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Chapter 4: Linear Algebra, Vectors
and Matrices

Vectors and Matrices are a staple data structure in many areas
of Computer Science.

Computer Graphics is one prime example — here linear algebra
permeates almost every area.

We will use some simple examples from Computer Graphics
to visualise some simple aspects of Linear Algebra, Vectors and
Matrices.

We will use other examples as appropriate.
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Selected Examples of Use in Computer Science

• Basic Linear Algebra — solutions of equations needed in
almost every scientific discipline

• Vectors and Matrices — fundamental data structures in
computer science e.g. Arrays, Linked Lists

• Numerical Analysis — scientific computing and practical
computational mathematics

• Computer Graphics: Transformations, moving object around
the screen, 3D deformations . . .

• Image Processing/Computer Vision: Images = matrices,
Tracking objects, Object Recognition, Camera Calibration . . .

• Data Compression: JPEG/MPEG,
Image/Video/Audio Compression, Vector Quantisation
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Matrices Example: Image Representation
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Algebra/Graphs Example: Finite Element Modelling



280

JJ
II
J
I

Back

Close

Matrices Example: Computer Graphics Transformations
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Matrices Example: Object Registration/Matching
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Matrices Example: Image Warping (Transformation)
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Matrices/Vector Example: Image Compression
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2- 3- and n-dimensional vectors

Vector basics

Definition 4.1 (2-dimensional vectors).

We define two-dimensional vectors as directed arrows in the plane.
A vector is determined by the length and the direction of the arrow.
Two vectors are called equivalent if they have the same length and
direction.

Equivalent Vectors

1
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Example 4.1 (2-dimensional vectors).

A

B

C

D

1

Vectors can be determined by two points. E.g. the vectors
~AB and ~CD.

In the above example:

• A is called the tail of the vector ~AB.

• B is called the head of the vector ~AB.
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Definition 4.2 (Equivalence of vectors).

A

B

C

D

1

Although ~AB and ~CD have different heads and tails,
they are equivalent

• We distinguish vectors only by their direction and length.

Thus we treat equivalent vectors as equal.

E.g.
~AB = ~CD
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Example 4.2 (Some Real World Examples of Vectors).

Vectors can be use to represent translation (motion), velocity,
acceleration:

Vector Translation
(dx, dy)

1

Vector Velocity

(dx
dt ,

dy
dt )

1

Vector Acceleration
(d2x

dt2
,

d2y
dt2

)

1
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Definition 4.3 (Vector Representation/Notation).

Vectors can be defined in a variety of ways:

• As we have seen already by two points.

In which case we use the notation ~AB.

Alternative notations (which we do not use but you may see
in some books) are AB or AB∼ or ÃB

• A vector may also be defined as a line whose tail is the origin
and whose head coordinates are given as a (x, y) pair (and
similar for higher dimensions — more soon.

In this case we use the notation a = (x, y) or ~a = (x, y)
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Some Other Vector Notations You May See

An alternative notations 〈x, y〉, a, ã or, even, a∼.

Standard Vector/Matrix Notation Conventions

Note: It is standard notation to use a lower case letter for
vectors (along with bold, ~vector etc. of course)

Bold upper case letters are reserved for matrices — more
later.
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Definition 4.4 (The triangle law).

v

w

v + w

1

We add two vectors v and w in the following way.

We arrange w such that its tail coincides with the head of v.

u = v + w is then defined as the vector with the tail of v and the
head of the newly arranged vector w:
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Definition 4.5 (0 and opposite vectors).

We define 0 as the vector with length 0.

If v is not 0, then we define −v as the vector with the same length
and the opposite direction as v.

We see that v + (−v) = 0.

v −v

1
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Definition 4.6 (The difference of two vectors ).

The difference of two vectors v and w is defined as

v −w = v + (−w)

v

−w

v − w

1
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Definition 4.7 (Scalar multiplication).

Let v be a vector and k a real number.

