
CM0268
MATLAB

DSP
GRAPHICS

1

261

JJ
II
J
I

Back

Close

Moving into the Frequency Domain

Frequency domains can be obtained through the
transformation from one (Time or Spatial) domain to the other
(Frequency) via Fourier Transform (FT)

• Fourier Transform (FT) — MPEG Audio

• Related Discrete Cosine Transform (DCT)— Heart of JPEG and
MPEG Video, (alt.) MPEG Audio.
Not Studied here — CM0340 Multimedia (YEAR 3)

CM0268
MATLAB

DSP
GRAPHICS

1

262

JJ
II
J
I

Back

Close

1D Example
Lets consider a 1D (e.g. Audio) example to see what the

different domains mean:

Consider a complicated sound such as the noise of a car
horn. We can describe this sound in two related ways:

• Sample the amplitude of the sound many times a second,
which gives an approximation to the sound as a function of
time.

• Analyse the sound in terms of the pitches of the notes, or
frequencies, which make the sound up, recording the
amplitude of each frequency.

CM0268
MATLAB

DSP
GRAPHICS

1

263

JJ
II
J
I

Back

Close

An 8 Hz Sine Wave
In the example (next slide):

• A signal that consists of a sinusoidal wave at 8 Hz.

• 8 Hz means that wave is completing 8 cycles in 1 second

• The frequency of that wave (8 Hz).

• From the frequency domain we can see that the composition
of our signal is

– one wave (one peak) occurring with a frequency of 8 Hz
– with a magnitude/fraction of 1.0 i.e. it is the whole signal.

CM0268
MATLAB

DSP
GRAPHICS

1

264

JJ
II
J
I

Back

Close

An 8 Hz Sine Wave (Cont.)

CM0268
MATLAB

DSP
GRAPHICS

1

265

JJ
II
J
I

Back

Close

2D Image Example
Now images are no more complex really:

• Brightness along a line can be recorded as a set of values
measured at equally spaced distances apart,

• Or equivalently, at a set of spatial frequency values.

• Each of these frequency values is a frequency component.

• An image is a 2D array of pixel measurements.

• We form a 2D grid of spatial frequencies.

• A given frequency component now specifies what contribution
is made by data which is changing with specified x and y

direction spatial frequencies.

CM0268
MATLAB

DSP
GRAPHICS

1

266

JJ
II
J
I

Back

Close

What do frequencies mean in an image?
• Large values at high frequency components then the data

is changing rapidly on a short distance scale.
e.g. a page of text

• Large low frequency components then the large scale features
of the picture are more important.
e.g. a single fairly simple object which occupies most of the
image.

CM0268
MATLAB

DSP
GRAPHICS

1

267

JJ
II
J
I

Back

Close

How to Filter?
• Low pass filter —

– Ignore high frequency noise components — make zero or
a very low value.

– Only store lower frequency components

CM0268
MATLAB

DSP
GRAPHICS

1

268

JJ
II
J
I

Back

Close

Visualising Frequency Domain Transforms
• Any function (signal) can be decomposed into purely

sinusoidal components (sine waves of different size/shape)

• When added together make up our original signal.

• Fourier transform is the tool that performs such an operation

CM0268
MATLAB

DSP
GRAPHICS

1

269

JJ
II
J
I

Back

Close

Summing Sine Waves
Digital signals are composite signals made up of many sinusoidal

frequencies

CM0268
MATLAB

DSP
GRAPHICS

1

270

JJ
II
J
I

Back

Close

Summing Sine Waves to give a Square(ish)
Wave

We can take the previous example a step further:

• A 200Hz digital signal (square(ish) wave) may be a composed
of 200, 600, 1000, 1400, 1800, 2200, 2600, 3000, 3400 and
3800 sinusoidal signals which sum to give:

CM0268
MATLAB

DSP
GRAPHICS

1

271

JJ
II
J
I

Back

Close

So What Does All This Mean?
Transforming a signal into the frequency domain allows us

• To see what sine waves make up our underlying signal

• E.g.

– One part sinusoidal wave at 50 Hz and
– Second part sinusoidal wave at 200 Hz.

• More complex signals will give more complex graphs but the
idea is exactly the same.

• Filtering now involves attenuating or removing certain
frequencies — easily performed.

