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Abstract

In abstract argumentation theory, preferred semantics has become one of the most popular ap-
proaches for determining the sets of arguments that can collectively be accepted. However, the

description of preferred semantics, as it was originally stated by Dung, has a mainly technical and
mathematical nature, making it difficult for lay persons to understand what the concept of preferred
semantics is essentially about. In the current paper, we aim to bridge the gap between mathematics
and philosophy by providing a reformulation of (credulous) preferred semantics in terms of Socratic
discussion. In order to do so, we first provide a (semi-)formal treatment of some of the concepts in
Socratic dialogue.

1 Introduction

The field of formal argumentation, as a branch of non-monotonic reasoning, can be
traced back to the work of Pollock [39, 40], Vreeswijk [47, 48], and Simari and Loui[44].
The idea is that (nonmonotonic) reasoning can be performed by constructing and eval-
uating arguments, which are composed of a number of reasons for the validity of a
claim. Arguments distinguish themselves from proofs by the fact that they are defea-
sible, that is, the validity of their conclusions can be disputed by other arguments.
The question of whether a claim can be accepted therefore depends not only on the
existence of an argument that supports this claim, but also on the existence of pos-
sible counterarguments, that can then themselves be attacked by counterarguments,
etc.3

1The major part of the work on this paper was carried out while MC was affiliated with the Interdisciplinary

Centre for Security, Reliability and Trust at the University of Luxembourg
2The major part of the work on this paper was carried out while SV was affiliated with the Computer Science

and Communication Research Unit at the University of Luxembourg.
3A different branch of argumentation theory is concerned with the dialectical process between two parties who

are involved in a discussion. This kind of argumentation, referred to as dialogue theory in the ASPIC project [1],

can be traced back to the work of Hamblin [23, 24] and Mackenzie [31, 32]. One of the aims of the current paper is

1 c© Oxford University Press
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Nowadays, much research on the topic of argumentation is based on the abstract
argumentation theory of Dung [18]. The central concept in this work is that of an ar-
gumentation framework, which is essentially a directed graph in which the arguments
are represented as nodes and the attack relation is represented by the arrows. Given
such a graph, one can then examine the question on which set(s) of arguments can
be accepted: answering this question corresponds to defining an argumentation se-
mantics. Various proposals have been formulated in this respect, like Dung’s original
notions of grounded, complete, stable and preferred semantics [18], as well as subse-
quently stated approaches such as stage [46, 10], semi-stable [46, 7], ideal [17] and
eager semantics [8]. Many of these semantics, however, have originally been defined
in terms of mathematical constructs like acceptability, monotonic functions, smallest
fixpoints, etc. The challenge, however, is to translate the theories stated in the field of
formal argumentation into a form that is easier to be understood by lay people, who
do not necessarily have an immediate understanding of the mathematical constructs
on which these theories are based. That is, in order for formal argumentation theories
to be implemented and applied in settings with end-users, it can be beneficial if these
end-users can be given at least a conceptual understanding of the underlying theories
that have been implemented in the software they are working with.
As for the topic of loop-handling, it can be observed that all the above mentioned

argumentation semantics coincide for argumentation frameworks that are free of loops
(directed cycles). Hence, the essential difference between the various semantics is how
they deal with loops. In the current paper, we examine one of the most established
ways of doing so: preferred semantics. Also, we observe how to avoid loops causing
an infinite discussion (basically by disallowing participants to ask the same question
twice, see Section 4).
In the current paper, we provide a description that is aimed at achieving this.

We focus on one of the mainstream semantics for abstract argumentation: preferred
semantics. Our aim is to show that the question of whether or not an argument is in at
least one preferred extension can be described in terms of a Socratic form of discussion,
in which a proponent (the defender of the claim that the particular argument is in
at least one preferred extension) tries to avoid being led to a contradiction by the
opponent (who essentially plays the role of Socrates in a Socratic discussion).
The remaining part of this paper is structured as follows. First in Section 2 we

provide an overview of the concept of preferred semantics, as it has been treated in
the literature of formal argumentation. Then in Section 3 we provide a semi-formal
analysis of Socratic discussion, based on the work of Caminada [5, 9]. In Section
4 we subsequently show how the notion of Socratic discussion can be applied to
(credulous) preferred semantics. That is, we show that the discussion on whether or
not a particular argument is in at least one preferred extension can be described as a
special form of Socratic discussion. In Section 5, we then examine the role of a winning
strategy, and show how it relates to the concept of an admissible set. In Section 6,
we examine the computational complexity of some of the relevant decision problems
and construction problems. In Section 7 we treat three other kinds of argumentation
semantics (stable, ideal and grounded) and examine what are the types of discussions
that these semantics can be regarded to correspond with. We then round off with a
summary of the main results, and some considerations for possible applications.

to examine how these two branches of argumentation theory (NMR and dialogue) overlap.
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2 Preferred Semantics

In this section, we briefly restate some of the basic definitions of preferred semantics.
Our aim is to treat both Dung’s original extension-based definition [18] and Caminada
et al’s reformulation of preferred semantics in terms of argument labellings [6, 13].

Definition 2.1

An argumentation framework is a pair (Ar , att) where Ar is a set of arguments and
att⊆Ar×Ar .

