B Do

Evaluation of POFEtic as a Purpose-Built

Evolvable and Growing Hardware Platform

Crispin Cooper, Andy Tyrrell*, SeniorMIEEE, FIEE

Abstract

Currently there are few configurable logic chips suitable for evolvable hardware experimentation,
and even fewer which can support the recent research trend of biological development. This paper
concerns the new POEtic chip, which is designed to support both intrinsic evolution and growth on
one platform. The chip is evaluated from the point of view of research application development:
the implementation process for an evolving digital waveguide mesh is presented in detail, and a
‘growing’ application is also discussed. The chip is found to provide a very flexible platform for

future experiments. The ontogenetic features exhibit extensive research potential.

Index Terms

Evolvable hardware, intrinsic evolution, phylogenesis, ontogenesis, growth, signal processing,

programmable logic, bit serial, optimisation, development tools.

The authors are with the Department of Electronics, University of York, UK. e-mail: amt@ohm.york.ac.uk (corresponding

author), crispin@cantab.net. phone: +44 1904 432361, fax: +44 1904 432335,

January 28, 2005 DRAFT

Evaluation of POEtic as a Purpose-Built

Evolvable and Growing Hardware Platform

I. INTRODUCTION

IT is probably annoying to some researchers that Xilinx no longer manufacture the XC6200. Starting
with Thompson’s work on intrinsic evolution in 1996 [1] the field of Evolvable Hardware benefited
from a chip that firstly had a transparent, open architecture and secondly had a routing plane that,
implemented with multiplexers, could not be easily broken by a random configuration.

On the other hand, research has moved on and perhaps the XC6200 would be of limited use today.
A problem with encoding a circuit directly as a configuration bitstream, as Thompson did, is that
the genetic algorithm search space increases exponentially with the size of the circuit. Thus, the
complexity of problems which can be solved by evolving an XC6200 configuration is limited. For
this reason, evolvable hardware research has now segmented into two approaches: one is to work with
a greater level of abstraction, evolving parameters such as filter coefficients rather than configuration
bits, while the other is to study the biological concept of development (also known as ontogenesis
[2]). The latter is of course the solution nature uses to evolve a complex system: a small cell is
evolved, but this then grows to create a larger organism [3]. The POEtic chip [4] is a new evolvable
hardware platform which has been developed to support both types of research.

The contribution of this paper is to discuss the POEtic chip from a user’s point of view, the design
flow of applications developed on the platform and the advantages and disadvantages of working in
this way. Section II briefly describes the design of the chip and the tools available to developers.
In Section III a novel application is presented in which abstract parameters concerning the shape
of the circuit, rather than logic configuration bits, are evolved to create a waveguide model of the

human vocal tract. In Section IV the design of an ontogenetic application is discussed, and Section

V concludes.

II. THE POETIC CHIP

The POEtic chip was designed in 2003-4 [4], based on a bio-inspired concept originally described
in [5]. This section summarizes the relevant features of the chip as seen from the perspective of the

application developer, instead of the hardware designer.

January 28, 2005 DRAFT

o g O,

AMBA Bus

uP

Fig. 1. Structure of a single POEtic chip as described in [4].

A. Overview

Internally, the POEtic chip consists of a microprocessor connected to an area of FPGA-like
configurable logic called POEtic tissue (Figure 1). All tissue configuration and data bits are directly
accessible to the microprocessor via memory mapping. The processor can also control the tissue clock,
with single-stepping capability. Thus, it is possible to observe in detail the operation of any circuit
running on the tissue. Also, the processor can be used to run a genetic algorithm and intrinsically
evolve circuits. This is facilitated by the inclusion of a hardware random number generator.

The tissue is divided into molecules, each of which can operate in one of several modes. Standard
FPGA functionality is achieved using logic and memory modes, where the molecule functions as (for
example) a 4-bit LUT and ﬂipﬂop; or a 16-bit shift register. However, a number of special modes
also exist to assist with biological-inspired experimentation.

144 molecules are present on each chip. This number seems small in comparison to commercial
FPGAs, but POEtic chips can be seamlessly chained together. If several chips are connected then
all the tissue on all the chips is automatically mapped into the memory of all the microprocessors,

allowing for easy extension of a large design.

B. Routing System

There are two different routing systems on the POEtic chip, (inter)molecular (short-range) and
(inter)cellular (long-range). This terminology derives from considering ontogenetic applications which
consist of a set of cells; these often require short-range routing inside a cell and long-range routing
between cells. However, there is no requirement that an application be divided in this way - “cel-
lularity” is an abstraction which the developer is free to use, but is not necessary for either type of
routing. Still, the routing systems behave in dramatically different ways.