• The graph of the frequency domain is called the frequency
spectrum — more soon

CM0268
MATLAB

DSP
GRAPHICS

1

272

JJ
II
J
I

Back

Close

Visualising Frequency Domain:
Think Graphic Equaliser

An easy way to visualise what is happening is to think of a
graphic equaliser on a stereo system (or some software audio
players, e.g. iTunes).

CM0268
MATLAB

DSP
GRAPHICS

1

273

JJ
II
J
I

Back

Close

Fourier Theory

The tool which converts a spatial (real space) description of
audio/image data into one in terms of its frequency components
is called the Fourier transform

The new version is usually referred to as the Fourier space
description of the data.
We then essentially process the data:

• E.g. for filtering basically this means attenuating or setting
certain frequencies to zero

We then need to convert data back to real audio/imagery to use
in our applications.

The corresponding inverse transformation which turns a Fourier
space description back into a real space one is called the
inverse Fourier transform.

CM0268
MATLAB

DSP
GRAPHICS

1

274

JJ
II
J
I

Back

Close

Fourier Transform
1D Case (e.g. Audio Signal)

Considering a continuous function f (x) of a single variable x

representing distance.
The Fourier transform of that function is denoted F (u), where

u represents spatial frequency is defined by

F (u) =

∫ ∞
−∞

f (x)e−2πixu dx.

Note: In general F (u) will be a complex quantity even though
the original data is purely real.

The meaning of this is that not only is the magnitude of each
frequency present important, but that its phase relationship is
too.

CM0268
MATLAB

DSP
GRAPHICS

1

275

JJ
II
J
I

Back

Close

Inverse 1D Fourier Transform

The inverse Fourier transform for regenerating f (x) from F (u)

is given by

f (x) =

∫ ∞
−∞

F (u)e2πixu du,

which is rather similar, except that theexponential term has
the opposite sign. – not negative

CM0268
MATLAB

DSP
GRAPHICS

1

276

JJ
II
J
I

Back

Close

Example Fourier Transform
Let’s see how we compute a Fourier Transform: consider a

particular function f (x) defined as

f (x) =

{
1 if |x| ≤ 1

0 otherwise,

1

1

CM0268
MATLAB

DSP
GRAPHICS

1

277

JJ
II
J
I

Back

Close

So its Fourier transform is:

F (u) =

∫ ∞
−∞

f (x)e−2πixu dx

=

∫ 1

−1
1× e−2πixu dx

=
−1
2πiu

(e2πiu − e−2πiu)

=
sin 2πu

πu
.

In this case F (u) is purely real, which is a consequence of the
original data being symmetric in x and −x.

A graph of F (u) is shown overleaf.

This function is often referred to as the Sinc function.

CM0268
MATLAB

DSP
GRAPHICS

1

278

JJ
II
J
I

Back

Close

The Sync Function

The Fourier transform of a top hat function:

CM0268
MATLAB

DSP
GRAPHICS

1

279

JJ
II
J
I

Back

Close

2D Case (e.g. Image data)

If f (x, y) is a function, for example the brightness in an image,
its Fourier transform is given by

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f (x, y)e−2πi(xu+yv) dx dy,

and the inverse transform, as might be expected, is

f (x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v)e2πi(xu+yv) du dv.

CM0268
MATLAB

DSP
GRAPHICS

1

280

JJ
II
J
I

Back

Close

But All Our Audio and Image data are
Digitised!!

Thus, we need a discrete formulation of the Fourier transform:

• Which takes such regularly spaced data values, and

• Returns the value of the Fourier transform for a set of values
in frequency space which are equally spaced.

This is done quite naturally by replacing the integral by a
summation, to give the discrete Fourier transform or DFT for
short.

In 1D it is convenient now to assume that x goes up in steps
of 1, and that there areN samples, at values of x from 0 toN−1.

CM0268
MATLAB

DSP
GRAPHICS

1

281

JJ
II
J
I

Back

Close

1D Discrete Fourier transform
So the DFT takes the form

F (u) =
1

N

N−1∑
x=0

f (x)e−2πixu/N ,

while the inverse DFT is

f (x) =

N−1∑
x=0

F (u)e2πixu/N .

NOTE: Minor changes from the continuous case are a factor
of 1/N in the exponential terms, and also the factor 1/N in front
of the forward transform which does not appear in the inverse
transform.