The vector kv is defined as the vector with the same direction as v

if k is positive and the opposite direction if k is negative.

v

kv

−kv

1

The length of kv is |k|× the length of v.
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Vectors in coordinate systems

We can simplify the analysis of vectors by introducing coordinate
systems.

We consider the standard coordinate system in the x− y (2D
R2) plane:

v v

(v1, v2)

x

y

1

If v is a two-dimensional vector we can always arrange it such
that its tail coincides with the origin.

The coordinates (v1, v2) of its head uniquely identify v and are
called the components of v.
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Vector Definition in R2

Since the coordinates of the head determine any vector
uniquely, we make the following definition:

Definition 4.8 (Vectors in the space R2).

We identify the space of two-dimensional vectors with

R2 = {(x, y)| x ∈ R, y ∈ R}

v v

(v1, v2)

x

y

1

We now write the notation v for the vector (v1, v2).
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Calculating Vectors from 2 Points in R2

If a vector v is defined by two points A = (a1, a2) and B = (b1, b2)

we can get the components of v by the simple calculation:

v = (b1 − a1, b2 − a2) Head - Tail

v = (b1 − a1, b2 − a2)

B = (b1, b2)

A = (a1, a2)

x

y

1

Thus two vectors v = (v1, v2) and w = (w1, w2) are equivalent
if
v1 = w1 and v2 = w2.
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Vectors in Higher Dimensional Spaces

Since we identified the space of two-dimensional vectors with
the space of all ordered 2-tuples we can define higher
dimensional vector spaces in the same way.

Definition 4.9 (Vectors in the spaces R3 and Rn).

We define the space of three-dimensional vectors as

R3 = {(x, y, z)| x ∈ R, y ∈ R, z ∈ R}

Let n be a positive integer. We define the space of n-dimensional
vectors as

Rn = {(x1, x2, . . . , xn)| x1 ∈ R, x2 ∈ R, . . . , xn ∈ R}
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Example 4.3 (Standard coordinate system in R3).

v

z
v

(v1, v2, v3)

x

y

1
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Definition 4.10 (Vector Addition, Subtraction and
Scalar Multiplication in Rn).

Let v and w be two vectors in Rn and k a real number. The following
rules are well-defined:

• v + w = (v1 + w1, v2 + w2, . . . , vn + wn).

• v −w = (v1 − w1, v2 − w2, . . . , vn − wn)

• kv = (kv1, kv2, . . . , kvn).

These rules coincide with the geometrical interpretation for
two-dimensional vectors (see Definitions 4.4, 4.6 and 4.7).
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Example 4.4 (Vector Addition, Subtraction and
Scalar Multiplication in Rn).

z

v + w

w

v

x

y

1
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Definition 4.11 (Scalar product).
Given two vectors v andw in Rn with components (v1, v2, . . . , vn) and
(w1, w2, . . . , wn). We define the scalar product of v and w as

v.w or 〈v,w〉 =

n∑
i=1

viwi

Note what the scalar product does:
It takes two vectors and assigns them a real number.

Problem 4.1 (Scalar product).

Work out the scalar product of vectors v = (1, 2) and w = (2, 3)

Note the notations v.w and 〈v,w〉 are equivalent.
We use the v.w notation.
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Theorem 4.12 (Scalar product properties).

The scalar product has the following properties.

• v.w ≥ 0, for all v ∈ Rn and v.w = 0 ⇐⇒ v = 0.

• v.w = w.v, for all v,w ∈ Rn.

• (v + u).w = v.w + u.w, for all v,w,u ∈ Rn.

• (kv).w = k(v.w) for all v,w ∈ Rn and k ∈ R.
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Definition 4.13 (Euclidean norm of a vector).

For a vector v ∈ Rn we define its norm as

‖v‖ =
√

v.v

This norm is called the euclidean norm of the vector v.

The euclidean norm of a vector coincides with the length of
the vector in R2 and R3.

v

(v1, v2)

x

y

v1

v2

‖v‖

1

By Pythagoras’ Theorem, ‖v‖ =
√
v2

1 + v2
2 =
√

v.v
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Theorem 4.14 (Cauchy-Schwarz inequality).

