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Chapter 2: Graph Theory
Graph Theory Introduction

Applications of Graphs:

• Convenient representation/visualisation to many
Mathematical, Engineering and Science Problems.

• Fundamental Data Structure in Computer Science

• Many examples to follow
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Graph Theory History: The Königsberg bridge problem

• Solved by Euler (1707-1783).

• Popular Problem of its day

• Map of Königsberg
Bank A

Bank B

Island C Island D

1

• The Königsberg bridge problem was the following:
Is it possible to cross each of the seven bridges of Königsberg
exactly once and return to the starting point?

• We return to this later.

http://math.youngzones.org/Konigsberg.html
http://www-gap.dcs.st-and.ac.uk/%7Ehistory/Miscellaneous/Konigsberg.html
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Some Computer Science

• Graphs and Trees: Fundamental Data Structures
Used in all branches or Computer Science

• Sorting and Searching Algorithms

• Knowledge Representation: Database, Data Mining

• Computer Networks: Internet, Mobile Comms, Networking

• Data Compression/Coding

• Artificial Intelligence

– Knowledge Representation and Reasoning, Game Playing,
Planning, Natural Language

• Computer Graphics/Image Processing/Computer Vision

• Compilers and Many Many More . . . . . .
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Graphs and Networks Example: Sorting

Binary Tree Sort — very common data structure/used in many
algorithms
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Graphs and Networks Example: Compression/Coding

Codes:
char binary
’g’ 00
’o’ 01
’p’ 1110
’h’ 1101
’e’ 101
’r’ 1111
’s’ 1100
’ ’ 100

• Count number of occurrences of tokens (characters here) in
a sequence.

• Sort then in a tree then, Code via tree traversal

• We return to this later.
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Graphs and Networks Example: Game Playing

Best of Three Sets Tennis Match Representation:

A B

AA AB BA BB

ABA ABB BAA BAB

1
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Graphs and Networks Example: Computer Graphics

Fundamental 3D computer graphics structure — 3D Mesh
Connectivity and Adjacency essential for topology and geometric
structure.
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Graphs and Networks Example: Route Planning

or AA Route Planner or similar.

http://www.theaa.com/travelwatch/planner_main.jsp


46

JJ
II
J
I

Back

Close

Graphs and Networks Example: Route Planning

Classic Example of Shortest Path of a Graph

Chester

Exeter

Cardiff Bristol London

7

5

10

3 4

4 12

1

• Each path has a cost (distance/average time) to destination

• Find shortest path = fastest route.

• We return to this later.
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Graphs and Networks Example: Internet Network

The Internet as a Large Graph:

Internet Mapping Project

http://www.cheswick.com/ches/map/index.html
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Graphs and Networks Example: Internet Routing
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Graphs and Networks Example: Internet Planning

Classic Example of Shortest Path of a Graph

Router A

Router B

Router C Router D Router E

7

5

10

3 4

4 12

1

• Same problem as in route finding

• Find shortest path = best/fastest route on internet

• We return to this later.
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Graphs and Networks Example: Travelling Salesperson
Problem (TSP)

Classic Optimisation Problem

Glasgow

Exeter

Cardiff London

402

456

414

121 200

155

1

• Similar problem as in route

• Person must visit a number of cities in the minimum distance

• We return to this later.
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Graph Theory Basics

Definition 2.1 (Graph).
A graph G consists of a set of elements called vertices and a set of
elements called edges. Each edge joins two vertices.

Graphs are usually labelled:
Vertices and/or Edges can be labelled.
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Why Label Graphs?

Vertices:

• To give semantic meaning e.g. Places to visit in TSP or
Autoroute

• Labels can be arbitrary or change to prove some relationship
between graphs more soon

• When we describe edges we usually refer to sets of vertices
more soon
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Why Label Graphs?

Edges:

• We use graphs to represent data, encode knowledge or
enforce relationships between data

• Numbers usually represent weights, distances or cost of
some relationship between the 2 vertices

• Graph Theory enumerates these weights in many ways to
attempt to solve a problem:

– Minimum cost — shortest path more soon
– Maximum cost more soon
– Max-Min costs in game playing more soon
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Definition 2.2 (Weighted Graph, Weighted Digraph).