CM0268
MATLAB

DSP
GRAPHICS

1

282

JJ
II
J
I

Back

Close

2D Discrete Fourier transform

The 2D DFT works is similar. So for an N ×M grid in x and y
we have

F (u, v) =
1

NM

N−1∑
x=0

M−1∑
y=0

f (x, y)e−2πi(xu/N+yv/M),

and

f (x, y) =

N−1∑
u=0

M−1∑
v=0

F (u, v)e2πi(xu/N+yv/M).

CM0268
MATLAB

DSP
GRAPHICS

1

283

JJ
II
J
I

Back

Close

Balancing the 2D DFT
Often N = M , and it is then it is more convenient to redefine

F (u, v) by multiplying it by a factor of N , so that the forward and
inverse transforms are more symmetrical:

F (u, v) =
1

N

N−1∑
x=0

N−1∑
y=0

f (x, y)e−2πi(xu+yv)/N ,

and

f (x, y) =
1

N

N−1∑
u=0

N−1∑
v=0

F (u, v)e2πi(xu+yv)/N .

CM0268
MATLAB

DSP
GRAPHICS

1

284

JJ
II
J
I

Back

Close

Visualising the Fourier Transform

• It’s useful to visualise the Fourier Transform

• Standard tools

• Easily plotted in MATLAB

CM0268
MATLAB

DSP
GRAPHICS

1

285

JJ
II
J
I

Back

Close

The Magnitude Spectrum of Fourier
Transform

Recall that the Fourier Transform of even our real audio/image
data is always complex.

• How can we visualise a complex data array?

Compute the absolute value of the complex data:

|F (k)| =
√
F 2
R(k) + F 2

I (k) for k = 0, 1, . . . , N − 1

where FR(k) is the real part and FI(k) of theN sampled Fourier
Transform, F (k).

This is called the magnitude spectrum of the Fourier Transform
Easy in MATLAB: Sp = abs(fft(X,N))/N;
(Normalised form)

CM0268
MATLAB

DSP
GRAPHICS

1

286

JJ
II
J
I

Back

Close

The Phase Spectrum of the Fourier
Transform

The Fourier Transform also represent phase, the phase
spectrum is given by:

ϕ = arctan
FI(k)

FR(k)
for k = 0, 1, . . . , N − 1

CM0268
MATLAB

DSP
GRAPHICS

1

287

JJ
II
J
I

Back

Close

Relating a Sample Point to a Frequency
Point

When plotting graphs of FT Spectra and doing other FT
processing we may wish to plot the x-axis in Hz (Frequency)
rather than sample point number k = 0, 1, . . . , N − 1

There is a simple relation between the two:
The sample points go in steps k = 0, 1, . . . , N − 1

For a given sample point k the frequency relating to this is given
by:

fk = k
fs
N

where fs is the sampling frequency andN the number of samples.
Thus we have equidistant frequency steps of fs

N ranging from
0 Hz to N−1

N fs Hz

CM0268
MATLAB

DSP
GRAPHICS

1

288

JJ
II
J
I

Back

Close

MATLAB Fourier Frequency Spectra
Example

The following code (fourierspectraeg.m):
N=16;
x=cos(2*pi*2*(0:1:N-1)/N)’;

figure(1)
subplot(3,1,1);stem(0:N-1,x,’.’);
axis([-0.2 N -1.2 1.2]);
legend(’Cosine signal x(n)’);
ylabel(’a)’);
xlabel(’n \rightarrow’);

X=abs(fft(x,N))/N;
subplot(3,1,2);stem(0:N-1,X,’.’);
axis([-0.2 N -0.1 1.1]);
legend(’Magnitude spectrum |X(k)|’);
ylabel(’b)’);
xlabel(’k \rightarrow’)

N=1024;
x=cos(2*pi*(2*1024/16)*(0:1:N-1)/N)’;

FS=40000;
f=((0:N-1)/N)*FS;
X=abs(fft(x,N))/N;
subplot(3,1,3);plot(f,X);
axis([-0.2*44100/16 max(f) -0.1 1.1]);
legend(’Magnitude spectrum |X(f)|’);
ylabel(’c)’);
xlabel(’f in Hz \rightarrow’)

figure(2)
subplot(3,1,1);
plot(f,20*log10(X./(0.5)));
axis([-0.2*44100/16 max(f) ...
-45 20]);
legend(’Magnitude spectrum |X(f)| ...
in dB’);
ylabel(’|X(f)| in dB \rightarrow’);
xlabel(’f in Hz \rightarrow’)

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Frequency_Domain/fourierspectraeg.m

CM0268
MATLAB

DSP
GRAPHICS

1

289

JJ
II
J
I

Back

Close

MATLAB Fourier Frequency Spectra Example (Cont.)