Let v and w be vectors in Rn

Then they satisfy the Cauchy-Schwarz inequality

v.w ≤ ‖v‖‖w‖.

Theorem 4.15 (Angle Between Two Vectors).

If n = 2, 3 we even have the relation

v.w = ‖v‖‖w‖ cos(θ)

We call θ the angle between v and w.
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Geometric Visualisation of Angle Between Two Vectors in R2

v

w

θ

x

y

1
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Example 4.5 (Orthogonal vectors in R2 and R3).

Let v = (v1, v2) and w = (w1, w2) be two vectors in R2.

We call v and w orthogonal if the angle between them is 90◦.

Since cos(θ) = 0 if and only if θ = 90◦ for θ ∈ [0, 180◦] we can
conclude that orthogonal vectors are characterized by the relation

v.w = 0.

This expression is also meaningful in Rn and we say that two vectors
v and w in Rn are orthogonal , if their scalar product is zero.

vw

1
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The Vector Cross Product

Besides the scalar product that maps two vectors from Rn to
R we also need a product that maps two vectors from Rn to a
vector in Rn.

Definition 4.16 (The vector cross product in R2).

We define the vector cross product of v,w ∈ R2 as a mapping
× : R2 × R2 7→ R with

v ×w = v1w2 − v2w1

The vector product in R2 is anti-symmetric, i.e.

v ×w = −w × v
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Definition 4.17 (The vector cross product in R3).

We define the vector cross product of v,w ∈ R3 as a mapping × :

R3 × R3 7→ R3 with

v ×w =

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

 .

The vector product in R3 is also anti-symmetric, i.e.

v ×w = −w × v

The vector cross product has very useful properties, especially:

• for finding orthogonal vectors in R3.

• for area and volume calculations in R2 and R3 respectively.
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Example 4.6 (Vector cross product: Orthogonal Vectors).

Work out the vector cross product of the vectors v =

 1

0

0

 and

w =

 0

1

0


It is easy to show that: 1

0

0

×
 0

1

0

 =

 0

0

1



Now

 0

0

1

 is orthogonal to both v and w.
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Example 4.7 (Vector cross product: volume calculations).

Let n = 2.

If v = (v1, v2) then the vector vperp = (−v2, v1) is orthogonal to v.

It follows from the definition of the vector and scalar product, that

v ×w = v1w2 − v2w1 = −v2w1 + v1w2 = vperp.w

This expression is 0 if w and vperp are orthogonal.

However this means that v and w are parallel.
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Theorem 4.18 (Parallel vectors in R2).

We call two vectors v and w in R2 parallel if we have v ×w = 0.

We even have
v ×w = ‖v‖‖w‖ sin(θ)

where θ is the angle between v and w counted positive
counter-clockwise and negative clockwise starting from v.
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Generalisation of sinusoidal relation

In general for any dimension it can be stated that:

‖v ×w| = ‖v‖‖w‖ sin(θ)

We also have:

v ×w = ‖v‖‖w‖ sin(θ)n̂

where n̂ is a unit vector (of
length 1) perpendicular to both
v and w

w

θ

v

v ×w

n̂

w × v

1
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Back to our Volume Calculation

If a parallelogram is spanned by v and w then its area A is given by

A = |v ×w|.

Av

w

1
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Volume Calculation in R3

Now let n = 3 and let v and w be vectors in R3.

We have similar relationships as in the case n = 2.

One can show that

‖v ×w‖ = ‖v‖‖w‖| sin θ|

where θ is the angle between v and w.

In particular v and w are parallel only if

v ×w = 0 0 is the zero vector in R3.