A weighted graph G is a graph where each edge connecting two
vertices is assigned a weight. This weight is often interpreted as a
distance or some other cost of travelling between the vertices.

A weighted digraph D is a digraph where each arc is assigned a
weight. This weight is often interpreted as a distance or some other
cost of travelling between the vertices.

We will see some examples of labels and weights very soon.
But first we need yet more definitions!
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Mathematical Notation

We denote a graph, G as set of Vertices, V , and Edges, E, as
follows:

G = (V, E)

We may also write the vertex set for a graph, G, as V (G)

Similarly the Edge set for a graph, G, as E(G)

We often describe the Edges as collection or set of labelled
Vertices that describe the endpoints or connections in the graph:
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Example 2.1 (Vertex and Edge Sets).

A labelled simple graph with vertex set: V = {1, 2, 3, 4, 5, 6}
and edge set: E = {{1, 2}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {4, 5}, {4, 6}}

E may also be written as E = {e1, e2, e3, . . .} where e1, e2 etc.
are endpoint sets, e.g. e1 = {1, 2}, e2 = {1, 5}, . . .

E is also sometimes written as E = {12, 15, 23, 25, 34, 45, 46}
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Order of a Graph: Vertex and Edge Cardinality

Definition 2.3 (Order of a Graph).
The cardinality of V , is also called the order of graph, G, is defined to
be:

The number of vertices in V .

• This is denoted by |V |.
• We usually use n to denote the order of G. i.e. n = |V |

Definition 2.4 (Size of a Graph).
The cardinality of E, is also called the size of graph, G is defined to be:

The number of edges,

• This denoted by |E|.
• We usually use m to denote the size of G. i.e. m = |E|
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Problem 2.1 (Order and Size or a Graph).

1. What is the order of this Graph?

2. What is the size of this Graph?
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Definition 2.5 (Digraph).

A digraph D consists of a set of elements called vertices and a set
of elements called arcs. Each arc joins two vertices in a specified
direction.
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Why do we need directions in a graph

• Some relationships may be only one way.

• Relationships may differ in forward and backward direction
(Multiple Edges)

• Directions may refer back to same end point (Loop)
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Example 2.2 (Digraph: One Way Relationship).

Draw a graph that represents Dave like Maths

• Clearly the act of liking is a one way relationship

• Maths can’t like any person but
some people, e.g. Dave, can like maths.

Dave MathsLikes

1
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Example 2.3 (Digraph: Two Way Relationship).

Draw a graph that represents the ease of riding a bike between two
points A and B, where A is at the top of the hill and B is at the bottom
of the hill

• Clearly it is easier to go from A→ B than B → A.

• Represent this as weights in two (multiple) arcs in the graph.

• Lets say it is ten times harder to ride up the hill

A

B

10 1

1
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Example 2.4 (Digraph: Loops — Finite State Automata).
Finite State Machines/Finite State Automata

Finite State Automata area model of behavior composed of a finite
number of states, transitions between those states, and actions.

Very common in many areas of Computer Science

• Speech Recognition

• Natural Language Understanding

• Theory of Computing: Formal Methods, Computability,
Efficiency, Complexity

• Digital Circuits: Programmable logic device, Logic arrays

• Maths, Engineering, Biology . . .
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Simple Example: Modelling a Coin Toss

• There are Two States Only Ever: Heads (H) or Tails (T)

• Each coin toss is a finite state or event.

• Coin can either stay in same state (say another Head) or
change (to Tail)

H T

1
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Example 2.5 (Digraph Loops: Speech Understanding).
Real World Example: Hidden Markov Models

Example of Stochastic Finite State Automata

Sample Speech features and attempt to model the pattern of speech over
successive samples based on known (learned) models

• Level One — Group Speech Features into Phonemes (Phones)

• Level Two — Group Phonemes into Words

• Level Two — Group Words into Sentences
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Example 2.6 (Digraph Loops: Linguistics).
Real World Example: Natural Language Understanding:
A large branch of Artificial Intelligence.