Definition 2.2

Let B ⊆ Ar be a set of arguments. We define:

• B+ = {A ∈ Ar | ∃A′ ∈ B s.t. A′ att A}

• B− = {A ∈ Ar | ∃A′ ∈ B s.t. A att A′}

In the current paper, we assume the set of arguments in the argumentation framework
to be finite. We say that argument A attacks argument B iff (A,B)∈att .
An argumentation framework can be represented as a directed graph in which the

arguments are represented as nodes and the attack relation is represented as arrows.
In several examples throughout this paper, we will use this graph representation.
We are now ready to treat Dung’s original description of preferred semantics.4

Definition 2.3

Let (Ar , att) be an argumentation framework.

• Args ⊆ Ar is conflict-free iff there exist no A,B ∈ Args such that A attacks B.

• Args ⊆ Ar defends A ∈ Ar iff for each B ∈ Ar that attacks A, there exists a
C ∈ Args that attacks B.

Definition 2.4

Let (Ar , att) be an argumentation framework. Args ⊆ Ar is admissible iff it is
conflict-free and defends each of its elements.

Definition 2.5

Let (Ar , att) be an argumentation framework. Args ⊆ Ar is a preferred extension iff
it is a maximal (w.r.t. set inclusion) admissible set.

Where Dung’s original approach of argument-based extensions focusses on the ar-
guments that are accepted, the approach of argument labellings [46, 25, 40] also takes
into account the arguments that are rejected. In this paper, we will use the particular
labellings approach of Caminada [6] and Caminada and Gabbay [13], which assigns
to each argument exactly one label: in (to indicate that the argument is accepted),
out (to indicate that the argument is rejected) or undec (to indicate that one does
not have an explicit opinion on whether the argument is accepted or rejected).

Definition 2.6

Let (Ar , att) be an argumentation framework. A labelling is a (total) function Lab :
Ar −→ {in, out, undec}.

4We use the term defends instead of acceptable since in our view, the former term is somewhat closer to the

intuitions behind the concept the terms refer to.
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We write in(Lab) for {A | Lab(A) = in}, out(Lab) for {A | Lab(A) = out} and
undec(Lab) for {A | Lab(A) = undec}.
Although a labelling by itself allows for arbitrary positions on which arguments are

accepted, rejected and abstained from having an opinion about, some of these posi-
tions are more reasonable than others. One possible criterion on whether a position
is reasonable (“admissible”) or not is whether one can explain each argument one ac-
cepts (because all attackers are rejected and hence neutralized) and whether one can
explain each argument one rejects (because it has at least one attacker one accepts,
causing the attacked argument out of force). This is made formal in the following
definition.

Definition 2.7

Let Lab be a labelling of argumentation framework (Ar , att). Lab is an admissible
labelling iff for each argument A ∈ Ar it holds that:

• if Lab(A) = in then ∀B ∈ Ar : (BattA ⊃ Lab(B) = out)

• if Lab(A) = out then ∃B ∈ Ar : (BattA ∧ Lab(B) = in)

Definition 2.8

Let Lab be a labelling of argumentation framework (Ar , att). Lab is a preferred
labelling iff it is an admissible labelling where in(Lab) and out(Lab) are maximal
(w.r.t. set inclusion) among all admissible labellings.

From the results by Caminada and Gabbay [13] it follows that a different way
to characterise a preferred labelling is as an admissible labelling where in(Lab) is
maximal, or alternatively as an admissible labelling where out(Lab) is maximal. That
is, for admissible labellings the maximality of the set of in-labelled arguments implies
the maximality of the set of out-labelled arguments, and vice versa.
There exists a clear overlap between admissible labellings and admissible sets. An

admissible set is simply the set of in-labelled arguments of an admissible labelling.
Similarly, a preferred extension is simply the set of in-labelled arguments of a pre-
ferred labelling. A more detailed treatment of the overlap between labellings and
extensions can be found in the work of Caminada and Gabbay [13].

3 Socratic Argumentation

Although Dung’s theory allows the internal structure of an argument to remain com-
pletely abstract, many formalisms of argumentation (such as described by Vreeswijk
[47], Caminada and Amgoud [12], Wu, Caminada and Gabbay [52] and Prakken [41])
regard an argument as a structured chain of rules. An argument usually begins with
one or more premises — statements that are simply regarded as true by all involved
parties, such as directly observable facts. After this follows the repeated application
of various rules, which generate new conclusions and therefore enable the application
of additional rules. An example of such an argument is as follows:

“Sjaak probably went to the football game, since people claim his car was
parked nearby the stadium, and Sjaak is known to be a football fan.”

claimed(car at stadium), football fan ,
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claimed(car at stadium) ⇒ car at stadium,
car at stadium ∧ football fan ⇒ at game

Arguments are often defeasible, meaning that the argument by itself is not a conclusive
reason for the conclusions it brings about. Whether or not an argument should
be accepted depends on its possible counterarguments. For the above argument, a
possible counterargument could be:

“Sjaak did not go to the football game, since his friends claim he was watching
the game with them in a bar.”

