CM2202: Scientific Computing and Multimedia Applications

General Maths: 3. Complex Numbers

Prof. David Marshall

School of Computer Science \& Informatics

A problem when solving some equations

There are some equations, for example $x^{2}+1=0$, for which we cannot yet find solutions.

$$
\begin{aligned}
x^{2}+1 & =0 \\
x^{2} & =-1 \\
x & = \pm \sqrt{-1} ?
\end{aligned}
$$

The Problem: We cannot (yet) find the square root of a negative number using real numbers since:

- When any real number is squared the result is either positive or zero, i.e. for all real numbers $n^{2} \geq 0, n \in \mathbb{R}^{1}$.

CARDIFF

[^0]
Imaginary Numbers

We need another category of numbers，the set of numbers whose squares are negative real numbers．

Members of this set are called imaginary numbers．

We define $\sqrt{-1}=i(\text { or } j \text { in some texts })^{2}$

Every imaginary number can be written in the form：ni where n is real and $\mathbf{i}=\sqrt{-1}$
${ }^{2}$ If you read engineering books rather than maths books you may see j used in place of i－this is just a quirk in notation

Imaginary Numbers

Imaginary Numbers

Imaginary Numbers

CARDIFF
UNIVERSITY
PRIFYSGOL CAERDYB

Examples: Imaginary Numbers

Examples:

- $\sqrt{-16}=\sqrt{16 \times-1}=\sqrt{16} \times \sqrt{-1}= \pm 4 i$
- $\sqrt{-3}=\sqrt{3 \times-1}=\sqrt{3} \times \sqrt{-1}= \pm \mathbf{i} \sqrt{3}$
- $(-121)^{\frac{1}{2}}=\sqrt{-121}=\sqrt{123 \times-1}=\sqrt{121} \times \sqrt{-1}= \pm \mathbf{1 1 i}$

Imaginary Number Arithmetic: Addition

Imaginary numbers can be added to or subtracted only from other imaginary numbers.

Examples:

- $7 i-2 i=5 i$
- $4 i+\sqrt{3} i=(4+\sqrt{3}) i$
(Note: i behaves like a special algebraic variable)

Imaginary Number Arithmetic: Multiplication

When imaginary numbers are multiplied together the result is a real number.

Example:

$$
2 i \times 5 i=10 \times i^{2}
$$

but we know $i=\sqrt{-1}$, and therefore $i^{2}=-1$

Hence $10 \times i^{2}=10 \times-1=-10$

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYB

Imaginary Number Arithmetic: Division

Imaginary numbers when divided give a real number result.

- Example:

$$
\frac{6 i}{3 i}=2
$$

Powers of i may be simplified
Examples:

- $i^{3}=i^{2} \times i=--1 \times i=-i$
- $i^{-1}=\frac{1}{i}=\frac{1}{\sqrt{-1}}=\frac{1}{\sqrt{-1}} \times \frac{\sqrt{-1}}{\sqrt{-1}}=\frac{\sqrt{-1}}{-1}=-\sqrt{-1}=-i$

CARDIFF

Complex Numbers

Case 1: The need for Complex Numbers

Consider the quadratic equation $x^{2}+2 x+2=0$.
Using the quadratic formula we get:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 \pm \sqrt{2^{2}-4(2)}}{2}=\frac{-2 \pm \sqrt{-4}}{2}=\frac{-2 \pm 2 i}{2}=-1 \pm i$

So $x=-1+i$ or $-1-i$

- x is now a number with a real number part (1) and an imaginary number part $(\pm i)$.
x is an example of a complex number.
Recall: If $b^{2}-4 a c<0$ then the equation has complex roots.

CARDIFF

Complex Numbers

Case 2: The need for Complex Numbers
Very Useful Mathematical Representation, to name a few:

- Widely used in many branches of Mathematics, Engineering, Physics and other scientific disciplines
- Control theory
- Advanced calculus: Improper integrals, Differential equations, Dynamic equations
- Fluid dynamics - potential flow, flow fields
- Electromagnetism and electrical engineering: Alternating current, phase induced in systems
- Quantum mechanics
- Relativity
- Geometry: Fractals (e.g. the Mandelbrot set and Julia sets), Triangles Steiner inellipse
- Algebraic number theory
- Analytic number theory
- Signal analysis: Essential for digital signal and image processing (Phasors) - studied later.

CARDIFF

Definition: Complex Numbers

A complex number is a number of the form $z=a+b i$

- that is a number which has a real and an imaginary part.
- a and b can have any real value including $0 .(a, b \in \mathbb{R})$
- E.g. $3+2 i, 6-3 i,-2+4 i$.
- Note: the real term is always written first, even where negative.

Note: This means that

- when $a=0$ we have numbers of the form bi i.e. only imaginary numbers
- when $b=0$ we have numbers of the form a i.e. real numbers.

The set of all complex numbers is denoted by \mathbb{C}.