315

JJ
II
J
I

Back

Close

Volume Calculation in R3: Scalar product/Cross Product

Now consider the expression: v.(v ×w)

It holds that

v.(v×w) = v1(v2w3−v3w2)+v2(v3w1−v1w3)+v3(v1w2−v2w1) = 0

Similarly we can show

w.(v ×w) = 0

and we have seen that the vector v ×w is orthogonal to v and w.

w

θ

v

v ×w

n̂

w × v

1
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Volume in R3: A parallelepiped

As in the two-dimensional case we get an easy formula for the volume
of a parallelepiped spanned by three vectors v, w and u.

V = |v.(w × u)| = |w.(v × u)| = |u.(v ×w)|

V

w

v

u

1
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Example 4.8 (Volume Worked Example in R2).

The area of the parallelogram spanned by the two vectors
(

1

1

)
and(

2

0

)
is given by

A = |
(

1

1

)
×
(

2

0

)
| = ‖1 · 0− 1 · 2‖ = 2
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Example 4.9 (Volume Worked Example in R3).

The volume,V , of the parallelepiped spanned by the three vectors 1

0

2

,

 1

1

1

 and

 0

4

0

 is given by:

V = |

 0

4

0

 .

 1

1

1

×
 1

0

2

 |
= |

 0

4

0

 .

 2

−1

−1

 |
= | − 4|
= 4
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Theorem 4.19 (Identities for the vector and the scalar product).

Let u,v,w and x ∈ R3. Then we have the following identities.

• v ×w = −w × v.

• ‖v ×w‖ = ‖v‖‖w‖| sin(θ)|.

• u× (v ×w) = (u.w)v − (u.v)w (Grassmann-expansion).

• (u×v).(w×x) = (u.w)(v.x)−(v.w)(u.x). (Lagrange identity).
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Linear maps, Vectors and Matrices

Definition of linear map

Linear mappings f : R 7→ R are of the form

f (x) = ax, a ∈ R

For example f (x) = 2x.
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Theorem 4.20 (Properties of a Linear Map).

A linear mapping f : R 7→ R has the properties

f (x + y) = f (x) + f (y) for all x, y ∈ R
f (cx) = cf (x) for all x ∈ R, c ∈ R

We will now generalise this idea for n-dimensional vectors.

Definition 4.21 (Linear Map).

Let m and n be positive integers.

A mapping f : Rn 7→ Rm with the following properties

f (v + w) = f (v) + f (w) for all v,w ∈ Rn

f (kv) = kf (v) for all v ∈ Rn, k ∈ R

is called a linear map.
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Linear Maps in Practice

Computer Graphics and Computer Vision is full of linear
maps:

Example 4.10 (Scaling).

The example f (v) = kv is a scaling:

Scaling
(

k 0

0 k

)

1
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Example 4.11 (Rotation and Translation).
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Example 4.12 (A R2 Linear Mapping).

The mapping e : R2 7→ R2, e(x, y) =

(
3x + 4y

x

)
is linear.

This can be seen as follows:
We take two arbitrary vectors a = (a1, a2) and b = (b1, b2) in R2 and
see that

e(a1 + b1, a2 + b2) =

(
3(a1 + b1) + 4(a2 + b2)

a1 + b1

)
=

(
3a1 + 4a2

a1

)
+

(
3b1 + 4b2

b1

)
= e(a1, a2) + e(b1, b2)

Furthermore if we take an arbitrary real number k we get

e(ka1, ka2) =

(
3ka1 + 4ka2

ka1

)
= k

(
3a1 + 4a2

a1

)
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Example 4.13 (A R3 7→ R2 Linear Mapping).

The mapping f : R3 7→ R2, f (x, y, z) =
(
x + y + z, 0

)
is linear as

well.
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Example 4.14 (A non-linear mapping).

The mapping g : R2 7→ R2, g(x, y) =

(
x + y

y2

)
is not linear :

• one easily sees this since a quadratic term appears in the second
component.

To show this formally we take the vectors
(

0

1

)
and

(
0

2

)
and evaluate

g(0, 1) + g(0, 2) =

(
3

5

)
6=
(

3

9

)
= g(0 + 0, 1 + 2)
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Linear Mappings and Vector Scalar Products

We can define a linear mapping h : Rn 7→ R via the scalar
product. Let y be a fixed vector in Rn.

hy(x) = x.y

is a linear mapping from Rn to R.