friends claim(at bar),
friends claim(at bar) ⇒ at bar ,
at bar → ¬at game

It then depends on the relative strength of the arguments to determine which one
attacks the other one [41].
Many systems for formal argumentation take arguments to be grounded in premises;

that is, each rule of the argument is ultimately (directly or indirectly) based on
premises only. In human argumentation, however, one can often observe arguments
which are not based on premises only, but which are at least partly based on the
conclusions of the other person’s argument. As an illustration, consider the following
example of a discussion between the opponent and proponent of a particular thesis:

P: “Guus did not go to the game because his mobile phone record shows he
was in his mother’s house at the time of the game.”

phone record ,
phone record ⇒ at mothers house(phone),
at mothers house(phone) ⇒ at mothers house(Guus),
at mothers house(Guus) → ¬at game(Guus)

O: “Then he would not have watched the game at all, since his mother’s TV
has been broken for quite a while. Don’t you think that’s a little odd? Guus
is known to be a football fan and would definitely have watched the game.”

football fan(Guus),
at mothers house(Guus) ⇒ ¬watch game(Guus),
football fan(Guus) ⇒ watch game(Guus)

Here, the opponent takes the propositions as uttered by the proponent as a starting
point and then uses these to (defeasibly) derive a contradiction, thus illustrating the
(implicit) absurdity of the proponent’s original argument.

Socrates and the elenchus

The idea of taking the other party’s opinion and then deriving a contradiction (or
something else that is undesirable to the other party) is not new. One of the first
well known examples of this style of reasoning can be found in the philosophy of
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Socrates, as written down by Plato. Socrates’s form of reasoning — also called the
elenchus — consists of letting a proponent make a statement, and then taking this
statement as a starting point to derive more statements, each of which the proponent
will be committed to. The ultimate aim is to let the proponent commit himself to
a contradiction, which shows that the beliefs the proponent uttered in the dialogue
cannot hold together and the position as a whole should therefore be rejected.
As an example of how Socrates’s form of dialectical reasoning worked, consider

the following dialogue, in which Socrates questions Menexenus about the nature of
friendship [37, pp. 212-213]

(...) Answer me this. As soon as one man loves another, which of the two
becomes the friend? the lover of the loved, or the loved of the lover? Or does
it make no difference?

None in the world, that I can see, he replied.

How? said I; are both friends, if only one loves?

I think so, he answered.

Indeed! is it not possible for one who loves, not to be loved in return by the
object of his love?

It is.

Nay, is it not possible for him even to be hated? treatment, if I mistake not,
which lovers frequently fancy they receive at the hands of their favourites.
Though they love their darlings as dearly as possible, they often imagine that
they are not loved in return, often that they are even hated. Don’t you believe
this to be true?

Quite true, he replied.

Well, in such a case as this, the one loves, the other is loved.

Just so.

Which of the two, then, is the friend of the other? the lover of the loved,
whether or not he be loved in return, and even if he be hated, or the loved of
the lover? or is neither the friend of the other, unless both love each other?

The latter certainly seems to be the case, Socrates.

If so, I continued, we think differently now from what we did before. Then it
appeared that if one loved, both were friends; but now, that unless both love,
neither are friends.

Yes, I’m afraid we have contradicted ourselves.

Socrates’s method is that of asking questions. The questions, however, are often
meant to direct the dialogue partner into a certain direction. It is the questions that
force the dialogue partner to make certain inferences, as these seem to logically follow
from the dialogue partner’s own position. The inferences are not deductive, as they
are usually based on common sense and what is reasonable. The inference is therefore
more of a defeasible than of a purely deductive nature.
Socrates’s elenchus is not meant for the derivation of new facts. On the contrary, its

purpose is primarily destructive, meant to destroy someone’s pretension of knowledge
[34]. In “The Sophist”, Plato provides the following definition of the elenchus [38]:

They [those that apply the elenchus] cross-examine a man’s words, when he
thinks that he is saying something and is really saying nothing, and easily
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convict him of inconsistencies in his opinions; these they then collect by the
dialectical process, and placing them side by side, show that they contradict
one another about the same things, in relation to the same things, and in the
same respect. He, seeing this, is angry with himself, and grows gentle towards
others, and thus is entirely delivered from great prejudices and harsh notions,
in a way that is most amusing to the hearer, and produces the most lasting
effect to the person who is the subject of the operation.

The destruction of knowledge is best pursued by showing it to be incompatible with
other knowledge, as argued by [36, p. 24]:

How do we disqualify a fact or truth? The most effective way is to show its
incompatibility with other facts and truths which are more certainly estab-
lished, preferably with a bundle of facts and truths which we are not willing
to abandon.

Of course, an obvious way to show incompatibility is by means of a classical (standard)
counterargument, but there are also forms of incompatibility that require argumen-
tation beyond classical arguments.
As an aside, there exists an alternative opinion on what the purpose of Socratic

dialogue is. For instance, Walton [50] argues that one of the positive outcomes of the
elenchus is that it can cause a participant to reconsider and refine his original position.
This is in line with the view of Robinson [43], who states that “Plato quite evidently
thinks of dialectic as a method of discovery as much as a method of teaching.” The
idea is that not only the participant that was refuted, but also anyone who reads the
dialogue once it has been transcribed in a written form, can learn from it by seeing how
refinement is needed (for instance, by accepting exceptions to general rules) regarding
the initially simplistic positions that were put forward at the beginning stage of the
dialogue, in order to make these positions more defensible and less open to attack by
Socratic probing.5 However, one should keep in mind that this refinement only takes
place in a broader context, outside of the scope of the original dialogue itself. Since
our aim is to describe the process of Socratic dialogue itself (so that we can later
use it to describe the discussion game of preferred semantics) we restrict ourselves to
study the more limited aim of refutation.