CARDIFF

Real and Imaginary Parts, Notation

Mathematical Notation:

- The set of all real numbers is denoted by \mathbb{R}
- The set of all complex numbers is denoted by \mathbb{C}
- The real part of a complex number z is denoted by $\operatorname{Re}(z)$ or $\Re(z)$
- The imaginary part of a complex number z is denoted by $\operatorname{Im}(z)$ or $\Im(z)$

Example: Real and Imaginary Parts

Find the real and imaginary parts of:

- $z=1+7 i$ - real part $\Re(z)=1$, imaginary part $\Im(z)=7$
- $z=2-4 i$ - real part $\Re(z)=2$, imaginary part $\Im(z)=-4$
- $z=-3$ - real part $\Re(z)=-3$, imaginary part $\Im(z)=0$
- $z=i \sqrt{3}$ - real part $\Re(z)=0$, imaginary part $\Im(z)=\sqrt{3}$

Addition and Subtraction of Complex Numbers

Complex Numbers can be added (or subtracted) by adding (or subtracting) their real and imaginary parts separately.

Examples:

- $(2+3 i)+(4-i)=6+2 i$
- $(4-2 i)-(3+5 i)=1-7 i$

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYD

Multiplication of Complex Numbers

Complex Number Multiplication:

- Follows the basic laws of polynomial multiplication and imaginary number multiplication (recall $i^{2}=-1$)
- Then gather real and imaginary terms to simplify the expression.

Examples:

- $2(5-3 i)=10-6 i$
- $(2+3 i)(4-i)=8-2 i+12 i-3 i^{2}=8+10 i-3(-1)=$ $8+10 i+3=11+10 i$
- $(-3-5 i)(2+3 i)=-6-9 i-10 i-15 i^{2}=-6-19 i+15=9-19 i$
- $(2+3 i)(2-3 i)=4-6 i+6 i-9 i^{2}=4+9=13$

Note that in the last example the product of the two complex numbers is a real number.

CARDIFF

The Complex Conjugate

In general $(a+b i)(a-b i)=a^{2}+b^{2}$

- A pair of complex numbers of this form are said to be conjugate.

Examples:

- $4+5 i$ and $4-5 i$ are conjugate complex numbers.
- $7-3 i$ is the conjugate of $7+3 i$

If z is a complex number $(z \in \mathbb{C})$ the notation for its conjugate is \bar{z} or z^{*}.

Example:

- $z=7-3 i$ then $\bar{z}=7+3 i$

Division of Complex Numbers

Problem: How to evaluate/simplify:

$$
z=\frac{a+b i}{\mathbf{c}+\mathbf{d i}}, a, b, c, d \in \mathbb{R}
$$

Can we express z in the normal complex number form:
$\mathbf{z}=\mathbf{e}+\mathbf{f i}, e, f \in \mathbb{R}$?
Direct division by a complex number cannot be carried out:

- The denominator is made up of two independent terms
- The real and imaginary part of the complex number $\mathbf{c}+\mathbf{d i}$
- We have to follow the basic laws of algebraic division.

The complex conjugate comes to the rescue.

Complex Number Division: Realising the Denominator

Problem: Express z (below) in the form $z=e+f i, a, b \in \mathbb{R}$:

$$
z=\frac{a+b i}{\mathbf{c}+\mathbf{d i}}, \quad a, b, c, d \in \mathbb{R}
$$

- We need to deal with the denominator, z_{d}. Here $z_{d}=c+d i$.
- We can readily obtain the complex conjugate of z_{d}, $\overline{z_{d}}=c-d i$
- We have already observed that any complex number \times its conjugate is a real number, $z_{d} \times \overline{z_{d}} \in \mathbb{R}: c^{2}+d^{2}$
- So to remove i from the denominator we can multiply both numerator and denominator by $\overline{z_{d}}$

This process is known as realising the denominator.

Example: Division of Complex Numbers

Express z (below) in the form $z=a+b i, a, b \in \mathbb{R}$:

$$
z=\frac{2+9 i}{5-2 i}
$$

- We need to deal with the denominator, z_{d}. Here $z_{d}=5-2 i$.
- Obtain complex conjugate of $z_{d}, \overline{z_{d}}=5+2 i$
- Multiply both numerator and denominator by $\overline{z_{d}}$

$$
\begin{aligned}
\frac{2+9 i}{5-2 i} \times \frac{5+2 i}{5+2 i} & =\frac{10+4 i+45 i+18 i^{2}}{25-4 i^{2}} \\
& =\frac{-8+49 i}{29} \\
& =\frac{-8}{29}+\frac{\mathbf{4 9}}{\mathbf{2 9}} i
\end{aligned}
$$

Two complex numbers, $z_{1}=a+b i$ and $z_{2}=c+d i$, are equal if and only if

- the real parts of each are equal

AND

- the imaginary parts are equal.