Molecular Routing: is implemented with a switchbox in each molecule (Fig. 2). Any of eight local

inputs can be routed to any of eight local outputs, or to the molecule’s internal logic - the output

January 28, 2005 DRAFT

NORTHIN (1.2) vy

3 &
<
» <

WEST IN (1,2) EASTIN (1,2)

I DOUBLE SWITGH —l

SOUTH OUT (1,2)
A A\ 4

Fig. 2. Example molecular routing switchbox for the two south outputs of a single molecule. A number of similar switches
exist in each molecule, to handle the north, west and east outputs as well as the four inputs to the logic. Thus, up to 8

signals can be passed through the molecule in addition to the molecule performing its own function.

OUTPUT MOLECULE INPUT MOLECULE
CONNECTIONS: CONNECTIONS:
——5paTA DATA —>
IS_CONNECTED =3 1S_CONNECTED =—t+—3>>
——3ACTIVATE ——1—23>ACTIVATE
INTERNAL DATA: INTERNAL DATA:
ADDRESS ADDRESS
(changeable via (changeable via
reconfiguration) raconfiguration)

Fig. 3. Synopsis of the I/O molecules used for cellular routing, showing their connections to the molecular layer.

of which is also available for local routing. Molecular routing cannot cross the boundaries between
different chips.

Cellular Routing: is implemented with the special input and output molecule types (Fig. 3). These
molecules can be assigned arbitrary 16-bit addresses which are connected, on request and at runtime,
to other I/O molecules (Fig. 4). This is achieved with a hardware implementation [6] of Dijkstra’s
routing algorithm [7]. Output molecules are connected to the nearest free input with a matching
address, while input molecules are connected to the nearest matching output. This is also known as
dynamic routing.! Cellular routing connections can cross the gap from one chip to another.

Note that neither type of routing, in any configuration, allows two outputs to be connected together.

This ensures that random circuits created by a GA will not damage the chip.

C. Reconfiguration Capabilities

In order to support circuits modelled on biological development, where cells can change their
functions at runtime, the tissue is extensively reconfigurable:

1) the microprocessor can change molecule configurations at any time, and

! A static routing mode is also available in which cellular connections are treated in the same way as molecular connections.

January 28, 2005 DRAFT

Output
65532
| active

Input
|5532

b, A

A 4

Fig. 4. Example of the cellular routing process. When an output molecule declares itself ‘active’, it is automatically

connected to the nearest input molecule with the same address.

2) molecules can reconfigure one another.

This allows for distributed models of development and fault tolerance. Each molecule is initialised
with a configuration input direction, which specifies a neighbour from which it will accept serial
reconfiguration data. Large configuration chains can thus be set up across the tissue. A partial
reconfiguration option also allows parts of each molecule to be designated non-reconfigurable. Thus,
logic, data, clock synchronisation, reset actions, molecule modes and routing can all be reconfigured

independently.

D. Reconfiguration of Routing

Reconfiguring the molecular routing of one molecule is likely to break the circuit, as the reconfig-
uration process has no respect for existing data sources and destinations. However, if the functionality
of an entire block of circuitry is to be changed, the block reconfiguration data can include the correct

molecular routing.
Reconfiguring the cellular routing is a more robust process. The routing address is simply rewritten,
and a re-route process triggered, thus connecting the reconfigured molecule to the appropriate input

or output automatically - regardless of physical location.

January 28, 2005 DRAFT

E. Development Tools

Two design tools have been developed which assist with the design of circuits on POEtic tissue.

POEticMol: allows direct editing of all the configuration bits of molecules on the tissue. It allows
single-stepping and running of a tissue simulation and includes a tool to automatically create molecular
routes, without configuring the switchboxes by hand.

SchemFEd: is a schematic editor which compiles designs to files readable by POEticMol.

A microcode assembler and C compiler have also been produced for the microprocessor. The

applications described in this paper were created with POEticMol.

III. EVOLUTION OF PARAMETERS: THE DIGITAL WAVEGUIDE MESH APPLICATION

This section discusses the implementation of a parameter-evolving application on POEtic hardware.
The audio and GA aspects of this work are discussed in [8] and [9], while this paper examines the
hardware as a case study of the POEtic design process. It is also a novel type of hardware evolution

in which the circuit shape is changed by the GA.