Theorem 4.22 (Linear Mapping f : Rn 7→ Rn).

A mapping f : Rn 7→ Rn given by

f (v1, v2, . . . , vn) =


f1(v1, v2, . . . , vn)

f2(v1, v2, . . . , vn)
...

fn(v1, v2, . . . , vn)


is linear if and only if all the mappings fi : Rn 7→ R are linear.
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We will soon simplify the treatment of linear mappings. For
this we need the following definition.

Definition 4.23 (Vector Standard Basis).
We define the standard basis of Rn as the set of vectors

e1 =


1

0

0
...
0

 e2 =


0

1

0
...
0

 · · · en =


0

0
...
0

1


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Importance of a Basis: Linear Combination

We can express every vector v = (v1, v2, . . . , vn) ∈ Rn as a
linear combination of the standard basis, i.e.


v1

v2
...
vn

 = v1


1

0

0
...
0

 + v2


0

1

0
...
0

 + · · · + vn


0

0
...
0

1


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Example 4.15 (Simple Vector Basis).

Consider the vector a =

 3

−4

7

.

We can write a as

a = 3

1

0

0

− 4

0

1

0

 + 7

0

0

1


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Generalising this Linear Mapping

In general this reads as follows. Let f : Rn 7→ Rm be a linear
mapping and let v = (v1, v2, . . . , vn) ∈ Rn.

Then we have

f (v) = f (v1e1+v2e2+· · ·+vnen) = v1f (e1)+v2f (e2)+· · ·+vnf (en)

This holds for every vector v ∈ Rn.

Thus we can easily calculate f (v) for any v ∈ En if we know
the values of f (e1), f (e2), . . . , f (en) .
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Definition 4.24 (Matrices).
Let n be a positive integer and f : Rn 7→ Rm a linear mapping given
by

f (v) =


f1(v)

f2(v)
...

fm(v)

 .

Then f can be represented by a matrix A where

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
... ... . . . ...

am,1 am,2 · · · am,n


where the entries ai,j of the matrix A are given by

ai,j = fi(ej)
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Some Remarks on Matrices

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
... ... . . . ...

am,1 am,2 · · · am,n


where the entries ai,j of the matrix A are given by

ai,j = fi(ej)

Note that:

• The first column of A is just f (e1), the second is f (e2) and
so on.

• The space of matrices representing linear mappings f : Rn 7→
Rm is denoted as Rm×n.

• m is the number of rows in the matrix and n is the number of
columns.
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Example 4.16 (Matrix Mapping).

We consider the mapping f : R3 7→ R3 given by

f (v1, v2, v3) =

 4v1 + 3v3

v2 − v1

v1 + v2 + v3


We have

f (1, 0, 0) =

 4

−1

1

 f (0, 1, 0) =

 0

1

1

 f (0, 0, 1) =

 3

0

1


Thus the matrix A that represents f is given by

A =

 4 0 3

−1 1 0

1 1 1


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Example 4.17 (Some Common Matrix Mappings).

2D Scaling:
(
xk 0

0 yk

)
2D Rotation:(

cos θ sin θ

− sin θ cos θ

)
2D Shear (x axis):

(
1 k

0 1

)

2D Shear (y axis):
(

1 0

k 1

)

3D Scaling:

 xk 0 0

0 yk 0

0 0 zk


3D Rotation about z axis: cos θ sin θ 0

− sin θ cos θ 0

0 0 1


2D Translation
(Homogeneous Coords): 1 0 dx

0 1 dy

0 0 1


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Matrix-Vector multiplication

It is usually much easier to work with the just matrix A rather
than the linear mapping f . Thus we need the following definition.

Definition 4.25 (Matrix-Vector multiplication).