The above code produces the following:

0 2 4 6 8 10 12 14 16
−1

0

1

n →

a)

Cosine signal x(n)

0 2 4 6 8 10 12 14 16
0

0.5

1

k →

b)

Magnitude spectrum |X(k)|

0 0.5 1 1.5 2 2.5 3 3.5
x 104

0

0.5

1

f in Hz →

c)

Magnitude spectrum |X(f)|

CM0268
MATLAB

DSP
GRAPHICS

1

290

JJ
II
J
I

Back

Close

Magnitude Spectrum in dB

Note: It is common to plot both spectra magnitude (also
frequency ranges not show here) on a dB/log scale:
(Last Plot in above code)

0 0.5 1 1.5 2 2.5 3 3.5
x 104

−40

−20

0

20

f in Hz →

|X
(f)

| i
n

dB
 →

Magnitude spectrum |X(f)| in dB

CM0268
MATLAB

DSP
GRAPHICS

1

291

JJ
II
J
I

Back

Close

Time-Frequency Representation:
Spectrogram

It is often useful to look at the frequency distribution over a
short-time:

• Split signal into N segments

• Do a windowed Fourier Transform

– Window needed to reduce leakage effect of doing a short
sample FFT.

– Apply a Blackman, Hamming or Hanning Window

• MATLAB function does the job: Spectrogram — see help
spectrogram

• See also MATLAB’s specgramdemo

CM0268
MATLAB

DSP
GRAPHICS

1

292

JJ
II
J
I

Back

Close

MATLAB Example
The code:

load(’handel’)
[N M] = size(y);
figure(1)
spectrogram(fft(y,N),512,20,1024,Fs);

Produces the following:

CM0268
MATLAB

DSP
GRAPHICS

1

293

JJ
II
J
I

Back

Close

Filtering in the Frequency Domain
Low Pass Filter

Example: Frequencies above the Nyquist Limit,

Noise:

• The idea with noise Filtering is to reduce various spurious effects
of a local nature in the image, caused perhaps by

– noise in the acquisition system,
– arising as a result of transmission of the data, for example

from a space probe utilising a low-power transmitter.

CM0268
MATLAB

DSP
GRAPHICS

1

294

JJ
II
J
I

Back

Close

Frequency Space Filtering Methods

Noise = High Frequencies:

• In audio data many spurious peaks in over a short timescale.

• In an image means there are many rapid transitions (over a short
distance) in intensity from high to low and back again or vice
versa, as faulty pixels are encountered.

• Not all high frequency data noise though!

Therefore noise will contribute heavily to the high frequency
components of the image when it is considered in Fourier space.

Thus if we reduce the high frequency components — Low-Pass
Filter, we should reduce the amount of noise in the data.

CM0268
MATLAB

DSP
GRAPHICS

1

295

JJ
II
J
I

Back

Close

(Low-pass) Filtering in the Fourier Space
We thus create a new version of the image in Fourier space by

computing
G(u, v) = H(u, v)F (u, v)

where:

• F (u, v) is the Fourier transform of the original image,

• H(u, v) is a filter function, designed to reduce high frequencies,
and

• G(u, v) is the Fourier transform of the improved image.

• Inverse Fourier transform G(u, v) to get g(x, y) our improved
image

Note: Discrete Cosine Transform approach identical, sub. FT with
DCT

CM0268
MATLAB

DSP
GRAPHICS

1

296

JJ
II
J
I

Back

Close

Ideal Low-Pass Filter
The simplest sort of filter to use is an ideal low-pass filter, which in

one dimension appears as :

uu0

2.0

H(u)

CM0268
MATLAB

DSP
GRAPHICS

1

297

JJ
II
J
I

Back

Close

Ideal Low-Pass Filter (Cont.)

uu0

2.0

H(u)

This is a top hat function which is 1 for u between 0 and u0, the cut-off
frequency, and zero elsewhere.

• So All frequency space space information above u0 is thrown
away, and all information below u0 is kept.

• A very simple computational process.