A. Background

Although electronic speech and singing synthesis has existed since the 1960s, research still con-
tinues into creating realistic, humanlike sounds. It has been shown in [10] that digital waveguide
meshes (DWMs) are a promising area of research for tackling this problem. DWMs allow the creation
of acoustic objects, such as a throat, simply by specifying their physical properties i.e. shape and
boundary characteristics. A simulated throat can then, for example, be excited at the input (larynx)
end with white noise and a whispered sound heard at the output (mouth). This process is effective
in one and two dimensions even though the space being modelled is three-dimensional.

However, the simulation needs real data on the shape of the human vocal tract while in use, and
this is not easily available. fMRI techniques have been used [11] but these do not provide good
temporal resolution and are expensive to undertake for every speaker and singer we wish to recreate
electronically. X-rays have also been used, but there are issues with safe radiation dosage levels [12].

As an alternative approach, we evolve the shape of 2-d electronic vocal tracts until the output
sound matches that of a given singer. As digital waveguide meshes are computationally expensive,
and genetic algorithms compound this problem, it was decided that a hardware implementation of this

on the POEtic platform would be useful for voice research as well as a good test of the capabilities

of POEtic.

January 28, 2005 DRAFT

B. Designing for the POEtic tissue

Our simulation of the vocal tract consists of a number of elements each of which perform a simple
computation [13] on 16-bit two’s complement integers. Scattering Elements have four inputs and one

output, and at each timestep of length At perform the computation described in Equation 1.

=3
Pout(t) = 5 3 Pin(6 ~ At) — P (t — 240 1)
=0

Reflective Elements have one input, one output and a coefficient of reflection). At each timestep

they perform the computation described in Equation 2.
pout(t) = (1 +)‘)pin (t - At) — ADout (t - 2At) @)

It was decided to use cellular routing for inter-element connections (which can thus bridge the
boundaries between chips) and molecular routing for local, intra-element connections. This also means
that the mesh elements can be considered as “cells” in a cellular application. In this way, a simulated
vocal tract can be configured by creating cells of the appropriate type in a position on the tissue

which maps directly to the 2-d structure they represent. The individual “cell types” were designed in

POEticMol.

C. Optimisation
Careful hand-optimisation of the designs is needed in order for the finished circuit to fit onto a
reasonable number of POEtic chips. This is described in detail as for large applications, it is a key

part of the POEtic design process. Optimisation efforts can be categorised as follows:

1) Use of bit-serial representation

2) Reduction of I/O overheads

3) Optimisation of arithmetic

4) Optimisation of logic

5) Use of genetic optimisation

1) Bit Serial Arithmetic: As the logic molecule types support at most 4 inputs and 2 outputs, by far
the most efficient means of transferring and storing data is the bit serial format. A standard parallel
arithmetic system would use many more molecules (see Table I). It would also run at 16 times the
speed - however, this extra speed is not needed. Even a 1MHz clock would support real-time creation
of 48 KHz audio data, and the POEtic clock can run faster than this. Serial implementation is eased

by the availability of the memory molecule type which provides a 16 bit shift register.

January 28, 2005 DRAFT

TABLE I

ESTIMATED NUMBER OF POETIC MOLECULES PER DIGITAL WAVEGUIDE MESH ELEMENT.

Elements/Cell || Parallel arithmetic | Serial arithmetic
1 88 18
4 64 15
9 66 n/c
16 62 n/c
TABLE II

WORD ALIGNMENTS USED IN FIGS. 5 AND 6.

Offset Meaning
0 Word aligned with cell input
3 Word aligned with arithmetic output

16 Word aligned with cell output (Fig. 5)

19 Word aligned with cell output (Fig. 6)

2) I/O overheads: The option of combining several mesh elements into one “cell” was considered.
This cuts down on inter-cell connections, which need two extra molecules per signal (one input and
one output). Also, the bit serial arithmetic in each element requires five molecules of control logic,
and this logic can be shared between elements if they are combined into one cell. However, such
attempts at efficiency greatly increase the complexity of the genetic algorithm, as we must now define
a large number of different cells (representing various combinations of different types of elements),
instead of just two cell types (one for each element). Thus the final design uses only one element
per mesh cell.

3) Optimisation of Arithmetic: Note in Equation 2 that we must multiply arbitrary numbers by A
and 1+), and this potentially requires a large amount of logic. However the specification is flexible:
values of A close to 40.9 are required,? and we implement A = £0.875. This allows calculation of
Equation 2 with only subtraction and bit shifting, as 0.875z = — /8 and x/8 is simply z shifted

by 3 places.