Let A ∈ Rm×n be a matrix. If x = (x1, x2, . . . , xn) is a vector in Rn

we define the matrix-vector product of A with x as

Ax =


∑n

j=1 a1,jxj∑n
j=1 a2,jxj
· · ·∑n

j=1 am,jxj

 .

If A is the representation of the linear mapping f it holds

Ax = f (x)

Thus we can evaluate f (x) by evaluating the matrix-vector product
Ax.
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Example 4.18. Matrix-Vector multiplication

Let

A =

1 1 0

2 −2 5

0 −3 1

 x =

 2

3

−6


Then

Ax =

 5

−32

−15


Note: The i-th entry in the matrix vector product Ax is given

by the scalar product of the i-th row of A and x.
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Lemma 4.26 (Adding Two Matrices).

We have the following rules for matrices.

Let A and B be matrices in Rm×n.

We add two matrices A and B by adding every component of A
with the corresponding component of B.

Therefore, if we set C = A + B, then

ci,j = ai,j + bi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n
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Lemma 4.27 (Scalar Multiplication of a Matrix).

The multiplication of a matrix, A,∈ Rm×n by a real number
(scalar), k, is similar:

if we set C = kA, then we get

ci,j = kai,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n

i.e. we multiply every entry of A with k.
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Example 4.19 (Adding two matrices and scalar multiplication).

Let A = and B =

Let k =
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Consecutive Linear Mappings

We also want to consider the consecutive application of linear
mappings.

Given two linear mappings f : Rr 7→ Rm and g : Rn 7→ Rr we
want to calculate

(f ◦ g)(v) = f (g(v))

It is easily shown that f ◦ g is a linear mapping as well.

This operation can be simplified a great deal with the notation
of matrices.

To do this we must learn how to multiply matrices together.
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Definition 4.28 (Matrix Multiplication).

Let f : Rr 7→ Rm and g : Rn 7→ Rr be two linear mappings with
the matrix representations A for f and B for g.

Then the matrix representation C of the linear mapping h := f ◦ g :

Rn 7→ Em is given by

ci,j =

n∑
k

ai,kbk,j 1 ≤ i ≤ m, 1 ≤ j ≤ n

We write C = AB.

Please note: We can only multiply two matrices A and B as
AB if the number of columns of A equals the number of rows
of B.
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Lemma 4.29 (Non-commutative Matrix multiplication).

In general we do not have AB = BA for matrices A,B ∈ Rn×n.

Matrix multiplication is said to be Non-commutative.

Example 4.20 (Rotation and Translation).

For a given matrix rotation,Rθ and a given matrix translation, T .

The compound transformation mapping RθT 6= TRθ
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Example 4.21 (Non-commutative Matrix multiplication).

Let

A =


2 −3 −1 0

0 2 −1 −1

4 2 −1 0

−5 −3 1 1

 B =


1 −1 5 −4

2 2 0 −2

−1 −3 3 6

0 −4 −1 −1


Then

AB =


−3 −5 7 −8

5 11 −2 −9

9 3 17 −26

−12 −8 −23 31


What is BA?
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Determinants

The determinant mapping assigns every matrix a real number.

Determinants have many applications:

• Working out Vector Cross products easily.

• Inverting Matrices

• Solving linear systems and

• For other theoretical results concerning linear systems.
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Definition 4.30 (Determinants in R2 and R3).

Let A = (ai,j) be a matrix representing a linear mapping
f : R2 7→ R2.

We define the determinant of A as

detA =

∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣ = a1,1a2,2 − a1,2a2,1

If A = (ai,j) is a matrix representing a linear mapping f : R3 7→ R3

we define the determinant of A as

detA =

∣∣∣∣∣∣
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

∣∣∣∣∣∣
= a1,1a2,2a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2 − a1,3a2,2a3,1

−a1,2a2,1a3,3 − a1,1a2,3a3,2
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Example 4.22 (An easy way to calculate determinants).
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Definition 4.31 (Determinants in Rn).

Finally we introduce the concept of determinants for general n× n
matrices.