Some modern examples

The kind of reasoning in which one confronts the other party with the (defeasible)
consequences of its statements is still widely used in modern times. Consider the
following dialogue between politician P and interviewing journalist J:

P: In two years time, the waiting lists in health care will be as good as
resolved.

J: Then you are actually saying that the insurance fees will be increased,
because the government has already decided not to put more money into
the health care system, and you have promised not to lower the coverage
of the standard insurance.

5We thank one of the anonymous reviewers for this insight.
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In general, one may say that in many of today’s interviews where the interviewer takes
a critical stance, the interviewer tries to force the interviewee to draw conclusions or
make statements that the interviewee may wish to avoid. A similar phenomenon can
be observed in legal cross-examination, as is for instance studied by Dunne et al [20].
In recent philosophical literature, Skidmore discusses the issue of transcendental

arguments, which are meant to combat various forms of (philosophical) scepticism.
The aim of a transcendental argument is “to locate something that the sceptic must
presuppose in order for her challenge to be meaningful, then to show that from this
presupposition it follows that the skeptic’s challenge can be dismissed.” [45, p. 121].
Skidmore gives various (rather long) examples of these kind of arguments — we will
not repeat them here.
To summarize, the technique of using statements from the other party’s argument

against him is still common in modern times, both in popular as well as in philosoph-
ical argumentation. Therefore, the question of how these arguments can be formally
modelled is a relevant one.

Analysis

Although a complete formal model of Socratic dialogue is outside the scope of the
current paper, we would like to give a brief treatment of some of the conceptual
issues. In the following examples of formal dialogue, we use the moves as have been
described by Mackenzie [31]. To enhance the readability of the examples, we also use
an explicit “concede” statement, with which a party indicates agreement with the
other party. To illustrate the workings of (traditional) formal dialogue, consider the
following example, where the proponent (P) argues that there will be a tax relief (tr)
because some leading politicians made the promise to do so (pmp).

Example 3.1

P: claim tr CP (tr)
“I think that there will be a tax relief.”

O: why tr

“Why do you think so?”
P: because pmp ⇒ tr CP (pmp, tr)

“Because of the fact that the politicians made a promise.”
O: concede tr CO(tr)

“OK, you are right.”

Each move in a dialogue game consists of a speech act, like claim (for claiming a
proposition), why (for questioning a proposition), because (for supporting a proposi-
tion) or concede (for admitting a proposition endorsed by the other party). A central
notion in a dialogue system is that of a commitment. A commitment is a party’s
“official” standpoint in the dialogue, it is what the party is bound to defend when it
is questioned or attacked [51].6

6Walton and Krabbe [51] distinguish three types of commitment: assertions, concessions and dark-side commit-

ments. In their typology, only the assertions come with the obligation to defend them when challenged. We refer

to [51] for details.
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In the above dialogue the opponent concedes the main claim, so the proponent wins
the dialogue. If, during the course of a dialogue, parties can confront each other with
the (defeasible) consequences of their opinions, then a different dialogue may result.
In the following example, we assume that a budget deficit (bd) can lead to a fine from
the EU (feu), therefore ruling out the possibility of any durable tax relief.

Example 3.2

P: claim tr CP (tr)
“I think that tr.”

O: but-then tr ⇒ bd CO(CP (bd))
“Then you implicitly also hold that bd.”

P: concede bd CP (tr, bd)
“Yes I do.”

O: but-then bd ⇒ feu CO(CP (feu))
7

“Then you implicitly also hold that feu.”
P: concede feu CP (tr, bd, feu)

“Yes I do.”
O: but-then feu ⇒ ¬tr CO(CP (¬tr))

“Then you implicitly also hold that ¬tr.”
P: concede ¬tr CP (tr, bd, feu,¬tr)

“Oops, you’re right; I caught myself in...”

Here, much akin to the Socratic dialogue treated earlier, the opponent wins the dia-
logue because the opponent forces the proponent to commit himself to an inconsis-
tency.
A key feature in the above dialogue is the but-then statement, with which the

opponent confronts the proponent with the defeasible consequences of the proponent’s
commitments. A but-then statement is a special form of claim, in which the speaker
does not become committed himself to the consequent of the rule being claimed
applicable. In general, in order to use a “but-then ψ1∧ . . .∧ψn ⇒ φ”, the other party
has to be committed to ψ1 ∧ . . .∧ ψn. The immediate aim of a but-then statement is
to commit him to φ as well. The final aim is then to get the other party to the point
where it is obvious that his commitments are inconsistent.
Notice that the immediate effect of a but-then statement is a nested commitment,

as is for instance shown on the second line of the above dialogue. Although this may
appear odd at first, it is in fact the most appropriate way to describe the effects of
the but-then statement in terms of commitments. When O says: “if you endorse
tr then you actually also endorse bd, don’t you?” then what is it that O becomes
committed to? The first thing to notice is that O does not necessarily endorse bd

himself, so it does not hold that CO(bd). Furthermore, it goes too far to immediately
have P committed to bd; the rule “tr ⇒ bd” is defeasible and P may defend himself
by giving a reason (an undercutter) why this rule does not apply (an example of this
will be treated further on). Therefore, it also does not hold that CP (bd). The only
thing that can be said regarding the but-then statement is that O claims the bd is
implicitly endorsed by P. Therefore, it holds that CO(CP (bd)).