That is to say:

- $\Re\left(z_{1}\right)=\Re\left(z_{2}\right)$ or $a=c$,

AND

- $\Im\left(z_{1}\right)=\Im\left(z_{2}\right)$ or $b=d$

CARDIFF
UNIVERSITY
Prifyscol
CAERDYB

Example: Comparing Complex Numbers

Example:
If $x+i y=(3-2 i)(5+i)$ what are the values of x and y ?

$$
\begin{aligned}
x+i y & =(3-2 i)(5+i) \\
& =15+3 i-10 i+2 i^{2} \\
& =13-7 i
\end{aligned}
$$

So $x=13$ and $y=-7$.

CARDIFF
UNIVERSITY
PRIFYSGOL
CATRDY

Corollary: The complex number zero

A complex number is zero if and only if the real part and the imaginary part are both zero i.e.

$$
\mathbf{a}+\mathbf{b} \mathbf{i}=\mathbf{0} \leftrightarrow \mathbf{a}=\mathbf{0} \text { and } \mathbf{b}=\mathbf{0} .
$$

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYD

Visualising Complex Numbers: The Complex Plane

A complex number, $z=a+i b$, is made up of two parts,

- The real part, a and,
- The imaginary part, b

One way we may visualise this is by plotting these on a 2D graph:

- The \mathbf{x}-axis represents the real numbers, and
- The \mathbf{y}-axis represents the imaginary numbers.

Visualising Complex Numbers: Argand Diagrams

The complex number $z=a+i b$ may then be represented in the complex plane by

- the point \mathbf{P} whose co-ordinates are (a, b) or,
- the vector $\mathbf{O P}$, where \mathbf{O} is the point at the origin, $(0,0)$

This representation is known as the Argand diagram.

CARDIFF

Exercise: Complex Numbers and Argand Diagram

Given $z_{1}=3-2 i$ and $z_{2}=5+2 i$ draw an Argand diagram for:

- z_{1}
- z_{2}
- $z_{1}+z_{2}$
- $z_{1}-z_{2}$

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYD

Visualising Complex Numbers: Adding Complex Numbers

Generally, given $z_{1}=a_{1}+b_{1} i$ and $z_{2}==a_{2}+b_{2} i$ then:

$$
z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) i
$$

If we plot two complex numbers on an Argand diagram then we see

- that they form two adjacent sides of a parallelogram
- their sum forms the diagonal.
- Basic Laws of Vector Algebra

Visualising Complex Numbers: Polar Form

Polar Coordinates: An alternative system of coordinates in which the position of any point P can be described in terms of

- The distance, r, of P from the origin, O, and
- The angle/direction, ϕ, that the line OP makes with the positive real \Re-axis (or, more generally x-axis)

This is the polar form of complex numbers

CARDIFF

The Polar Form of Complex Numbers

In relation to complex numbers, we call the polar coordinate terms:

- The modulus, r,

$$
r=|z|=\sqrt{a^{2}+b^{2}}
$$

(Note this is a simple application of Pythagoras' theorem.)

- The argument or phase, ϕ,

$$
\text { (Simply) } \phi=\arg z=\operatorname{argument} z=\arctan \left(\frac{b}{a}\right)=\tan ^{-1}\left(\frac{b}{a}\right)
$$

(Note: This is a simple application of basic trigonometry) to make up what is known as the polar coordinates of a point.

The Polar Form: More on the Argument

We can measure the Argument is two ways: Both depend on which quadrant of complex plane the point resides in:

Quadrant 1

Quadrant 3

Quadrant 2

Quadrant 4

CARDIFF

The Polar Form: More on the Argument

- $\phi \in[0,2 \pi)$ - All angles, ϕ, were measured anticlockwise from the +ive real axis: therefore ϕ must be in the range 0 to 2π

Quadrant 1

Quadrant 3

Quadrant 2

Quadrant 4

All angles given in radians here

CARDIFF

The Polar Form: Argument Alternative Angle

 Measurement
Alternatively:

- $\phi \in(-\pi, \pi]$ - (not illustrated) measure smallest spanned angle from +ive real axis: ϕ measured in range $-\pi$ to π.

$$
\phi=\arg z= \begin{cases}\arctan \left(\frac{b}{a}\right) & \text { if } x>0 \\ \arctan \left(\frac{b}{a}\right)+\pi & \text { if } x<0 \text { and } y \geq 0 \\ \arctan \left(\frac{b}{a}\right)-\pi & \text { if } x<0 \text { and } y<0 \\ \frac{\pi}{2} & \text { if } x=0 \text { and } y>0 \\ -\frac{\pi}{2} & \text { if } x=0 \text { and } y<0 \\ \text { indeterminate } & \text { if } x=0 \text { and } y=0\end{cases}
$$

The polar angle for the complex number $\mathbf{0}$ is undefined, but usual arbitrary choice is the angle 0 .