CM0268
MATLAB

DSP
GRAPHICS

1

298

JJ
II
J
I

Back

Close

Ideal 2D Low-Pass Filter
The two dimensional analogue of this is the function

H(u, v) =

{
1 if
√
u2 + v2 ≤ w0

0 otherwise,

where w0 is now the cut-off frequency.

Thus, all frequencies inside a radius w0 are kept, and all others
discarded.

w0

CM0268
MATLAB

DSP
GRAPHICS

1

299

JJ
II
J
I

Back

Close

Not So Ideal Low-Pass Filter?

The problem with this filter is that as well as the noise:

• In audio: plenty of other high frequency content

• In Images: edges (places of rapid transition from light to dark)
also significantly contribute to the high frequency
components.

Thus an ideal low-pass filter will tend to blur the data:

• High audio frequencies become muffled

• Edges in images become blurred.

The lower the cut-off frequency is made, the more pronounced this
effect becomes in useful data content

CM0268
MATLAB

DSP
GRAPHICS

1

300

JJ
II
J
I

Back

Close

Ideal Low Pass Filter Example 1

(a) Input Image

(c) Ideal Low Pass Filter

(b) Image Spectra

(d) Filtered Image

CM0268
MATLAB

DSP
GRAPHICS

1

301

JJ
II
J
I

Back

Close

Ideal Low-Pass Filter Example 1 MATLAB Code

low pass.m:

% Create a white box on a black background image
M = 256; N = 256;
image = zeros(M,N)
box = ones(64,64);
%box at centre
image(97:160,97:160) = box;

% Show Image

figure(1);
imshow(image);

% compute fft and display its spectra

F=fft2(double(image));
figure(2);
imshow(abs(fftshift(F)));

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Frequency_Domain/lowpass.m

CM0268
MATLAB

DSP
GRAPHICS

1

302

JJ
II
J
I

Back

Close

Ideal Low-Pass Filter Example 1 MATLAB Code (Cont.)
%compute Ideal Low Pass Filter
u0 = 20; % set cut off frequency

u=0:(M-1);
v=0:(N-1);
idx=find(u>M/2);
u(idx)=u(idx)-M;
idy=find(v>N/2);
v(idy)=v(idy)-N;
[V,U]=meshgrid(v,u);
D=sqrt(U.ˆ2+V.ˆ2);
H=double(D<=u0);

% display
figure(3);
imshow(fftshift(H));

% Apply filter and do inverse FFT
G=H.*F;
g=real(ifft2(double(G)));

% Show Result
figure(4);
imshow(g);

CM0268
MATLAB

DSP
GRAPHICS

1

303

JJ
II
J
I

Back

Close

Ideal Low-Pass Filter Example 2

(a) Input Image

(c) Ideal Low-Pass Filter

(b) Image Spectra

(d) Filtered Image

CM0268
MATLAB

DSP
GRAPHICS

1

304

JJ
II
J
I

Back

Close

Ideal Low-Pass Filter Example 2 MATLAB Code

lowpass2.m:

% read in MATLAB demo text image
image = imread(’text.png’);
[M N] = size(image)

% Show Image

figure(1);
imshow(image);

% compute fft and display its spectra

F=fft2(double(image));
figure(2);
imshow(abs(fftshift(F))/256);

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Frequency_Domain/lowpass2.m

CM0268
MATLAB

DSP
GRAPHICS

1

305

JJ
II
J
I

Back

Close

Ideal Low-Pass Filter Example 2 MATLAB Code (Cont.)
%compute Ideal Low Pass Filter
u0 = 50; % set cut off frequency

u=0:(M-1);
v=0:(N-1);
idx=find(u>M/2);
u(idx)=u(idx)-M;
idy=find(v>N/2);
v(idy)=v(idy)-N;
[V,U]=meshgrid(v,u);
D=sqrt(U.ˆ2+V.ˆ2);
H=double(D<=u0);

% display
figure(3);
imshow(fftshift(H));

% Apply filter and do inverse FFT
G=H.*F;
g=real(ifft2(double(G)));

% Show Result
figure(4);
imshow(g);

CM0268
MATLAB

DSP
GRAPHICS

1

306

JJ
II
J
I

Back

Close

Low-Pass Butterworth Filter

Another filter sometimes used is the Butterworth low pass filter.

In the 2D case, H(u, v) takes the form

H(u, v) =
1

1 + [(u2 + v2)/w2
0]
n ,

where n is called the order of the filter.