2The outer end of the vocal tract has a negative coefficient of reflection, while the sides have a positive one.

January 28, 2005 DRAFT

store old o/p l

in (offset 0)

N
Multiply (delay,
write padding)

old \ (offset 0)

2in (offset 0)

Divide
(Sign Extend)

Divide
(Sign Extend)

2in —old - ‘sin
(offset 3)
2in - old - Yein + Ykold

match cell I/0 offset Delay (13)

cell output (offset 16 or 0)

or element output

Fig. 5. Un-optimised Logic for a Reflective Cell. As the data is in bit-serial form, signals are annotated with a mathematical

value and an offset for the correct reading of that value. See Table II for a summary of the offsets used.

4) Optimisation of Logic: The logic implementation is bit-serial, as described in [14]. However,
due to the limited quantity of hardware available, it was crucial to make designs as small as possible,
so some standard logic optimisations were performed by hand.

o Where possible, delays in the signal path have been combined as mentioned in [15]. For example,
in Figure 5, the calculation of 2in — out — 1/8in requires the signals representing 2in and out to
be delayed by 3 clock cycles each in order to match the word alignment of 1/8in. This would
require 6 POEtic molecules. But by calculating 2in — out before delays are applied (Figure 6),
the single signal representing the result can be delayed with only 3 molecules.

o Multiplication by 2 (left shifting) has been made more efficient by specifying that there will be
no overflow protection. (Figure 7).

Some nonstandard optimisation techniques are used as well. One of these is, as far as the authors

know, novel and so is described here for completeness. It concerns the multiplication by -0.875 and
+1.875, which is achieved with a special case of the serial-parallel multiplier [16] using only shift

operations. It is found that resource usage can be reduced by the introduction of an extra bit of

January 28, 2005 DRAFT

store old o/p

Sign Extend/

Sign Extend/
[Write Padding

Write Paddian

Yeold

(offset 3)
2in —old - %in

2in - old - Y&in + ‘kold \or element output

match cell I/0 offset

cell output (offset 19 or 0)

Fig. 6. Optimised Logic for a Reflective Cell. As the data is in bit-serial form, signals are annotated with a mathematical
value and an offset for the correct reading of that value. See Table II for a summary of the offsets used. Logic optimisation
has been achieved by (i) combining delay paths, (ii) removing overflow protection, thus replacing multiplication with a
delay, (iii) introducing padding between words, which allows division to be implemented with a single flipflop and (iv)

increasing the word length in order to replace the 13-step delay, which is costly to implement on POEtic, with a 16-step

delay.

padding between words - contrary to intuition, which would suggest that the extra storage flipflops
required would increase resource usage. This situation arises as follows:

1) The circuit contains logic for division or ‘right shifting’, which works by delaying all signals
not being divided, while extending the sign of the numerator signal. As the signals have now
been delayed by different amounts, we risk corrupting the previous output word when we
subsequently add the result of the division to the output (the output’s previous MSB overlaps
with our former LSB). This can be prevented by disabling the adder on cycles where the overlap
occurs, but only at the expense of extra hardware.

2) Instead, we circumvent the problem by introducing padding between words, thus ensuring the
previous word’s MSB remains uncorrupted. However we must guarantee that this padding will
be set to zero (Fig. 8) as the left-shift operation relies on it (Fig. 9). We make no resource gain

in this step as the problem of disabling an adder has been replaced by the problem of setting

a padding bit to zero.

January 28, 2005 DRAFT

10

X1 is delayed by one cycle
old MSB of X1 (new LSB of X2) is set to 0

| word I (input offset0) | | word?2
= AEE? Yl x
E‘ word 1 (output offset 0) i} word 2

Fig. 7. Multiplication (left shifting) of signal X (words X1, X2) by 2. Input and output alignment is the same. Note that

if we specify no overflow protection, we can assume that the old MSB of X1 is zero, so do not need hardware to set this.

former low bits of X1 are “blanked” to become padding

!

& j Y1

sign of X1 must be extended into former padding

word 1 (input offset 0) word 2

1
<

&

X2

X1 i*

-

—
¢

S

—> e
word 1 (output offset 1) * d word 2

all other signals Y arc dclayed by three cycles,
output is defined to be three cycles later

Fig. 8. Division (right shifting) of signal X (words X1, X2) by 2. Input and output alignments differ,

3) However, it is possible to implement both sign extension and setting to zero with the same
flipflop: in one case, the flipflop stores the value of the extended sign and in the other case, it
stores a zero. In both cases, the stored value is written to the signal: the flipflop must simply
be reset every word cycle, in order to replace the ‘sign’ value with zero. The arithmetic carry
flipflops are already reset in this manner so the existing reset control signal can be used.