CARDIFF

Examples: Modulus and Argument

Find the modulus and argument of each of the following:

- $1+i$
- Modulus $r=|1+i|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$

Sketching the Argand diagram indicates that we are in the first quadrant, therefore positive angle, ϕ between 0 and 90 . Argument $=\arctan \left(\frac{1}{1}\right)=45^{\circ}$ or $\frac{\pi}{4}$ radians

- $\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}$
- Modulus
$r=\left|\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right|=\sqrt{\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(-\frac{1}{\sqrt{2}}\right)^{2}}=\sqrt{\frac{1}{2}+\frac{1}{2}}=1$
Sketching the Argand diagram indicates that we are in the fourth quadrant, therefore angle is negative between 0 and 90 (or between 270 and 360) degrees.
Argument $=\arctan \left(\frac{\left(-\frac{1}{\sqrt{2}}\right)}{\frac{1}{\sqrt{2}}}\right)=\arctan (-1)=-45^{\circ}$ or 315°
(Radians sim.)

Exercise: Modulus and Argument

Find the modulus and argument of each of the following:

- $-1.35+2.56 i$
- $\frac{1}{4}+\frac{\sqrt{3}}{4} i$

CARDIFF
UNIVERSITY
prifyscol
CAERDYD

Converting between Cartesian and Polar forms

The form of a complex number in this system (polar co-ordinates) are the pairs $[r, \phi$] or [modulus, argument].
We have already seen how to convert from Cartesian (a, b) to Polar $[r, \phi$] via:

- $r=|z|=\sqrt{a^{2}+b^{2}}$
- $\phi=\arg z=\arctan \left(\frac{b}{a}\right)$

Polar to Cartesian Conversion

Can we convert from Polar $[r, \phi]$ to Cartesian (a, b) ?

Simple trigonometry gives us the solution:

- $a=r \cos \phi$
- $b=r \sin \phi$
- Giving $\mathbf{z}=\mathbf{a}+\mathbf{b i}$

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYD

Exercise

Find the Cartesian Co-ordinates of the Complex Point $P\left[4,30^{\circ}\right]$.

CARDIFF
UNIVERSITY
prifyscol
CAERDYD

Trigonometric form

From last slide

- $a=r \cos \phi$
- $b=r \sin \phi$
- Giving $\mathbf{z}=\mathbf{a}+\mathbf{b i}$

So if we substitute for a and b we get:

$$
\begin{aligned}
\mathbf{z} & =\mathbf{r} \cos \phi+\mathbf{r} \sin \phi \times \mathbf{i} \\
& =\mathbf{r}(\cos \phi+\mathbf{i} \sin \phi)
\end{aligned}
$$

This is known as the trigonometric form of a complex number

CARDIFF
UNIVERSITY
PRIFYSCOL CATRDY

MATLAB and Complex Numbers

MATLAB knows about complex numbers
\gg sqrt (-1)
ans $=0+1.0000 i$
\% Symbolic Eqns Soln
>> syms x ;
$\gg f=x^{\wedge} 2+1$;
\gg solve(f)
ans $=$
i
-i
\% Polynomial Roots
$\gg p=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$;
\gg roots (p)
ans $=$

$$
\begin{aligned}
& 0+1.0000 i \\
& 0-1.0000 i
\end{aligned}
$$

ARDIFF
NIVERSITY
NFYSGOL AERDYD

Declaring Complex Numbers in MATLAB

```
Simply use in an expression or the complex() function
% Must use * operator with i even though this is not displayed
>> c1 = 3 + 4*i
c1 =
    3.0000 + 4.0000i
% MATLAB also allows the use of j
>> c2 = 2 + 4*j
c2 =
    2.0000 + 4.0000i
% What I already have a variable i (or j) e.g. for i=1:n?
>> c3 = complex (1,2)
c3 =
    1.0000 + 2.0000i
```

ARDIFF
NIVERSITY
IFYscol

MATLAB: real, imaginary, magnitude and phase

MATLAB provides functions to obtain these

$\gg c=4+3 * i$
$c=$

$$
4.0000+3.0000 i
$$

\% Real part, Imaginary part, and Absolute value \gg [real(c), imag(c), abs(c)]
ans $=$
$4 \quad 3 \quad 5$
\% A complex number of magnitude 11 and phase angle 0.7 radians
$\gg z=11 *(\cos (0.7)+\sin (0.7) * i)$
z $=$

$$
8.4133+7.0864 i
$$

\% Recover the magnitude and phase of "z"
\gg [abs(z), angle(z)]
ans $=$
11.0000
0.7000

MATLAB understands Trig. form of a complex number

From the last slide example:
You can declare in trig. form but MATLAB coverts to normal representation
\% Trig. Form: A complex number of
\% magnitude 11 and phase angle 0.7 radians
$\gg z=11 *(\cos (0.7)+\sin (0.7) * i)$
z =

$$
8.4133+7.0864 i
$$

\% So Need to use abs() and angle() to
\% Recover the magnitude and phase of "z"
>> [ab s(z), angle (z)]
ans = $11.0000 \quad 0.7000$

MATLAB Complex Arithmetic

Behaves as one would expect

```
>> c1 = 3 + 4*i;
>> c2 = 2 + 4*j;
>> c1 + c2
ans = 5.0000 + 8.0000i
>> c1 - c2
ans = 1
>> i^2
ans = -1
>> c1*c2
ans = -10.0000 +20.0000i
>> c1/c2
ans = 1.1000 - 0.2000i
```

Nu:ssiv
Curpow

Plotting Polar Coordinates in MATLAB

MATLAB provide useful plotting functions for general Polar Coordinates

- This is not exclusively for Complex Numbers.