7we no longer explicitly mention CO(CP (bd)) since it already holds that CP (bd)
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An interesting question is how the style of reasoning of the “because” statement
can be compared with that of the “but-then” statement (see also Figure 1):

1. With the because statement, reasoning goes backwards ; the party being questioned
tries to find reasons to support its thesis. With the but-then statement, on the
other hand, reasoning goes forward ; the party being questioned can be forced to
make additional reasoning steps.

2. With the because statement, the proponent of a thesis (like φ in Figure 1) tries
to find a path (or tree) from the premises to φ (the opponent’s task is then to try
to attack this path). With the but-then statement, on the other hand, it is the
opponent of the thesis that tries to find a path (or tree).8

3. The path (or tree) constructed using because statements should ultimately origi-
nate from statements that are accepted to be true (such as premises), whereas the
path constructed using but-then statements should ultimately lead to statements
that are considered false (contradictions)

4. With a successfully constructed because path (or tree), both the proponent and
opponent become committed to the propositions on the path, whereas with a suc-
cessfully constructed but-then path (or tree), it is possible that only the proponent
becomes committed to the propositions on the path.

because because because but-then but-then but-then

Fig. 1. “because” versus “but-then”

In the above analysis, it appears that an opponent of φ has two options: either
trying to construct a but-then path from φ, or trying to prevent the proponent from
successfully constructing an unattacked because path. These strategies can sometimes
also be combined.
The use of a but-then statement does not automatically lead to a new commitment

on the side of the other party. Sometimes, it can be successfully argued why the
counterparty does not have to become committed. To illustrate why, consider again
the tax-relief example, but now with the extra information that because of the current
financial crisis (fc) the EU no longer gives any fines to member states with budget
deficits. Thus, the rule bd ⇒ feu can now be undercut.

8It should be noted that some of the differences between our approach and for instance the approach of [26]

are related to the respective roles of the proponent and opponent. In our approach, the party that puts forward a

claim is called the proponent, and the party that questions it is called the opponent. In the approach of [26, 27],

something subtly different happens. A particular party called “Black” is assumed to have a particular background

theory, like a philosophical system. Another party called “White” challenges this background theory by uttering a

provocative thesis that is claimed to follow from the background theory of White, and that White would be eager to

avoid. The idea is then to apply the dialogue game of [29, 30] with the provocative thesis as a starting point, that

is, with the party that utters the provocative thesis in the role of proponent, and the party that tries to avoid it (by

questioning it) in the role of opponent. However, when it comes to the feasibility of the background theory (which,

in the end, is what the discussion is all about) one could argue that it is Black that should be called the proponent

and White that should be called the opponent. Part of the resulting confusion can be attributed to the approach

in [26, 27] of trying to reapply an existing dialectical formalism (such as [29, 30]) for the purpose of Socratic-style

discussion.
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Example 3.3

P: claim tr CP (tr)
O: but-then tr ⇒ bd CO(CP (bd))
P: concede bd CP (tr, bd)
O: but-then bd ⇒ feu CO(CP (feu))
P: claim ¬⌈bd ⇒ feu⌉ CP (tr, bd,¬⌈bd ⇒ feu⌉)
O: why ¬⌈bd ⇒ feu⌉ CO(CP (feu))
P: because fc ⇒ ¬⌈bd ⇒ feu⌉ CP (tr, bd,¬⌈bd ⇒ feu⌉, fc)
O: retract CP (feu), concede tr CO(tr)

Here, the opponent again tries to construct a successful but-then path. This path,
however, is undercut by the proponent. What happens next depends on the nature
of the dialogue. When backtracking is allowed, the opponent may pursue another
strategy. When backtracking is not allowed, the opponent loses the game.
As for the effects of the but-then statement on the commitments in the dialogue

the following general remarks can be made:

1. A but-then statement is in essence a special form of a claim statement. A claim
statement has as effect that a new commitment comes into existence, and this
should also be the case for a but-then statement.

2. But-then statements do not in general create unnested commitments (at least,
not immediately). Suppose party O utters “but-then ψ1 ∧ . . . ∧ ψn ⇒ φ”. This
does of course not mean that O becomes committed to φ (so we do not have
CO(φ)). It also does not mean that P is actually committed to φ (that is, we do
not automatically have CP (φ)), because P may avoid commitment by successfully
defending ψi (1 ≤ i ≤ m) The only thing that can be said is that O feels that P is
implicitly committed to φ (so CO(CP (φ))), but whether P is actually committed
to φ is still open for discussion.