CM0268
MATLAB

DSP
GRAPHICS

1

307

JJ
II
J
I

Back

Close

Low-Pass Butterworth Filter (Cont.)

This keeps some of the high frequency information, as illustrated
by the second order one dimensional Butterworth filter:

u0 u
.0

.0

H(u)

Consequently reduces the blurring.

CM0268
MATLAB

DSP
GRAPHICS

1

308

JJ
II
J
I

Back

Close

Low-Pass Butterworth Filter (Cont.)

The 2D second order Butterworth filter looks like this:

w0

CM0268
MATLAB

DSP
GRAPHICS

1

309

JJ
II
J
I

Back

Close

Butterworth Low Pass Filter Example 1

(a) Input Image

(c) Butterworth Low-Pass Filter

(b) Image Spectra

(d) Filtered Image

CM0268
MATLAB

DSP
GRAPHICS

1

310

JJ
II
J
I

Back

Close

Butterworth Low-Pass Filter Example 1 (Cont.)

Comparison of Ideal and Butterworth Low Pass Filter:

Ideal Low-Pass Butterworth Low Pass

CM0268
MATLAB

DSP
GRAPHICS

1

311

JJ
II
J
I

Back

Close

Butterworth Low-Pass Filter Example 1 MATLAB Code

butterworth.m:
% Load Image and Compute FFT as in Ideal Low Pass Filter
% Example 1
.......
% Compute Butterworth Low Pass Filter
u0 = 20; % set cut off frequency

u=0:(M-1);
v=0:(N-1);
idx=find(u>M/2);
u(idx)=u(idx)-M;
idy=find(v>N/2);
v(idy)=v(idy)-N;
[V,U]=meshgrid(v,u);

for i = 1: M
for j = 1:N
%Apply a 2nd order Butterworth
UVw = double((U(i,j)*U(i,j) + V(i,j)*V(i,j))/(u0*u0));
H(i,j) = 1/(1 + UVw*UVw);

end
end
% Display Filter and Filtered Image as before

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Frequency_Domain/butterworth.m

CM0268
MATLAB

DSP
GRAPHICS

1

312

JJ
II
J
I

Back

Close

Butterworth Low-Pass Butterworth Filter Example 2

(a) Input Image

(c) Butterworth Low-Pass Filter

(b) Image Spectra

(d) Filtered Image

CM0268
MATLAB

DSP
GRAPHICS

1

313

JJ
II
J
I

Back

Close

Butterworth Low-Pass Filter Example 2 (Cont.)

Comparison of Ideal and Butterworth Low-Pass Filter:

Ideal Low Pass Butterworth Low Pass

CM0268
MATLAB

DSP
GRAPHICS

1

314

JJ
II
J
I

Back

Close

Butterworth Low Pass Filter Example 2 MATLAB Code

butterworth2.m:
% Load Image and Compute FFT as in Ideal Low Pass Filter
% Example 2
.......
% Compute Butterworth Low Pass Filter
u0 = 50; % set cut off frequency

u=0:(M-1);
v=0:(N-1);
idx=find(u>M/2);
u(idx)=u(idx)-M;
idy=find(v>N/2);
v(idy)=v(idy)-N;
[V,U]=meshgrid(v,u);

for i = 1: M
for j = 1:N
%Apply a 2nd order Butterworth
UVw = double((U(i,j)*U(i,j) + V(i,j)*V(i,j))/(u0*u0));
H(i,j) = 1/(1 + UVw*UVw);

end
end
% Display Filter and Filtered Image as before

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Frequency_Domain/butterworth2.m

CM0268
MATLAB

DSP
GRAPHICS

1

315

JJ
II
J
I

Back

Close

Low Pass Filtering Noisy Images

Use Matlab function, imnoise() to add noise to image (lowpass.m,
lowpass2.m):

Image with Noise Added Low Pass Filtered Noisy Image

(a) Input Noisy Image (b) Deconvolved Noisy Image (Low Cut Off)Image with Noise Added High Cut−off Frequency Low Pass Filtered Image

(c) Input Noisy Image (d) Deconvolved Noisy Image (Higher Cut Off)

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Frequency_Domain/lowpass.m
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Frequency_Domain/lowpass2.m