The MATLAB function polar() achieves this:

polar () - Polar coordinate plot

- polar(Theta , Radius) makes a plot using polar coordinates of the angle Theta, in radians, versus the radius Radius. polar(Theta, Radius, S) uses the linestyle specified in string S.
- similar to plot() in terms of styles
- Note the order! Theta first then Radius!

polar() Example

Plotting Polar Representation of a Complex Number

$$
\gg z=11 *(\cos (0.7)+\sin (0.7) * i)
$$

Z =

$$
8.4133+7.0864 i
$$

$\gg \operatorname{polar}\left(\left[0 \quad\right.\right.$ angle(z)],[0 \quad abs (z)],' $\left.-r^{\prime}\right)$;

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYG

polar(angle(z), abs(z)) Plot Output

CARDIFF
UNIVERSITY
PRIFYSCOL
CAERDYB
三

compass () Plot

The compass() knows how to plot a complex number directly:

compass () Example

$$
\begin{aligned}
& \gg c 1=3+4 * i \\
& \gg \text { compass }(c 1)
\end{aligned}
$$

compass(c1) ; Plot Output

Note: c1 automatically converted to polar form

UNIVERSITY
PRIFYSGOL CAERDYB

Euler's Formula: Phasor Form

Euler's Formula ${ }^{3}$ states that we can express the trigonometric form as:

$$
\mathbf{e}^{\mathbf{i} \phi}=\cos \phi+\mathbf{i} \sin \phi, \quad \phi \in \mathbb{R}
$$

Exercise: Show that

$$
\mathbf{e}^{-\mathbf{i} \phi}=\cos \phi-\mathbf{i} \sin \phi
$$

This is also known as phasor form or Phasors, for short.
Note: Phasors and the related trigonometric form are very important to Fourier Theory which we study later.
${ }^{3}$ we won't prove this here. Proof here if interested

CARDIFF

Phasor Notation

General Phasor Form: re ${ }^{i \phi}$

More generally we use $r e^{i \phi}$ where:

$$
r e^{i \phi}=r(\cos \phi+i \sin \phi)
$$

MATLAB Speaks the Phasor Language

```
MATLAB Complex No. Phasor Declaration
>> exp( i*(pi/4) )
ans = 0.7071 + 0.7071i
>> [abs(z), angle(z)]
ans = 1.0000 0.7854
```

CARDIFF
UNIVERSITY
Prifyscol
CAERDYB

Phasors are stunning!

Phasers on stun!

STAR TREK

Phasors are stunning!

CARDIFF
UNIVERSITY
PRIFYSGOL CAERDYD

Phasors are very useful mathematical tools

- Can simplify Trigonometric proofs, Trig. expression manipulation etc
- Can do Trigonometry without Trigonometry (well almost!)
- Electrical Signals: Can apply simplify AC circuits to DC circuit theory (e.g. Ohm's Law)!
- Power engineering: Three phase AC power systems analysis
- Signal Processing: Fourier Theory, Filters

Trig. Example: sin and \cos as functions of e

From Euler's Formula we can write:

$$
\begin{aligned}
& \cos \phi=\frac{\mathbf{e}^{\mathbf{i} \phi}+\mathbf{e}^{-\mathbf{i} \phi}}{2} \\
& \sin \phi=\frac{\mathbf{e}^{\mathbf{i} \phi}-\mathbf{e}^{-\mathbf{i} \phi}}{2 \mathbf{i}}
\end{aligned}
$$

Prove the above

CARDIFF
UNIVERSITY
prifyscol
CAERDYD

Trig. Exercise: Powers of the Trigonometric Form (de Moivre's Theorem)

If n is an integer then show that:

$$
(\cos \theta+\mathbf{i} \sin \theta)^{\mathbf{n}}=\cos \mathbf{n} \theta+\mathbf{i} \sin \mathbf{n} \theta
$$

This is known as de Moivre's Theorem

CARDIFF

Complex Number Multiplication in Polar Form

Let $z_{1}=\left[r_{1}, \phi_{1}\right]$ and $z_{2}=\left[r_{2}, \phi_{2}\right]$ then
$z_{1}=r_{1}\left(\cos \phi_{1}+i \sin \phi_{1}\right)$ and $z_{2}=r_{2}\left(\cos \phi_{2}+i \sin \phi_{2}\right)$
Therefore:

$$
\begin{aligned}
z_{1} z_{2}= & {\left[r_{1}\left(\cos \phi_{1}+i \sin \phi_{1}\right)\right] \times\left[r_{2}\left(\cos \phi_{2}+i \sin \phi_{2}\right)\right] } \\
= & r_{1} r_{2}\left[\left(\cos \phi_{1}+i \sin \phi_{1}\right) \times\left(\cos \phi_{2}+i \sin \phi_{2}\right)\right] \\
= & r_{1} r_{2}\left[\cos \phi_{1} \cos \phi_{2}-\sin \phi_{1} \sin \phi_{2}\right. \\
& \left.+i\left(\cos \phi_{1} \sin \phi_{2}+\sin \phi_{1} \cos \phi_{2}\right)\right]
\end{aligned}
$$