Representing the structure of language as a computational model.

• Can model a sentence (S) as succession of a Noun Phrase (NP )
and a Verb Phase (V P ): S → NP + V P

• Can model a NP as digraph.

• V P similar: V P → V + NP where V is a verb

• Can decompose sentences.
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Natural Language Understanding: Noun Phrase Explained

Three Parts:

Determiners : articles (the, a), demonstratives (this, that), numerals
(two, five, etc.), possessives (my, their, etc.), and quantifiers (some,
many, etc.); in English, determiners are usually placed before the
noun;

Adjectives : (Zero?) One or more (the large cat);

Noun

Additional Compliments can be added to qualify noun phrases
with

• adpositional phrases, such as
the cat with the fluffy tail, or

• relative clauses, such as
the cat that I fed yesterday.

but this complicates the digraph.
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Natural Language Understanding: Noun Phrase Explained

Our Noun Phrase:

This can represent the following type of phrases:

the cat
the large cat
the very large cat
the very very large cat
the very very very large cat

etc.
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Natural Language Understanding: Decompose a sentence

Consider the sentence:

the cat sat on the mat by the fire

This might be drawn as:

This is a long one way relationship digraph.
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Problem 2.2 (More Advanced Natural Language Representation).

• How can the Noun Phrase digraph cope with no adjectives?

• Give an alternative Noun Phrase digraph representation to cope with
no adjectives.

• Represent a Verb Phrase as a digraph.

• Ammend the Noun Phrase to model additional compliments.
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Some More Definitions

Definition 2.6 (Multiple Edges, Loops).
In a graph, two or more edges joining the same pair of vertices are multiple
edges.

An edge joining a vertex to itself is a loop.

X1

X2

1

X

1

Mutliple Edges Simple Loop
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Definition 2.7 (Multiple Arcs, Loops).
In a digraph, two or more arcs joining the same pair of vertices in the same
direction are multiple arcs.

An arc joining a vertex to itself is a loop.

X1

X2

1

X

1

Mutliple Arcs Simple Arc Loop



73

JJ
II
J
I

Back

Close

Definition 2.8 (Simple graphs, Simple digraphs).

A graph with no multiple edges or loops is a simple graph.

A digraph with no multiple arcs or loops is a simple digraph.
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Definition 2.9 (Subgraph, Subdigraph).

A subgraph of a graph G is a graph all of whose vertices are vertices of G
and all of whose edges are edges of G.

A subdigraph of a digraph D is a digraph all of whose vertices are vertices
of D and all of whose arcs are arcs of D.

Graph Subdigraph
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Definition 2.10 (Partial Graph, Partial Digraph).

A partial graph of a graph G is a digraph consisting of arbitrary numbers
of vertices and edges of G.

A partial digraph of a digraph D is a digraph consisting of arbitrary
numbers of vertices and arcs of D.

Graph Partial Digraph
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Formal Mathematical Definition of a Subgraph

A graph G′ = (V ′, E ′) is a subgraph of another graph G = (V, E) iff

V ′ ⊆ V , and

E ′ ⊆ E ∧ ((v1, v2) ∈ V → (v1, v2) ∈ V ′)

Note: In general, a subgraph need not have all possible edges.

Definition 2.11 (Induced Subgraph).

If a subgraph has every possible edge, it is an induced subgraph.

X1

X2

1

X1

X2

1

Subgraph Induced Subgraph
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Definition 2.12 (Adjacency and incidence).

Two vertices v and w of a graph G are adjacent vertices if they are joined
by an edge e.

The vertices v and w are then incident with the edge e and the edge e is
incident with the vertices v and w.

Two vertices v and w of a digraph G are adjacent vertices if they are
joined (in either direction) by an arc e.

An arc e that joins v to w is incident from v and incident to w.



78

JJ
II
J
I

Back

Close

Example 2.7 (Adjacency and incidence).

X

U V

W

1

4

2 3

5

1

U and X are adjacent.