So we save on one POEtic ‘molecule’ per mesh element - a reduction of approximately 6% - at
the cost of a 6% gain in calculation time (from processing the padding), which we can afford. This
is potentially applicable to any bit-serial application on programmable hardware in which

o both left and right shifts are used,

o a word-cycle reset signal already exists, and

e it is preferable to minimise flipflop usage at the expense of increased calculation time.

In fact, the final design (Fig. 6) uses three bits of padding between words, and this still represents a

resource saving over the no-padding implementation. This is because of the efficiency of implementing

January 28, 2005 DRAFT

11

X1 is delayed by one cycle

X2 is not corrupted as padding contained zero

i S

| word 1 (input offset 0) i, word 2
] i
<= [¥Y x in[Y] x
H T T
| N
:: =: G l‘
v word 1 (output offset 0) 1 word 2

Fig. 9. Multiplication (left shifting) of signal X (words X1, X2) by 2, with padding. Input and output alignment is the

same.

delays of certain lengths on the POEtic hardware (see Table III). In the case of the reflective cells,
w — 3 bits of serial storage are required to hold the cell output, for word length w. This is because
the remaining 3 bits of each word are held in flipflops on the calculation chain. Thus, with w = 19
we can store the result in a 16-bit shift register, requiring only one molecule, whereas w = 17 would
require a 14-bit shift register, using six molecules.

5) Genetic Optimisation: Finally, it is possible to reduce the size of the overall design by restricting
the number of reflective mesh elements (which are costlier to implement than scattering elements).
While a ‘unit’ of mesh boundary should reflect on up to three edges (requiring three elements), it
is possible to reflect on only two out of three and still obtain reasonable audio results. Priority
is given to edges that reflect the sound back towards its source, and then to those that create
tangental standing waves. As is usual with GAs, evolution adapts to find a good solution regardless
of underlying limitations. It is satisfying to note that on a biologically inspired platform, the best

means of optimisation may also be biologically inspired.

D. Conclusions on Parameter Evolution

A system for evolving simulated vocal tracts on POEtic hardware has been developed. The evolu-
tionary approach to this problem currently produces acceptable audio output (Table IV, Fig. 10, [8],
[17]). The logic and routing layers of a sample mesh are shown in Figure 11.

However, the limited hardware resources available, even on a set of ~ 20 POEtic chips, make
the platform non-ideal for research of problems such as this, which require a moderate amount of
hardware (the evolving mesh performs several hundred operations comparable to an integer add, every
19 clock cycles). While implementation may be possible, much time-consuming custom optimisation

is necessary to ensure the circuit can be made small enough to fit on the system.

January 28, 2005 DRAFT

NUMBER OF POETIC MOLECULES NEEDED TO IMPLEMENT A SHIFT REGISTER OF VARIOUS LENGTHS.

January 28, 2005

TABLE III

Length | Molecules
1 1
2 2
3 3
7 7
8 1
9 1

10 2
15 7
16 1
17 1
18 2
19 3

TABLE IV

GA PARAMETERS.

Generations 50
Population 50
Proportion of search space explored 0.2%
Sampling Universal Stochastic
Selection Rank
Mutation Governed by “1/5’ rule
Crossover 0.2

12

DRAFT

13

evolved ——
actual -——--

Ampl. (dB)

L
100 1000
Freq. (Hz)

Fig. 10. Output of a mesh evolved to produce the ‘ii’ vowel, compared to the target ‘ii’ sound recorded in the studio. The

mesh was excited by a real electrolaryngograph signal, which has acoustic properties similar to the excitation produced by

the vocal folds.

The optimisation process has been described in detail in order to illustrate the difficulty of automat-
ing this process. The authors know of no hardware compiler which would, for example, explore the
option of increasing word length and introducing padding between words in order to reduce resource
usage. This is perhaps a worthwhile area of research in itself, if such drastic efficiency measures are
required for any bit-serial programmable logic device.