From trigonometry we have the following relations:

- $\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$,
- $\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$,

So finally we have:

$$
\begin{aligned}
z_{1} z_{2} & =r_{1} r_{2}\left[\cos \left(\phi_{1}+\phi_{2}\right)+i \sin \left(\phi_{1}+\phi_{2}\right)\right] \\
\mathbf{z}_{1} \mathbf{z}_{2} & =\left[\mathbf{r}_{1} \mathbf{r}_{2}, \phi_{1}+\phi_{2}\right]
\end{aligned}
$$

CARDIFF

Complex Number Multiplication via Phasors

Alternatively, we can multiply complex numbers via Phasors:
$z_{1}=r_{1} e^{i \phi_{1}}$ and $z_{2}=r_{2} e^{i \phi_{2}}$.
Therefore:

$$
\begin{aligned}
z_{1} z_{2} & =r_{1} e^{i \phi_{1}} \times r_{2} e^{i \phi_{2}} \\
& =r_{1} r_{2} e^{i \phi_{1}} e^{i \phi_{2}}
\end{aligned}
$$

Now in general, $e^{x} e^{y}=e^{(x+y)}$
So we get: $z_{1} z_{2}=r_{1} r_{2} e^{i\left(\phi_{1}+\phi_{2}\right)}$ which (as we should expect) gives:

$$
z_{1} z_{2}=\left[r_{1} r_{2}, \phi_{1}+\phi_{2}\right]
$$

This is a much easier way to prove this fact Agree? ${ }^{4}$

Complex Number Division in Phasor Form

Sticking with the Phasor formulation, we can divide two complex numbers:

$$
z_{1}=r_{1} e^{i \phi_{1}} \text { and } z_{2}=r_{2} e^{i \phi_{2}} .
$$

Therefore:

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{r_{1} e^{i \phi_{1}}}{r_{2} e^{i \phi_{2}}} \\
& =\frac{r_{1}}{r_{2}} e^{i \phi_{1}} \\
& =\frac{r_{1}}{r_{2}} e^{i \phi_{2}} \\
& =\frac{r_{1}}{r_{2}} e^{-i\left(\phi_{1}-\phi_{2}\right)}, \text { by a same argument as in multiplication } \\
\frac{z_{1}}{z_{2}} & =\left[\frac{r_{1}}{r_{2}}, \phi_{1}-\phi_{2}\right]
\end{aligned}
$$

Exercise: Prove this formula via the trigonometric polar form yawn!.

CARDIFF

Exercises: Complex Number Multiplication and Division

- If $z_{1}=3 \sqrt{2}+3 \sqrt{2} i$ and $z_{2}=\frac{3 \sqrt{3}}{2}+\frac{3}{2} i$, find $z_{1} z_{2}$ and $\frac{z_{1}}{z_{2}}$, leave your answer in polar form.
- Evaluate $\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{3}$, give your answer in Cartesian form.

CARDIFF
UNIVERSITY
PRIFYSGOL
CARDY

Complex Number Multiplication: Geometric Representation

Multiplying a complex number $z=x+i y$ by i rotates the vector representing z through 90° anticlockwise
Example: Let $z 1=1$.
Then

$$
z_{2}=i z_{1}=i
$$

- Polar form of $z_{1}=\left[1,0^{\circ}\right]$.
- Polar form of $z_{2}=\left[1,90^{\circ}\right]$, Q.E.D.

Back to Phase: Important Example

Concept: A phasor is a complex number used to represent a sinusoid.

In particular:

Sinusoid : $x(t)=M \cos (\omega t+\phi),-\infty<t<\infty$ - a function of time

Phasor : $X=M e^{i \phi}=M \cos (\phi)+i M \sin (\phi)-$ a complex number

Phasors and Sinusoids are related:

$$
\begin{aligned}
\Re\left[X e^{i \omega t}\right] & =\Re\left[M e^{i \phi} e^{i \omega t}\right] \\
& \left.=\Re\left[M e^{i(\omega t+\phi}\right)\right] \\
& =\Re(M(\cos (\omega t+\phi)+i \sin (\omega t+\phi)) \\
& =M \cos (\omega t+\phi) \\
& =\mathbf{x}(\mathbf{t})
\end{aligned}
$$

Visualising Sinusoids of differing Phase, Amplitude and

 Frequency

CARDIFF
UNIVERSITY
PRIFYSCOL CARDD

MATLAB Sine Wave Frequency and Amplitude (only)