W is incident to 2, 3, 4 and 5 is incident with X .
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Definition 2.13 (Vertex Degree, Degree Sequence).

The degree of a vertex v is the number of edges incident with v, with each
loop counted twice and is denoted by deg v.

The degree sequence of a graph G is the sequence obtained by listing the
vertex degrees of G in descending order, with repeats as neccesary.
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Example 2.8 (Vertex Degree, Degree Sequence).

X

U V

W

1

The degree of U is 2
The degree of V is 1
The degree of W is 3
The degree of X is 2

So the degree sequence of the above graph is 3, 2, 2, 1
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Problem 2.3 (Vertex Degree, Degree Sequence).

A

B C

D E

F G

H

1

What are the degrees of the respective vertices A, B, C, . . . , H?

What is the degree sequence of the above graph?
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Definition 2.14 (Adjacency Matrix).

The adjacency matrix, A, of a finite directed or undirected graph G with
n vertices is the n×n matrix where the nondiagonal entry aij is the number
of edges from vertex i to vertex j, and the diagonal entry aii the number of
loops .

X

U V

W

1

Cols 1...n(=4)︷ ︸︸ ︷
U V W X

(Row 1) U
(Row 3) V
(Row 3) W
(Row 4) X

 0 0 1 1
0 0 2 0
1 2 0 1
1 0 1 1


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Problem 2.4 (Adjacency Matrix).

A

B C

D E

F G

H

1

Write down the adjacency matrices of the above two graphs.
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Properties of an Adjacency Matrix

• There exists a unique adjacency matrix for each graph (up to
permuting rows and columns), and it is not the adjacency matrix
of any other graph.

• In the special case of a finite simple graph, the adjacency matrix
is a (0,1)-matrix with zeros on its diagonal.

• If the graph is undirected, the adjacency matrix is symmetric.

• For sparse graphs, that is, graphs with few edges, an adjacency
list is often preferred as a representation of the graph because it
uses less space: list of all edge (or arc) sets of vertices per edge
(arc).

• Another matrix representation for a graph is the incidence matrix:
a p×q matrix (B), where p and q are the numbers of vertices and
edges respectively, such that bij = 1 if the vertex vi and edge ej

are incident and 0 otherwise.
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Problem 2.5 (Properties of an Adjacency Matrix).

For each of the points on the previous slide write down a suitable graph
and work out its adjacency matrix, adjecency list or incidence matrix.

Pay particular note to the size of each structure created
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Lemma 2.15 (Handshaking lemma).
In any graph the, the sum of all vertex degrees is equal to twice the number
of edges

Proof.
Each edge has two ends.

The name handshaking lemma has its origin in the fact, that a
group of people shaking hands can be described by a graph like

Adam

Ben Claire

David Eve

1

Here every vertex represents a person, and an edge appears as
soon as those two people have shaken their hands.
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Handshaking Lemma Corollaries

There are a few intuitive implications of the handshaking lemma:

• For a graph, the sum of degrees of all its nodes is even.

• In any graph, the sum of all the vertex-degrees is an even number.

• In any graph, the number of vertices of odd degree is even.

• If G is a graph which has n vertices and is regular of degree r,
then G has exactly 1/2 nr edges.

Problem 2.6.
Prove the above corollaries.
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The Similarity of Two Graphs (1)

It follows from our defintion of a graph, that it is completely determined
by its edges and vertices.

This does not mean, that a graph can’t be drawn in different
ways.

For example the two graphs:

W

BA

EG

C

1

W B

A E

G C

1

They look different at first sight, a closer look however reveals that,
these are two pictures of the same graph.

Problem 2.7. Write down and compare the adjacency matrices of the above
graphs
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The Similarity of Two Graphs (2)

On the other hand, two graphs my look similar but represent different
graphs.

Consider the example:
W

BA

EG

C

1

B

WA

EG

C

1

Problem 2.8. Write down and compare the adjacency matrices of the above
graphs
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The Similarity of Two Graphs (3)

Continuing the example:

W

BA

EG

C

1

B

WA

EG

C

1

• AB is an edge of the second graph, but not of the first one.