3. In general, the party that makes a claim bears the responsibility of defending this
claim. For instance, if P utters “claim φ” then upon P rests the task of defending
φ. Similarly, if O utters “but-then ψi ∧ . . . ∧ ψn ⇒ φ” then upon O rests the
task of defending CP (φ) by making sure that P cannot avoid the conclusion φ. If
O is unable to do so, it can lose the dialogue game.

4 Preferred Semantics as Socratic Discussion

Now that the basic principles of Socratic-style discussion have been treated, we are
ready to examine how these can be applied to the concept of preferred semantics. In
particular, we examine the question of how to determine whether an argument is in
at least one preferred extension.
The question of whether an argument is in at least one preferred extension has

been studied before by Vreeswijk and Prakken [49], who defined a formal argument
game to decide this. A somewhat similar game has subsequently been specified by
Mackenzie [33]. Our aim is not so much to provide an entirely new approach, rather to
reinterpret the existing work, like that of Vreeswijk and Prakken [49], in the context
of Socratic discussion. One of the advantages of doing so is that it can help to bridge
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the gap between formal argumentation theory and informal human-style discussion.
Note an important difference, which is that in the work of Vreeswijk and Prakken [49]
it is required for the proponent (player M) to have a winning strategy in the discussion
game, in order for the associated argument to be in a preferred extension, whereas
in the current paper, as well as in the work of Caminada and Wu [14] it is sufficient
just to have a single game won by the proponent (player M). While at the first sight
this seems confusing, we will prove that the two formalisations always give the same
result.
A well-known result in formal argumentation theory is that an argument is in at

least one preferred extension iff it is in at least one admissible set. Furthermore, it
holds that an argument is in at least one admissible set iff it is labelled in by at
least one admissible labelling [13]. Hence, a claim that an argument is in at least one
preferred extension is essentially the same as a claim that it is labelled in by at least
one admissible labelling. In what follows, we will examine a discussion game centred
around the latter claim.
The discussion game, which consists of a reinterpretation of the work of Vreeswijk

and Prakken [49], has two players which we will refer to as M and S. Player M assumes
the role of Menexenus, whereas player S assumes the role of Socrates. Player M starts;
his task is to defend the fact that he has a reasonable position (admissible labelling) in
which a particular argument is accepted (labelled in). Player S then tries to confront
M with the consequences of M’s own position, and asks for these consequences to
be resolved. Player S is successful if, like Socrates, he is able to lead his discussion
partner to a contradiction.
As an example of how such a discussion can take place, consider the argumentation

framework of Figure 2.

A

B
C

D

E

Fig. 2. An argumentation framework

Here, the player M can win the discussion game for argument D in the following
way.

Example 4.1

M: in(D)
“I have an admissible labelling in which D is labelled in.”

S: out(C)
“But then in your labelling it must also be the case that D’s attacker C
is labelled out. Based on which grounds?”
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M: in(B)
“C is labelled out because B is labelled in.”

S: out(A)
“But then in your labelling it must also be the case that B’s attacker A
is labelled out. Based on which grounds?”

M: in(B)
“A is labelled out because B is labelled in.”

As is shown in the above example, the moves of player M are statements that
particular arguments are labelled in in M’s labelling. The moves of player S, on the
other hand, are meant to confront M with the consequences of his own position: “if
you think that argument X is labelled in then you must also hold that X’s attacker
Y is labelled out in your labelling.” In Section 3, we mentioned that in general, the
Socratic “but-then” statement creates a nested commitment. In the particular case of
the preferred semantics game, uttering out(A) means that player S holds that player
M is implicitly committed that A should be rejected. That is: CS(CM (out(A))).
However, it must be observed that player M has no way of avoiding this commitment,
since the rule “if an argument is labelled in then all its attackers have to be labelled
out” does not allow for any exceptions (the rule is strict, not defeasible). Therefore,
player M has no other possibilities than to implicitly concede that A has to be
labelled out. Hence, every out-statement (as well as every in-statement) creates an
(unnested) commitment at the side of player M. Since the commitments of player M
simply consist of all moves that have been uttered in the discussion so far, we do
not explicitly represent them in the examples. Furthermore, the moves of player S
can also be seen as questions about why it is legal for a particular argument Y to be
labelled out. The moves of player M (except his first move) can then be interpreted
as the answers to the questions of player S. Each answer follows directly to the
question raised by player S. That is:

Each move of M (except the first) contains an attacker of the argument in the
directly preceding move of S. (1)

Every time player M claims that an argument is labelled in, player S should
be given the opportunity to state that as a consequence of this, player M is commit-
ted that all attackers of the argument are labelled out. The problem, however, is
that each move of player S is a statement about just one argument. In order to deal
with this problem, player S should be given the opportunity to react on the same
in-labelled argument several times, each time confronting player M with a different
out-labelled argument. This means that player S should be allowed to react not just
on the immediately preceding move of player M, but on any previous move of player
M.

Each move of player S contains an attacker of an argument contained in some
(not necessarily the directly preceding) move of player M. (2)

Another issue is whether player S should be allowed to repeat his own moves.
Recall that each move essentially contains a question (“Based on which grounds is
argument Y labelled out?”). At the moment player S repeats one of his moves, this
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question has already been answered by player M, so it appears that there is no good
reason to ask again. In order to avoid the discussion from going round in circles, it
simply does not make sense to allow player S to repeat his moves.