\% Natural frequency is $2 *$ pi radians
\% If sample rate is $\mathrm{F}_{\mathrm{s}} \mathrm{s} \mathrm{HZ}$ then 1 HZ is $2 * \mathrm{pi} / \mathrm{F}_{\mathrm{s}}$
\% If wave frequency is F _w then frequency is
\% F_w* (2*pi/F_s)
\% set n samples steps up to sum duration nsec*F_s where
\% nsec is the duration in seconds
\% So we get $y=a m p * \sin \left(2 * p i * n * F_{\text {_w }} / F_{\text {_ }}\right)$;
$\mathrm{F}_{\text {- }}=11025$;
F_w $=440$;
nsec $=2$;
dur= nsec*F_s;
$\mathrm{n}=0$: dur;
$y=a m p * \sin \left(2 * p i * n * F_{-} w / F_{-} s\right)$;
figure (1)
plot (y (1:500));
title ('N second Duration Sine Wave');

MATLAB Cos v Sin Wave

\% Cosine is same as Sine (except 90 degrees out of phase)
$y c=a m p * \cos \left(2 * p i * n * F _w / F _s\right) ;$
figure (2);
hold on;
plot(yc,'b');
plot (y,'r');
title ('Cos (Blue)/Sin (Red) Plot (Note Phase Difference)'); hold off;

Sin and Cos (stem) plots

MATLAB functions $\cos ()$ and $\sin ()$.

CARDIFF
UNIVERSITY
prifyscol
CAERDYB
三
$66 / 80$

Amplitudes of a Sine Wave

Code for sinampdemo.m

\% Simple Sin Amplitude Demo
samp_freq $=400$;
dur $=800 ; \% 2$ seconds
amp $=1$; phase $=0$; freq $=1$;
s1 = mysin (amp,freq, phase, dur, samp_freq);
axisx $=(1: d u r) * 360 / s a m p-f r e q ; \% x$ axis in degrees
plot(axisx,s1);
set (gca,' XTick', [0:90: axisx(end)]);
fprintf('Initial Wave: \t Amplitude $=\ldots \backslash n$ ', amp, freq, phase,...);
\% change amplitude
amp $=$ input (' $\backslash n$ Enter Amplitude $\left.: \backslash n \backslash n^{\prime}\right)$;
s2 $=$ mysin (amp,freq, phase, dur, samp_freq);
hold on;
plot(axisx, s2,'r');
set (gca,'XTick', 0 : 90 : axisx(end)]);

mysin MATLAB code

mysin.m - a modified version of previous MATLAB sin example to account for phase

function $s=m y s i n\left(a m p, f r e q, p h a s e, d u r, ~ s a m p _f r e q\right)$
\% example function to so show how amplitude, frequency and ph:
\% are changed in a sin function
\% Inputs: amp - amplitude of the wave
\% freq - frequency of the wave
\% phase - phase of the wave in degree
\% dur - duration in number of samples
\% samp_freq - sample frequncy
$x=0: d u r-1$;
phase $=$ phase $*$ pi/180;
$s=a m p * \sin \left(2 * p i * x * f r e q / s a m p _f r e q+p h a s e\right) ;$

ARDIFF
Nuzsive
Currow

Amplitudes of a Sine Wave: sinampdemo output

CARDIFF
UNIVERSITY
prifyscol
CAERDYD
三

Frequencies of a Sine Wave

Code for sinfreqdemo.m

\% Simple Sin Frequency Demo
samp_freq $=400$;
dur $=800 ; \% 2$ seconds
amp $=1$; phase $=0$; freq $=1$;
s1 = mysin(amp,freq, phase, dur,samp_freq);
 plot (axisx,s1);
set (gca,'XTick', [0:90: axisx(end)]);
fprintf('Initial Wave: \t Amplitude $=\ldots \backslash n ’$, amp, freq, phase,...
\% change amplitude
freq $=$ input('\nEnter Frequency: $\backslash n \backslash n ')$;
$s 2=m y \sin (a m p, f r e q, p h a s e, d u r, s a m p-f r e q) ;$
hold on;
plot(axisx, s2,'r');
set (gca,'XTick', $0: 90$: axisx(end)]);

Frequencies of a Sine Wave: sinfreqdemo output

Phase of a Sine Wave

sinphasedemo.m

\% Simple Sin Phase Demo
samp_freq $=400$;
dur $=800 ; \% 2$ seconds
amp $=1$; phase $=0 ;$ freq $=1$;
s1 = mysin(amp,freq, phase, dur,samp_freq);

plot(axisx,s1);
set (gca,'XTick', [0:90: axisx(end)]);
fprintf('Initial Wave: \t Amplitude $=\ldots \backslash n ’$, amp, freq, phase,...
\% change amplitude phase $=$ input('\nEnter Phase: $\backslash n \backslash n '$);
s2 $=$ mysin (amp,freq, phase, dur, samp_freq);
hold on;
plot(axisx, s2,'r');
set (gca,'XTick', 0 : 90 : axisx(end)]);

Phase of a Sine Wave: sinphasedemo output

Sum of Two Sinusoids of Same Frequency (1)

Hopefully we now have a good understanding and can visualise Sinusoids of different phase, amplitude and frequency.