• Although the graphs have essentially the same information they
are not the same.

• However by relabelling the second graph, we can reproduce the
first graph.

Problem 2.9. Which vertices should we relabel? and What Labels
should they receive?

• This leads to the following notion of Graph Isomorphisms.
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Definition 2.16 (Graph Isomorphism).

Two graphs G and H are isomorphic to each other, if H can be obtained
by relabelling the vertices of G.
This means that there is a one-to-one correspondence between the vertices
of G and H .
Such a one-to-one correspondence is called an isomorphism.

Example 2.9 (Graph Isomorphism).

1

4 3

2

1

X

U V

W

1

In the two graphs above show that their are isomorphic. Which vertices
correspond to each other?
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Checking Isomorphism

It is often hard to check whether two graphs are isomorphic or not.
However we can give sufficient conditions for this.
• Two isomorphic graphs have the same degree sequence.

• Two graphs cannot be isomorphic if one of them contains a
subgraph that the other does not.

Problem 2.10 (Checking Isomorphism).

1

4 3

2

1

X

U V

W

1

Write out the degree sequence of the above graphs.
Introduce a subgraph into one of the graphs and write out the new degree
sequence
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Paths and Cycles

Traversing a graph by travelling from one vertex to another is the
”bread and butter” of graph searching, sorting and optimisation
algorithms.

This can readily become a non-trivial problem

Many problems can be posed as a graph travel problem.

Many fancy algorithms have been designed over the years to
address such problems.
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Definition 2.17 (Walk).
A walk of lenght k in a graph G is a succession of k edges of the form

uv, vw, wx, . . . , yz

This walk is denoted by uvw . . . z, and is referred to as a walk between u
and z.
A walk of length k in a digraph D is a succession of k arcs of the form
uv, vw, wx, . . . , yz. This walk is denoted by uvw . . . z, and is referred to
as a walk from u and z.
Example 2.10 (A simple walk).

U V

W

X

Y

Z

1

The walk through this simple graph is: UV WXY Z
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Example 2.11 (A more complex walk).

Note: The definition of walk does not require that all edges or vertices in
a walk are different:

U

V

W

X

Y

Z

e1

e2

e3

e4

e5

e6

e7

1

The most direct walk between U and Y graph is: UWXY

However a more roundabout walk could be: UWV WZZY
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Alternative Graph Walk Notation

Notating such complex walks is more confusing

You can include edges and vertices in the walk list as:

V1e1V2e2V3 . . . where Vi are consecutive vertices and
ei consecutive edges in the walk.

U

V

W

X

Y

Z

e1

e2

e3

e4

e5

e6

e7

1

The last walk in the graph on the previous slide is more easily
realised as:

Ue1We2V e2We4Ze7Ze6Y
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Definition 2.18 (Paths and trails).

A trail in a graph G is a walk in which all the edges, but not necessarily
all the vertices, are different.

A path in a graph G is a walk in which all the edges and all the vertices
are different.

A trail in a digraph D is walk in which all the arcs, but not necessarily
all the vertices, are different.

A path in a digraph D is a walk in which all the arcs and all the vertices
are different.
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Example 2.12 (Paths and trails).

U

V

W

X

Y

Z

e1

e2

e3

e4

e5

e6

e7

1

The walk Ue1We2V e2We4Ze7Ze6Y is not a trail or a path

The walk Ue1We4Ze7Ze6Y is a a trail but not path

The walk Ue1We3Xe5Y e6Z is a a path
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Definition 2.19 (Closed walks, paths and trails in graphs).
A closed walk in a graph G is a succession of edges of the form

uv, vw, wx, . . . , yz, zu

that starts and ends at the same vertex.

A closed trail in a graph G is a closed walk in G in which all the edges
are different.

A cycle in a graph G is a closed walk in G in which all the edges are
different and all theintermediate vertices are different.

A walk or trail is open if it starts and finishes at different vertices.

Definition 2.20 (Closed walks, paths and trails in digraphs). The same
definition as above is valid for digraphs with edges replaced by arcs.
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Example 2.13 (Closed walks, paths and trails in graphs).

