Martin Caminada¹ and Bart Verheij²

¹Prifysgol Caerdydd ²Rijksuniversiteit Groningen

The sembuster example in its current form (as illustrated on the right) has been taken from [1], although it originates from work that was done in the context of DEFLOG [2, 3]. The idea is that there is a set of arguments $\{A_1, \ldots, A_n\} \cup \{B_1, \ldots, B_n\} \cup \{C_1, \ldots, C_n\}$ where n is some positive integer. Each A_i attacks itself. Each C_i attacks B_i , and each B_i attacks A_i and C_i as well as each A_j and B_j with j < i.

When considered from the perspective of argument labellings under complete semantics, it becomes clear that at most one *B*argument can be labelled in. Hence, the sembuster example has n + 1 complete labellings. The first labelling labels B_1 in and all

the other *B*-argument out (this implies that C_1 is labelled out and all other *C*-arguments are labelled in, and that A_1 is labelled out and all the other *A*-arguments are labelled undec). The second labelling labels B_2 in and all the other *B*-arguments out (this implies that C_2 is labelled out and all other *C*-arguments are labelled in, and that A_1 and A_2 are labelled out and all the other *A*-arguments are labelled undec), etc. In this way, *n* complete labellings can be constructed. An additional complete labelling can be constructed by labelling each *B*-argument out (this implies that each *C*-argument is labelled in and each *A*-argument is labelled undec). This brings the total number of complete labellings to n + 1.

In the sembuster example, each complete labelling is also a preferred labelling. However, only one complete labelling (the one that labels B_n in) is a semi-stable labelling.¹ When n is relatively big, this means that there are many preferred labellings, but still only one semi-stable labelling. This shows that finding a semi-stable labelling by first trying to find all preferred labellings might not be an efficient approach. Solvers that try to do so can be expected to show a really bad performance on the sembuster example.

Relevant solver questions: (1) give one semi-stable labelling, (2) give all semi-stable labellings, (3) is argument B_n labelled in by one (or all) semi-stable labellings (answer: yes), and (4) is argument B_j (j < n) labelled in by one (or all) semi-stable labellings (answer: no).

References

- M.W.A. Caminada and B. Verheij. On the existence of semi-stable extensions. In G. Danoy, M. Seredynski, R. Booth, B. Gateau, I. Jars, and D. Khadraoui, editors, *Proceedings of the 22nd Benelux Conference on Artificial Intelligence*, 2010.
- [2] B. Verheij. DEFLOG a logic of dialectical justification and defeat. Technical report, Department of Metajuridica, Universiteit Maastricht, 2000.
- [3] B. Verheij. DEFLOG: on the logical interpretation of prima facie justified assumptions. Journal of Logic and Computation, 13:319–346, 2003.

¹In [1] $n = \infty$, which would lead to an infinite argumentation framework without semi-stable labellings.