CM0268
MATLAB

DSP
GRAPHICS

1

316

JJ
II
J
I

Back

Close

Other Filters
High-Pass Filters — opposite of low-pass, select high

frequencies, attenuate those below u0

Band-pass — allow frequencies in a range u0 . . . u1 attenuate those
outside this range

Band-reject — opposite of band-pass, attenuate frequencies within
u0 . . . u1 select those outside this range

Notch — attenuate frequencies in a narrow bandwidth around cut-off
frequency, u0

Resonator — amplify frequencies in a narrow bandwidth around cut-off
frequency, u0

Other filters exist that are a combination of the above

CM0268
MATLAB

DSP
GRAPHICS

1

317

JJ
II
J
I

Back

Close

Convolution
Several important audio and optical effects can be described in

terms of convolutions.

• In fact the above Fourier filtering is applying convolutions of low
pass filter where the equations are Fourier Transforms of real
space equivalents.

• Deblurring — high pass filtering

• Reverb — more soon.

CM0268
MATLAB

DSP
GRAPHICS

1

318

JJ
II
J
I

Back

Close

1D Convolution

Let us examine the concepts using 1D continuous functions.

The convolution of two functions f (x) and g(x), written f (x)∗g(x),
is defined by the integral

f (x) ∗ g(x) =
∫ ∞
−∞

f (α)g(x− α) dα.

CM0268
MATLAB

DSP
GRAPHICS

1

319

JJ
II
J
I

Back

Close

1D Convolution Example
For example, let us take two top hat functions of the type described

earlier.

Let f (α) be the top hat function shown:

f (α) =

{
1 if |α| ≤ 1
0 otherwise,

and let g(α) be as shown in next slide, defined by

g(α) =

{
1/2 if 0 ≤ α ≤ 1
0 otherwise.

CM0268
MATLAB

DSP
GRAPHICS

1

320

JJ
II
J
I

Back

Close

1D Convolution Example (Cont.)

-5.0 5.00.0

1.0

-5.0 5.00.0

1.0

f (α) =

{
1 if |α| ≤ 1
0 otherwise, g(α) =

{
1/2 if 0 ≤ α ≤ 1
0 otherwise.

CM0268
MATLAB

DSP
GRAPHICS

1

321

JJ
II
J
I

Back

Close

1D Convolution Example (Cont.)

• g(−α) is the reflection of
this function in the vertical
axis,

• g(x−α) is the latter shifted
to the right by a distance x.

• Thus for a given value of
x, f (α)g(x − α) integrated
over all α is the area of
overlap of these two top
hats, as f (α) has unit
height.

• An example is shown for x
in the range −1 ≤ x ≤ 0
opposite

-5.0 5.00.0

1.0

x

CM0268
MATLAB

DSP
GRAPHICS

1

322

JJ
II
J
I

Back

Close

1D Convolution Example (cont.)

If we now consider x moving from −∞ to +∞, we can see that

• For x ≤ −1 or x ≥ 2, there is no overlap;

• As x goes from −1 to 0 the area of overlap steadily increases
from 0 to 1/2;

• As x increases from 0 to 1, the overlap area remains at 1/2;

• Finally as x increases from 1 to 2, the overlap area steadily
decreases again from 1/2 to 0.

• Thus the convolution of f (x) and g(x), f (x) ∗ g(x), in this case
has the form shown on next slide

CM0268
MATLAB

DSP
GRAPHICS

1

323

JJ
II
J
I

Back

Close

1D Convolution Example (cont.)

-5.0 5.00.0

1.0

Result of f (x) ∗ g(x)

CM0268
MATLAB

DSP
GRAPHICS

1

324

JJ
II
J
I

Back

Close

1D Convolution Example (cont.)

Mathematically the convolution is expressed by:

f (x) ∗ g(x) =


(x + 1)/2 if −1 ≤ x ≤ 0
1/2 if 0 ≤ x ≤ 1
1− x/2 if 1 ≤ x ≤ 2
0 otherwise.

-5.0 5.00.0

1.0

CM0268
MATLAB

DSP
GRAPHICS

1

325

JJ
II
J
I

Back

Close

Fourier Transforms and Convolutions

One major reason that Fourier transforms are so important in signal/image
processing is the convolution theorem which states that:

If f (x) and g(x) are two functions with Fourier transforms F (u)
and G(u), then the Fourier transform of the convolution f (x) ∗ g(x)
is simply the product of the Fourier transforms of the two functions,
F (u)G(u).