While the application discussed here has pushed the POEtic architecture to the upper limits of
resource usage, there are plenty of similar evolvable hardware applications which would not do
so. For example, digital filter coefficients (implemented as register values) have been evolved on a
standard FPGA [18]. POEtic offers the designer an advantage over this approach, as wider features
of a circuit (such as the shape), as well as individual coefficients, can be evolved. For applications

well within the resource limits, POEtic offers quick prototyping, easy debugging and above all, fast

online evolution.

IV. BIOLOGICAL GROWTH: DESIGN OF AN ONTOGENETIC APPLICATION

This section briefly describes the development of a ‘growing’ circuit on POEtic tissue. A growing
and evolving circuit, consisting of cells which select their functions at runtime such that the circuit
performs appropriate operations, has already been developed in [19]. In contrast, the application pre-
sented here does not use growth and differentiation in a biological sense but instead uses ontogenetic
features for resource allocation. The task achieved is synthesis of the sound of a plucked string: a
waveguide string [20] of a certain length is needed, and is configured to ‘grow’ onto the POEtic

tissue until the required length is reached. The intention is to test and demonstrate the support for

this provided by the POEtic architecture.

January 28, 2005 DRAFT

14

o
ES838Snaoasanag

HhoE

B B8 ST)
EEEEE

EE

S

000000000000 00000000000 0000

S
E TR 4
messee
=
558
00000000000 D

pRsspReceees
EoCoENEaREss S eaa

% e

H

T

H
i

t’o9 000000

SEEER
SEFRRL

Fig. 11. Logic and routing layers of a mesh evolved to produce the ‘i’ vowel. Little detail can be discerned at this level:
the figure is included primarily to illustrate the POEticMol development tool. The logic layer (left) contains 42 cells (each
4x8 molecules in size); the gaps between areas of logic are included so that no cell is divided by a chip boundary. The
structure of the routing plane, which has emerged at runtime from the addresses set in the cellular routing molecules, is

also visible (right).

Of course, actual online growth of silicon transistors is not possible with current technology. All
the models of growth presented here concern information growth, in which spare, inactive hardware

exists which active hardware can reconfigure and use to ‘grow’ its function.

A. Generic Design for Growth

The fundamental mechanisms provided by POEtic to support all models of ontogenesis are

o self-reconfiguration of the POEtic tissue, and

o the ability to request a connection to the nearest suitable, free input.
Figure 12 illustrates a sample growth process using these features. It is important to note that in
this case, all cells have the same initial address on the dynamic routing plane. The growth step is
always achieved by requesting a connection to this address - which will connect the existing circuit
to the nearest unconnected (i.e. inactive) cell. The new cell may then be reconfigured with a different

functionality and/or address.

January 28, 2005 DRAFT

15

1. Gircuit of matching, generic cell 2. One cell is externally activated

types is created. and configured to perform it's
function.

3. Cell commences function and 4. The other cell is configured to

'decides’ that more cells are extend circuit functionality.

necessary, thus it requests
connection to any unused cell.

5. Adter several iterations, a cell
'decides’ that no further circuitry is
needed and thus terminates the
chain of growth.

Fig. 12. Tllustration of the generic hardware growth process. Steps 2 and 4 are enabled by the reconfiguration capabilities

of the tissue, while step 3 is enabled by the dynamic routing system.

Several variations on this example are possible - for example, the cells could connect to more
cells before deciding on their own function, with each cell thus going through three stages of life:
connection, differentiation and function. This is the approach taken in [19]. Also, it is possible to
evolve the cells rather than design them.

However, it is not compulsory to design in this manner. We choose instead to simply make use
of a key feature of dynamic routing: that the location of a cell performing any particular function is

irrelevant, as it can be automatically connected to other cells as appropriate.

January 28, 2005 DRAFT

16

Fig. 13. Screenshot of the growing waveguide string as seen in POEticMol. The string starts on the bottom left. Thick arrows
represent cellular connections. Growth takes place by forming forward connections, and cells form backwards connections
once they have been activated and the address of their predecessor downloaded. The grey region on the right is intended
to simulate a broken cell, which the growth process does not use (connections pass over it but do not end there). The light

region at the top left represents the routing process searching for the next active cell.

B. The Waveguide String Application

In contrast the processes described in Section IV-A, the waveguide string application includes no
cellular differentiation. Cells simply activate one another in turn, each passing an integer i to the next
cell activated, which represents

1) the number of cells still needed, and

2) the address of the current cell.

Each activated cell calculates the value of ¢ — 1 to use as its own address. It reconfigures its routing
molecules to form backwards connections to the cell which activated it, and if ¢ > 0, requests an
ongoing connection to continue the chain of cells - down which it sends the new value of 3. If s = 0
the chain is terminated and circuit function can begin.