We already know that the determinant of a 2× 2 matrix A is given
by

detA =

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21

and if A is a 3× 3 matrix it is given by

detA =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a12a21a33 − a11a23a32.
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Generalising the determinant calculation

Now we want to generalise this concept.

Rewriting the formula above we get

detA = (a11a22a33 − a11a23a32)− (a12a21a33 − a12a23a31)

+ (a13a21a32 − a13a22a31)

or

detA = a11·det

(
a22 a23

a32 a33

)
−a12 det

(
a21 a23

a31 a33

)
+a13 det

(
a21 a22

a31 a32

)
.

We see that we can write the determinant of a 3× 3 matrix in
terms of determinants of 2× 2 matrices.

This concept can be generalised to define determinants for
general n× n matrices.
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Definition 4.32 (The determinant of an n× n matrix).

Let n ≥ 2 and A = (aij, 1 ≤ i, j ≤ n) an n× n matrix.

The determinant of A is defined as

detA =

n∑
k=1

(−1)1+k detA1k,

where A1k is obtained from A by crossing out row 1 and column k

from A.
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Example 4.23 (Determinant of a 4x4 Matrix).

The determinant of the matrix

A =


1 −2 5 0

2 0 4 −1

3 1 0 7

0 4 −2 0


is given by

detA = 1 det

0 4 −1

1 0 7

4 −2 0

+2 det

2 4 −1

3 0 7

0 −2 0

+5 det

2 0 −1

3 1 7

0 −2 0


and so on . . .
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Matrix Cofactor

So far we have developed the determinant of a matrix A after
the first row, i.e. we used the submatrices A1k in the calculation
of the determinant. However this is not necessarily the best way
to do this.

Definition 4.33 (Matrix Cofactor).

Let A be an n× n matrix.

The (i, j)-cofactor of A is the number Cij defined as :

Cij = (−1)i+j detAij

where again Aij is obtained from A by crossing out the i-th row and
the j-th column of A.
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Theorem 4.34 (Determinant via cofactor expansion).

The determinant of the matrix A can be calculated using the so-called
cofactor expansion across the i-th row :

detA = ai1Ci1 + ai2Ci2 + · · · + ainCin

or across the j-th column:

detA = a1jC1j + a2jC2j + · · · + anjCnj
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Example 4.24 (Determinant via cofactor expansion).

Work out

det

1 5 0

2 4 −1

0 −2 0


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Cofactor Expansion of a Triangular Matrix

If A is a triangular matrix, for example an upper triangular matrix,

• That is a matrix such that aij = 0 if i > j

then the cofactor expansion becomes very simple if we use
the cofactor expansion across the n-th row, since all but the last
entry in that row are 0.
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Example 4.25 (Cofactor Expansion of a Triangular Matrix).
Let

A =


1 1 −4 10

0 2 3 −8

0 0 −5 0

0 0 0 −1


then

detA = a44 · C44

and

C44 = (−1)8 det

1 1 −4

0 2 3

0 0 −5

 = −5 det

(
1 1

0 2

)
= −5 · 2 · 1

and thus
detA = −1 · (−5) · 2 · 1 = 10

We see that the determinant is just the product of the entries along the
diagonal of A.
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Determinant of a Triangular Matrix

The same procedure can be applied to lower diagonal matrices
by using a cofactor expansion across the first row.

Theorem 4.35 (Determinant of a Triangular Matrix).

If A is a triangular matrix, then the determinant of A is the product
of the diagonal entries.
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Definition 4.36 (The Adjoint of a Square Matrix).

The adjoint of a square matrix, A is defined as the transpose of a
matrix of cofactors of A.

The adjoint is written as adj A

Definition 4.37 (Transpose of a Matrix).

The transpose of a matrix A = (aij, 1 ≤ i ≤ n, 1 ≤ j ≤ m) (an
n×m matrix) is denoted by AT and is defined as:

AT = (aji, 1 ≤ i ≤ n, 1 ≤ j ≤ m) (an m× n matrix.)