Recall our Low Pass Filter Example (MATLAB CODE)

% Apply filter
G=H.*F;

Where F was the Fourier transform of the image, H the filter

CM0268
MATLAB

DSP
GRAPHICS

1

326

JJ
II
J
I

Back

Close

Computing Convolutions with the Fourier
Transform
E.g.:

• To apply some reverb to an audio signal, example later

• To compensate for a less than ideal image capture system:

To do this fast convolution we simply:

• Take the Fourier transform of the audio/imperfect image,

• Take the Fourier transform of the function describing the effect of
the system,

• Multiply by the effect to apply effect to audio data

• To remove/compensate for effect: Divide by the effect to obtain
the Fourier transform of the ideal image.

• Inverse Fourier transform to recover the new audio/ideal image.

This process is sometimes referred to as deconvolution.

CM0268
MATLAB

DSP
GRAPHICS

1

327

JJ
II
J
I

Back

Close

Image Deblurring Deconvolution Example

Recall our Low Pass (Butterworth) Filter example of a few slides ago:
butterworth.m:

deconv.m and deconv2.m reuses this code and adds a deconvolution
stage:

• Our computed butterworth low pass filter,H is our blurring function

• So to simply invert this we can divide (as opposed to multiply) by
H with the blurred image G — effectively a high pass filter

Ghigh = G./H;
ghigh=real(ifft2(double(Ghigh)));
figure(5)
imshow(ghigh)

• in this ideal example we clearly get F back and to get the image
simply to inverse Fourier Transfer.

• In the real world we dont really know the exact blurring function
H so things are not so easy.

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Frequency_Domain/butterworth.m
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Frequency_Domain/deconv.m
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Frequency_Domain/deconv2.m

CM0268
MATLAB

DSP
GRAPHICS

1

328

JJ
II
J
I

Back

Close

deconv.m results

(a) Input Image (b) Blurred Low-Pass Filtered Image (c) Deconvolved Image

CM0268
MATLAB

DSP
GRAPHICS

1

329

JJ
II
J
I

Back

Close

deconv2.m results

(a) Input Image (b) Blurred Low-Pass Filtered Image (c) Deconvolved Image

CM0268
MATLAB

DSP
GRAPHICS

1

330

JJ
II
J
I

Back

Close

Deconvolution is not always that simple!
Origial Image Deconvolved

(a) Input Image (b) Deconvolved Image
Image with Noise Added Deconvolved Noisy Image

(c) Input Noisy Image (d) Deconvolved Noisy Image

CM0268
MATLAB

DSP
GRAPHICS

1

331

JJ
II
J
I

Back

Close

High Pass Filtering

A High Pass Filter is usually defined as 1 - low pass = 1−H :Original image High Pass Filtered

(a) Input Image (b) High Pass Filtered Image
Image with Noise Added High Pass Filter Noisy Image

(c) Input Noisy Image (d) High Pass Filtered Noisy Image

	Moving into the Frequency Domain
	1D Example
	An 8 Hz Sine Wave
	2D Image Example
	What do frequencies mean in an image?
	How to Filter?
	Visualising Frequency Domain Transforms
	Summing Sine Waves
	Summing Sine Waves to give a Square(ish) Wave
	So What Does All This Mean?
	Visualising Frequency Domain: Think Graphic Equaliser
	Fourier Transform
	Example Fourier Transform
	2D Case (e.g. Image data)
	But All Our Audio and Image data are Digitised!!
	1D Discrete Fourier transform
	2D Discrete Fourier transform
	Balancing the 2D DFT
	Visualising the Fourier Transform
	The Magnitude Spectrum of Fourier Transform
	The Phase Spectrum of the Fourier Transform
	Relating a Sample Point to a Frequency Point
	MATLAB Fourier Frequency Spectra Example
	Magnitude Spectrum in dB
	Time-Frequency Representation: Spectrogram
	MATLAB Example
	Filtering in the Frequency Domain
	Frequency Space Filtering Methods
	(Low-pass) Filtering in the Fourier Space
	Ideal Low-Pass Filter
	Ideal 2D Low-Pass Filter
	Not So Ideal Low-Pass Filter?
	Low-Pass Butterworth Filter
	Other Filters
	Convolution
	1D Convolution
	1D Convolution Example
	Fourier Transforms and Convolutions
	Computing Convolutions with the Fourier Transform