Back to Phasors: $X=M e^{i \phi}=M \cos (\phi)+i M \sin (\phi)$
Consider two sinusoids: Same frequency, ω but different phase, θ and ϕ and amplitude, A and B

$$
\begin{aligned}
& \mathbf{A} \cos (\omega \mathbf{t}+\theta), \text { and } \\
& \mathbf{B} \cos (\omega \mathbf{t}+\phi)
\end{aligned}
$$

Let's add them together

CARDIFF

Sum of Two Sinusoids of Same Frequency (2)

$$
\begin{aligned}
A \cos (\omega t+\theta)+B \cos (\omega t+\phi) & =\Re\left[A e^{i(\omega t+\theta)}+B e^{i(\omega t+\phi)}\right] \\
& =\Re\left[e^{i \omega t}\left(A e^{i \theta}+B e^{i \phi}\right)\right]
\end{aligned}
$$

Now let $A e^{i \theta}+B e^{i \phi}=C e^{i \gamma}$ for some C and γ, then

$$
\begin{aligned}
\Re\left[e^{i \omega t}\left(A e^{i \theta}+B e^{i \phi}\right)\right] & =\Re\left[e^{i \omega t}\left(C e^{i \gamma}\right)\right] \\
& =C \cos (\omega t+\gamma)
\end{aligned}
$$

CARDIFF

Sum of Two Sinusoids of Same Frequency (3)

Trigonometry Equation

$$
A \cos (\omega t+\theta)+B \cos (\omega t+\phi)=C \cos (\omega t+\gamma)
$$

Equivalent Complex Number Equation

$$
A e^{i \theta}+B e^{i \phi}=C e^{i \gamma}
$$

Which is neater?
Let's see

CARDIFF
UNIVERSITY
PRIFYScOL
CAERDY

Example: Sum of Two Sinusoids of Same Frequency (1)

Simplify

$$
5 \cos \left(\omega \mathbf{t}+53^{\circ}\right)+\sqrt{2} \cos \left(\omega \mathbf{t}+45^{\circ}\right)
$$

Hard way via trigonometry

- Use the cosine addition formula three times
- see maths formula sheet handout for formula
- Third time to simplify the result.
- Not difficult but tedious!

Example: Sum of Two Sinusoids of Same Frequency (2)

Easy Way Phasors

$$
\begin{aligned}
\Re\left[5 e^{i 53^{\circ}}+\sqrt{2} e^{i 45^{\circ}}\right] & =(3+4 i)+(1+i) \\
& =(4+5 i) \\
& =6.4 e^{i 51^{\circ}}
\end{aligned}
$$

So:

$$
\begin{aligned}
5 \cos \left(\omega t+53^{\circ}\right)+\sqrt{2} \cos \left(\omega t+45^{\circ}\right) & =\Re\left[6.4 e^{i\left(\omega t+51^{\circ}\right)}\right] \\
& =6.4 \cos \left(\omega t+51^{\circ}\right)
\end{aligned}
$$

This is a very important example - make sure you understand it.

CARDIFF Unvistrve Prifysco
CAERDY

Another Example (1)

Simplify

$$
\cos \left(\omega \mathbf{t}+3 \mathbf{0}^{\circ}\right)+\cos \left(\omega \mathbf{t}+15 \mathbf{0}^{\circ}\right)+\sin (\omega \mathbf{t})
$$

First trick to note:

$$
\sin (\omega t)=\cos \left(\omega t-90^{\circ}\right)
$$

So now simplify:

$$
\cos \left(\omega \mathbf{t}+\mathbf{3 0}^{\circ}\right)+\cos \left(\omega \mathbf{t}+\mathbf{1 5 0}^{\circ}\right)+\cos \left(\omega \mathbf{t}-\mathbf{9 0 ^ { \circ }}\right)
$$

Hard way via trigonometry

- Use the cosine addition formula three times
- see maths formula sheet handout for formula
- Not difficult but tedious!

Another Example (2)

Easy Way Phasors

$$
e^{i 30^{\circ}}+e^{i 150^{\circ}}+e^{-i 90^{\circ}}=e^{i 90}(=i)
$$

So we get:

$$
\begin{aligned}
\Re\left[e^{i 90}\right] & =\cos \left(90^{\circ}\right) \\
& =0
\end{aligned}
$$

So:

$$
\cos \left(\omega \mathbf{t}+30^{\circ}\right)+\cos \left(\omega \mathbf{t}+\mathbf{1 5 0}^{\circ}\right)+\cos \left(\omega \mathbf{t}-\mathbf{9 0}^{\circ}\right)=0
$$

or

$$
\cos \left(\omega \mathbf{t}+3 \mathbf{0}^{\circ}\right)+\cos \left(\omega \mathbf{t}+150^{\circ}\right)+\sin (\omega \mathbf{t})=0
$$

This fact is used in three-phase AC to conserve current flow

[^0]: ${ }^{1}$ we use the symbol \mathbb{R} to denote the set of all real numbers