That is you transpose respective rows and columns of the
matrix
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Example 4.26 (The Adjoint of a Square Matrix).

Work out the adjoint of the matrix A =

 2 3 5

4 1 6

1 4 0


To find the adjoint of A we need to:

(a) Form a matrix, C, of all the cofactors of A as follows:

General Case in R3:

C =

 C11 C12 C13

C21 C22 C23

C31 C32 C33


This example:

C =

 −24 6 15

20 −5 −5

13 8 −10


(b) Write down adj A = CT:

CT =

 C11 C21 C31

C12 C22 C32

C13 C23 C33

 CT =

 −24 20 13

6 −5 8

15 −5 −10


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Vector Cross Product via Determinant/Cofactor

Given two vectors a = (a1, a2, a3) and b = (b1, b2, b3) we can
compute a vector, v = (v1, v2, v3) as a determinant via:

v =

∣∣∣∣∣∣
v1 v2 v3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
which is the same as using cofactors::

v = C11v1 + C12v2 + C13v3

where C11 etc are cofactors of the above determinant.
which is equivalent to saying:

v = (C11, C12, C13)
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Example 4.27. Vector Cross Product via Determinant/Cofactor Work
out the Cross product of the two vectors (1, 0, 0) and (0, 1, 0)
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Definition 4.38 (The Inverse of a Square Matrix).

The inverse of a square matrix, A, is denoted as A−1, and is defined
as:

AA−1 = I

where I is the identity matrix.

E.g. I in R3:

 1 0 0

0 1 0

0 0 1


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Theorem 4.39 (Calculating the Inverse of a Square Matrix).

Knowing the adjoint of a matrix it is easy to form the Inverse of a
Square Matrix, A:

(a) Calculate adj A = CT (in R3):

adj A =

 C11 C21 C31

C12 C22 C32

C13 C23 C33


(b) Calculate the determinant of A, detA and form the inverse of A

by dividing adj A by detA (in R3):

A−1 =

 C11
detA

C21
detA

C31
detA

C12
detA

C22
detA

C32
detA

C13
detA

C23
detA

C33
detA


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Example 4.28 (The Inverse of a Square Matrix).

Work out the inverse of the matrix A =

 2 3 5

4 1 6

1 4 0


We already have: adj A =

 −24 20 13

6 −5 8

15 −5 −10


The determinant of A is:

detA =

∣∣∣∣∣∣
2 3 5

4 1 6

1 4 0

∣∣∣∣∣∣ = 2(0− 24− 3(0− 6) + 5(16− 1) = 45

So the inverse of A is:

A−1 = 1
45

 −24 20 13

6 −5 8

15 −5 −10


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Solving a System of Linear Equations

We have seen that we can represent a system of equations as
system of a matrix and vectors:

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
... ... ... ...

an1x1 + an2x2 + . . . + annxn = bn

can be written as:

Ax = b

where A is the matrix (aij, 1 ≤ i, j ≤ n) and x is the vector (xi)

and b is the vector (bi).
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Solving for x

Now we need to solve for x so if we multiply both sides of the
equation Ax = b by A−1 we get:

x = A−1b

so we can solve the system of equations by calculating the
inverse A−1 and multiplying the vector b by this.
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Example 4.29 (Solving a System of Linear Equations). Solve to
following system of equations:

2x1 + 3x2 + 5x3 = 45

4x1 + x2 + 6x3 = 90

x1 + 4x2 (+0x3) = 45

We can write this as: 2 3 5

4 1 6

1 4 0

 x1

x2

x3

 =

 45

90

45


Ax = b

We already know A−1 from a few slides ago
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So solving for x we get

x = A−1b

which is:

x =

 x1

x2

x3

 =
1

45

 −24 20 13

6 −5 8

15 −5 −10

 45

90

45


=

 −24 20 13

6 −5 8

15 −5 −10

 1

2

1


=

 29

4

−5


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THE
END
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