Player S is not allowed to repeat his moves. (3)

On the other hand, Example 4.1 does illustrate the need for player M to be
able to repeat his moves (like in(B)). This is because some of the questions of S
(like “why is argument C out” and “why is argument A out”) can have the same
answer (“because argument B is in”).

Player M is allowed to repeat his moves. (4)

The argumentation framework of Figure 2 can also be used for an example of
a game won by the opponent:

Example 4.2

M: in(E)
“I have an admissible labelling in which E is labelled in.”

S: out(D)
“But then in your labelling it must be the case that E’s attacker D is
labelled out. Based on which grounds?”

M: in(C)
“D is labelled out because C is labelled in.”

S: out(E)
“But then in your labelling it must be the case that C’s attacker E is
labelled out. This contradicts with your earlier claim that E is labelled
in.”

The above example illustrates that when player S manages to use an argument
uttered previously by player M, player S has won the game. After all, if player
M claims an argument to be in and player S (still assuming the role of Socrates)
subsequently manages to confront player M with the fact that in M’s own position,
the same argument should be labelled out, then player S has successfully pointed
out a contradiction in M’s position.

If player S uses an argument previously used by player M, then player S wins
the discussion game. (5)

One can ask a similar question regarding what happens when player M uses
one of the arguments previously used by player S. The fact that player S performed
an out move means that the argument must be labelled out in the labelling of player
M. If player M then subsequently claims that the same argument is labelled in, then
he has directly contradicted himself.

If player M uses an argument previously used by player S, then player S wins
the discussion game. (6)
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There also exists a third condition under which player S wins the game. This
is when player M is unable to answer one of the questions of S. This can be the case
when there exists no attacker against an argument uttered by player S. Hence, player
S asks why a particular argument is labelled out but player M is unable to come up
with any attacker to be labelled in. In that case, player M has lost the game, for not
being able to answer the critical questions of player S.

If player M cannot make a move any more, player S wins the discussion game. (7)

Similarly, one might examine what happens when it is player S who cannot
make a move any more. This essentially means that player S has run out of
questions. All possible relevant questions have already been asked; all relevant issues
have already been raised. Moreover, player M has managed to answer all questions
in a satisfactory way. Therefore, player M has survived the process of critical
questioning, hence winning the discussion.

If player S cannot make a move any more, player M wins the discussion game. (8)

A

B

C

Fig. 3. An argumentation framework with floating attack

As a last illustration of the Socratic discussion game for admissible labellings, con-
sider the argumentation framework of Figure 3. Argument C is not in any admissible
set. It is illustrative to see what happens if player M tries to defend C.

Example 4.3

M: in(C)
“I have an admissible labelling in which C is labelled in.”

S: out(A)
“But then in your labelling C’s attacker A must be labelled out. Based
on which grounds?”

M: in(B)
“A is labelled out because B is labelled in.”

S: out(B)
“But from the fact that you hold C to be in, it follows that C’s attacker
B must be labelled out. This contradicts with your earlier claim that B
is labelled in.”
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The above example illustrates the need for player S to be able to respond not only
to the immediately preceding move, but to any past move of player M; in the example,
out(B) is a response to in(C). This is because, as we have mentioned before, for an
argument to be labelled in, all its attackers have to be out, so player S may need to
respond to a move of player M with more than one countermove.
When putting observations (1) to (8) together, we obtain the following description

of the discussion game

Definition 4.4

Let (Ar , att) be an argumentation framework. An admissible discussion is a sequence
of moves [∆1,∆2, . . . ,∆n] (n ≥ 0) such that:

• each move ∆i (1 ≤ i ≤ n) where i is odd is called an M-move and is of the form
in(A), where A ∈ Ar

• each move ∆i (1 ≤ i ≤ n) where i is even is called an S-move and is of the form
out(A), where A ∈ Ar

• for each S-move ∆i = out(A) (2 ≤ i ≤ n) there exists an M-move ∆j = in(B)
(j < i) such that A attacks B

• for each M-move ∆i = in(A) (3 ≤ i ≤ n) it holds that ∆i−1 is of the form out(B),
where A attacks B

• there exist no two S-moves ∆i and ∆j with i 6= j and ∆i = ∆j

An admissible discussion [∆1,∆2, . . . ,∆n] is said to be finished iff (1) there exists
no ∆n+1 such that [∆1,∆2, . . . ,∆n,∆n+1] is an admissible discussion, or there exists
an M-move and an S-move containing the same argument, and (2) no subsequence
[∆1, . . . ,∆m] (m < n) is finished. A finished admissible discussion is won by player S
if there exist an M-move and an S-move containing the same argument. Otherwise,
it is won by the player making the last move (∆n).
We define round i as a pair (∆2i−1,∆2i).

The correctness and completeness of the game described above is stated in the
following theorem.

Theorem 4.5 ([14])
Let (Ar , att) be an argumentation framework and A ∈ Ar . There exists an admissible
labelling L with L(A) = in iff there exists an admissible discussion for A that is won
by player M.

Theorem 4.5, together with the earlier observed facts that an argument is labelled
in by an admissible labelling iff it is an element of an admissible set, and that an
argument is an element of an admissible set iff it is an element of a preferred exten-
sion, implies that an argument is in a preferred extension iff player M can win the
Socratic discussion game as described above. Hence, we have accomplished our goal
of explaining (credulous) preferred semantics in terms of Socratic discussion.