This is by no means the simplest way of simulating a plucked string! However, the approach
generalises to other problems of resource allocation. Also, the resource allocation is distributed, and
this is a useful feature if cells are built to include self-test: we can then prevent faulty cells from
activating. This greatly reduces the number of potential points of failure in the circuit (though it
should be noted that the current implementation of the POEtic tissue contains a number of possible
single-points-of-failure, such as a global clock). A full study of fault-tolerant mechanisms on the

POEtic tissue has been conducted by Barker [21].

January 28, 2005 DRAFT

17

C. Conclusions on Ontogenesis

The application has been shown to be feasible (a snapshot of string growth in progress is given in
Figure 13). One point to note is debugging circuits that grow in this way is a difficult task: perhaps
generic tools to support analysis and debugging of this kind of application would be helpful.

The growth process is extremely rapid. It would be possible, for example, to create a synthesiser
which individually ‘grows’ the functionality required to play every requested note, in real time.
However, there is a difficulty with this approach: resources must be de-allocated as well as allocated,
and the methods for doing this are not so well supported. Deallocation requires the breaking of routing
connections, and currently, dynamic connections can only be broken by a global re-route. This would
reconnect all input and output molecules with matching addresses. The process is not only inefficient,
but also breaks certain types of circuit.

In particular, the growth mechanisms mentioned here rely on non-unique I/O addresses, which are
connected on a nearest-free-neighbour basis. If the state of any cells change, and then a global re-
route is triggered, we cannot guarantee that the same nearest-free-neighbours will still exist. Thus the
re-routed circuit may undergo unintended functional change - effectively destroying the application.

It is, nevertheless, possible to design applications which are robust to the re-routing process (at the
price of increased resource usage). But the authors suggest that it would be useful for future hardware
systems supporting ‘cell growth’ to consider also supporting its biological counterpart, ‘cell death’

or the breaking of dynamic connections.

V. CONCLUSIONS

POEtic has been found to be a useful tool for evolution of parameters in hardware, allowing not
only the changing of register values by a GA but also wider configuration aspects of the system
such as the shape or connectivity of a circuit. Although chips can be seamlessly chained together,
the hardware resources available on POEtic are limited - as with any hardware device. Optimising
resource-hungry circuits to fit onto the hardware is difficult, indeed it is not clear how to design
automated tools for this task. However, many applications do not require vast amounts of resources
and will benefit from the rapid online evolution and debugging offered by the POEtic platform.

Also, the features implemented to support growth (dynamic routing and reconfigurability) are found
to function well. Such systems are in their infancy and the platform represents a considerable advance.
However, it is found that a process analogous to biological ‘cell death’ - i.e. the ability to break as
well as form dynamic connections - may be of advantage on next-generation systems of this type.

Currently, there is no standard development paradigm for ontogenetic circuits. It is not clear how

concepts such as dynamic routing and self-reconfiguration can be supported inside the traditional

January 28, 2005 DRAFT

18

development framework of schematic editors and hardware description languages. The POEtic devel-
opment tools allow use of these features only by direct manipulation at the hardware configuration
(‘molecular’) level: the schematic editor developed on the project does not support use of reconfig-
uration and dynamic routing features, but is only intended to assist with the design of traditional
logic components. Incorporation of these novel features into the traditional hardware development
environment may be an important area of future research.

A very interesting potential application of the POEtic platform is in unconstrained evolution. In
1996, Thompson [1] evolved remarkably efficient hardware designs which would likely never have
been conceived by a human engineer. However, such circuits were limited in complexity by the
mapping from genotype (circuit representation) to phenotype (circuit) - as the configuration bits
are stored directly in the genome, the genetic search space increases exponentially with the size
of the circuit. POEtic’s ontogenetic features, combined with evolution, may be able to overcome
this limitation, either through hand-designed growth mechanisms inspired by nature or by allowing
unconstrained evolution to exploit the routing and reconfiguration features in its own way. Such work

may push the complexity of automatically designed electronics to the next level.

ACKNOWLEDGMENT

This project is funded by the Future and Emerging Technologies programme (IST-FET) for the
European Community, under grant IST-2000-28027 (POETIC). The information provided is the sole
responsibility of the authors and does not reflect the Community’s opinion. The Community is not

responsible for any use that might be made of data appearing in this publication.

