + φ) = C cos(ωt + γ)

Equivalent Complex Number Equation

Ae iθ + Be iφ = Ce iγ

Which is neater? Let’s see
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Example: Sum of Two Sinusoids of Same Frequency (1)

Simplify
5 cos(ωt + 53◦) +

√
2 cos(ωt + 45◦)

Hard way via trigonometry

Use the cosine addition formula three times

see maths formula sheet handout for formula

Third time to simplify the result.

Not difficult but tedious!
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Example: Sum of Two Sinusoids of Same Frequency (2)

Easy Way Phasors

<[5e i53◦ +
√

2e i45◦ ] = (3 + 4i) + (1 + i)

= (4 + 5i)

= 6.4e i51◦

So:

5 cos(ωt + 53◦) +
√

2 cos(ωt + 45◦) = <[6.4e i(wt+51◦)]

= 6.4 cos(ωt + 51◦)

This is a very important example - make sure you
understand it.
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Another Example (1)

Simplify

cos(ωt + 30◦) + cos(ωt + 150◦) + sin(ωt)

First trick to note:

sin(ωt) = cos(ωt − 90◦)

So now simplify:

cos(ωt + 30◦) + cos(ωt + 150◦) + cos(ωt− 90◦)

Hard way via trigonometry

Use the cosine addition formula three times

see maths formula sheet handout for formula

Not difficult but tedious!
79 / 80



Imaginary Numbers Complex Numbers MATLAB Phasors

Another Example (2)

Easy Way Phasors

e i30◦ + e i150◦ + e−i90◦ = e i90(= i)

So we get:

<[e i90] = cos(90◦)

= 0

So:

cos(ωt + 30◦) + cos(ωt + 150◦) + cos(ωt− 90◦) = 0

or
cos(ωt + 30◦) + cos(ωt + 150◦) + sin(ωt) = 0

This fact is used in three-phase AC to conserve
current flow
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