U

V

W

X

Y

Z

e1

e2

e3

e4

e5

e6

e7

1

The walk Ue1We3Xe5Y e6Ze4We1U is closed walk

The walk We4Ze7Ze6Y e5Xe3W is a closed trail

The walk We3Xe5Y e6Ze4W is a cycle

The walk Ue1We4Ze7Ze6Y is an open walk
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Definition 2.21 (Connectivity of a graph).

A graph G is connected if there is a path between each pair of vertices,
and is disconnected otherwise.

An edge in a connected graph G is a bridge if its removal leaves a
disconnected graph.

Every disconnected graph can be split up into a number of connected
subgraphs, called components.
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Example 2.14 (Connectivity of a graph: Bridge).

U

V W X

Y

Z

e1 e2

e3 e4 e5

e6 e7

1

e4 is a bridge.
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Example 2.15 (Connectivity of a graph:Disconnections/Components).

U

V W X

Y

Z

T

1

A disconnected graph with 3 components
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Definition 2.22 (Weak Connectivity of a digraph).

U

V W X

Y

Z

1

A digraph D is weakly connected if its underlying graph G is a connected
graph and is disconnected otherwise.

That is to say if there is an undirected path between any pair of vertices.
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Definition 2.23 (Srong Connectivity of a digraph).

U

V W X

Y

Z

1

A digraph is strongly connected if there is a path between each pair of
vertices.

That is to say it is possible to reach any node starting from any other node
by traversing edges in the direction(s) in which they point.
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Problem 2.11 (Connectivity of a digraph).

U

V W X

Y

Z

1

Are the digraphs above weakly or strongly connected?

Justify your answer.
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Problem 2.12 (Connectivity of a digraph).

U

V W X

Y

Z

1

Are the digraphs above weakly or strongly connected?

Justify your answer.
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Problem 2.13 (Connectivity of a digraph).

U

V

W

X

Y

Z

e1

e2

e3

e4

e5

e6

e7

1

U

V

W

X

Y

Z

e1

e2

e3

e4

e5

e6

e7

1

Are the digraphs above weakly or strongly connected?

Justify your answer.
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Definition 2.24 (Eulerian trail).
A connected graph G is called Eulerian if it contains a closed trail that
includes every edge. Such a trail is called an Eulerian trail.

Definition 2.25 (Hamiltonian Cycle).
A connected graph G is called Hamiltonian if it contains a cycle that includes
every vertex. Such a cycle is called a Hamiltonian cycle.

Problem 2.14 (Eulerian trail/Hamiltonian Cycle).

W B

A E

G C

1

W B

A

G C

1

W B

A

G C

1

Do the above graphs contain Eulerian Trails and/or Hamiltonian Cycles?
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Example: The Königsberg bridge problem

The notion of an Eulerian trail goes back to Leonard Euler, who
solved the so-called Königsberg bridge problem.

The Königsberg bridge problem was the following:

Is it possible to cross each of the seven bridges of Königsberg
exactly once and return to the starting point?
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Euler’s Solution

Leonard Euler solved this problem by the simple observation:

This would only be possible if whenever you cross into a part of the
city you must be able to leave it by another bridge.

Rephrasing this problem in the language of graph theory, we get
the problem of finding an Eulerian trail in the connected graph

Bank A

Bank B

Island C Island D

1
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Euler’s Theorem

The solution to this problem is given by the following theorem.

Theorem 2.26.
A connected graph is Eulerian if and only if each vertex has even degree.

Problem 2.15 (Königsberg bridge problem).

Bank A

Bank B

Island C Island D

1

What are the degrees of the vertices in the graph of the Königsberg bridge
problem?
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Königsberg bridge problem: Solution

Since the degrees of all the vertices in the graph in the Königsberg
bridge problem are not even:

The answer is that it is not possible to cross each of the seven
bridges of Königsberg exactly once and return to the starting point.

Problem 2.16 (Königsberg bridge problem).

The Königsberg bridge problem could have been solved if one bridge was
removed and another added.
Which bridge would you remove and where would you add a bridge?
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