REFERENCES

[1] Thompson, A. “Silicon Evolution” Genetic Programming 1996: Proc. 1st Annual Conf (GP96) MIT Press, Cambridge,
Massachusetts, USA, 1996, 444-452.

[2] Sipper, M., Sanchez, E., Mange, D. et al “A Phylogenetic, Ontogenetic and Epigenetic View of Bio-Inspired Hardware
Systems” IEEE Transactions on Evolutionary Computation, 1:1, April 1997, 83-97.

[3] Wolpert, L. Principles of Development Oxford University Press, 1998, ISBN 0-19-850263-X.

[4] Thoma, Y., Tempesti, G., Sanchez, E., Moreno Arostegui, J.-M. “POEtic: An Electronic Tissue for Bio-Inspired Cellular
Applications” BioSystems 74: 1-3, 2004, 191-200.

[5] Tempesti, G., Roggen, D., Sanchez, E., Thoma, Y., Canham, R., Tyrrell, A., Moreno, J.-M. “A POEtic Architecture for
Bio-Inspired Systems” Proc. 8th Int. Conf. of Artificial Life VIII, MIT Press, Cambridge, Massachusetts, 2002, 111-115.

[6] Thoma, Y., Sanchez, E., Moreno Arostegui, J.-M., Tempesti, G. “A Dynamic Routing Algorithm for a Bio-Inspired
Reconfigurable Circuit” Proc. of the 13th International Conference on Field Programmable Logic and Applications
(FPL’03) Springer Verlag, 2003, 681-690

[7] Dijkstra, E.W. “A Note on Two Problems in Connexion with Graphs” Numerische Mathematik 1, 269-271, 1959.

January 28, 2005 DRAFT

19

[8] Cooper, C., Murphy, D., Howard, D., Tyrrell, A. “Singing Synthesis with an Evolved Waveguide Mesh Model” Awaiting
review for IEEE Trans. Speech and Audio Processing, 2005.

[9] Cooper, C., Howard, D., Tyrrell, A.: “Using GAs to Create a Waveguide Model of the Oral Vocal Tract,” Applications
of Evolutionary Computing, Proceedings of EvoWorkshops 2004 Coimbra, 280-288, 2004.

[10] Mullen, J., Howard, D.M. and Murphy, D.T., “Digital waveguide mesh modelling of the vocal tract acoustics,” IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics, 119-122, 2003.

[11] Story, B.H., Titze, LR., and Hoffman, E.A., “Vocal tract area functions from magnetic resonance imaging,” Journal
of the Acoustical Society of America, 104, (1), 471-487, 1996.

[12] Story, B.H., “Using imaging and modelling techniques to understand the relation between vocal tract shape to acoustic
characteristics,” Proceedings of the Stockholm Music Acoustics Conference, SMAC-03, 435-438, 2003.

[13] Van Duyne, S., Smith, J.O., “The 2-d digital waveguide mesh,” Proceedings of IEEE WASPAA, NY, USA, September
1993.

[14] Denyer, P. and Renshaw, D: V.L.S.I. signal processing: a bit-serial approach, Addison-Wesley, 1985, ISBN 0201144042

[15] Isshiki, T. and Dai, W.: “High-Level Bit-Serial Datapath Synthesis for Multi-FPGA Systems,” ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, Monterey, CA, 1996, 167-173.

[16] Andraka, R. “FIR filter fits in an FPGA using a bit serial approach,” Proceedings of the Third Annual PLD Design
Conference and Exhibit, March 1993. Available online: http://www.andraka.com/files/fir.pdf

[17] Availible online: http://www.bioinspired.com/users/cc26/poeticaudio/

[18] Zhang, Y., Smith, S., Tyrrell, A. “Intrinsic Evolvable Hardware in Digital Filter Design” Applications of Evolutionary
Computing, Proceedings of EvoWorkshops 2004 Coimbra, 2004.

[19] Roggen, D., Thoma, Y., Sanchez, E. “An Evolving and Developing Cellular Electronic Circuit” Proc. Ninth
International Conference on the Simulation and Synthesis of Living Sysz:ems (ALIFE9) MIT Press, Cambridge,
Massachusetts, USA, 2004, 33-38.

[20] Smith, J. “Physical Modeling using Digital Waveguides” Computer Music Journal, 16, 3, 74-91, 1992.

[21] Barker, W., Tyrrell, A. “Fault Tolerance using Dynamic Reconfiguration on the POEtic Tissue” to be submitted to
IEE Proc. Computing and Digital Techniques, 2005.

January 28, 2005 DRAFT