5 Some formal properties of the admissible discussion

According to Theorem 4.5, the existence of a single game won by player M is sufficient
for the respective argument to be in a preferred extension. This contrasts with work
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[33] in which the existence of a winning strategy is required for an argument to be in
a preferred extension. However, it turns out that for the discussion game described
in the current paper (Definition 4.4) the existence of a single game won by player M
coincides with the existence of a winning strategy for M. In the current section, we
provide the theory that formally proves this. We first provide the preliminary notion
of a tree, which will be used later to define a game tree and a winning strategy.

Definition 5.1 (Directed graph)
A directed graph is a pair (N, arr) where arr ⊆ N ×N . We call N the set of nodes
and arr the set of arcs. A path between two nodes n and n′ is a sequence of nodes
(n1, . . . , nk) such that n1 = n, nk = n′, and for every i ∈ {1, . . . , k − 1} it holds that
(ni, ni+1) ∈ arr.

Definition 5.2 (Tree)
A tree is a directed graph in which there exists a unique node r called root, such that
for any node n, there is exactly one directed path from r to n.

• If there is an arc from node n1 to node n2, then we say that n1 is the parent of
n2 and that n2 is a child of n1.

• A node is a leaf node if and only if it has no children.

• A path (n1, . . . , nk) of nodes is a branch of a tree if and only if
– n1 = r, and
– nk is a leaf node, and

• A level of a node n is the number of nodes in the path from the root to n.

We can now define the notion of a game tree for admissible discussion. By “tree of
arguments”, we mean a tree where every node is labelled by an argument from Ar .

Definition 5.3 (Correspondence between branches and discussions)
A branch b of a tree t corresponds to an admissible discussion g if and only if the
sequence of labels of nodes of b, in the order from the root to the leaf node, is exactly
the sequence of arguments uttered in g.

Definition 5.4 (Admissibility game tree)
A tree of arguments is an admissibility game tree for argument A ∈ Ar if and only if
it is a minimal (with respect to number of nodes) tree such that for every admissible
discussion having the first move in(A), there exists a branch in the tree corresponding
to that discussion.

The last notion we have to define is that of a pruned version of a tree. Roughly
speaking, pruning consists of removing nodes from a tree. However, we still require
to keep the same root and that the obtained structure is still a tree.

Definition 5.5 (A pruned version of a tree)
Let t = (N, arr) and t′ = (N ′, arr′) be trees. We say that t′ is a pruned version of t if
and only if the root of t is the same as the root of t′, N ′ ⊆ N and arr′ = arr|N ′×N ′ .

Now we can formalise what we mean by “winning strategy for M”. The idea is, given
the game tree, to specify the move M should play in every possible node. Formally,
we do this by pruning the original game tree.
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Definition 5.6 (Winning strategy for M)
Let gt be the admissibility game tree for A ∈ Ar . A winning strategy for M in that
game is a tree wt such that:

• wt is a pruned version of gt

• if n is a node at odd level then n has exactly the same children in gt and wt

• if n is a node at even level then n has exactly one child in wt

• every branch of wt corresponds to an admissible game won by M.

According to the previous definition, a winning strategy is a tree which contains
instructions for M, telling him what exact move to make in every possible situation
which could arrive if he follows the instructions. Note however, that there may exist
several winning strategies.
Let us introduce an example where argument A is in one, but not in all preferred

extensions, in order to illustrate that the choice of the strategy for M is important
for winning the game.

Example 5.7

Suppose the argumentation framework of Figure 4. The corresponding admissibility
game tree is depicted in Figure 5. In this game, there exists a unique winning strategy
for M, which is depicted in Figure 6.

A

B

C

D

F

E

Fig. 4. Choosing strategy is important for M

The following game may take place:
M: in(A)
S: out(B)
M: in(D)
S: out(F )
M: in(D)
S: out(C)
M: in(F )

This represents a finished game, since F is labelled both in and out. According to
Definition 4.4, S wins the game.
However, M could have won if he used another strategy. For example:
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M: in(A)
S: out(B)
M: in(E)
S: out(C)
M: in(F )
S: out(D)
M: in(F )

Fig. 5. Admissibility game tree corresponding to Example 5.7
in(A)

out(B)

in(E)

out(C)

in(F)

out(D)

in(F)

in(D)

out(C)

in(F)

out(D)

out(F)

in(D)

out(C)

in(F)

out(C)

in(F)

out(B)

in(E)

out(D)

in(F)

in(D)

out(F)

out(D)

in(F)

out(B)

in(D) in(E)

Fig. 6. A winning strategy for M corresponding to Example 5.7
in(A)

out(B)

in(E)

out(C)

in(F)

out(D)

in(F)

out(C)

in(F)

out(B)

in(E)

out(D)

in(F)

out(D)

in(F)

out(B)

in(E)

We first prove a property that will be used to prove various other technical results.
It states that if M won a game g, then the union of labels put on arguments by both
M and S during that game, constitutes an admissible labelling.
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Proposition 5.8

Let g be an admissible discussion won by M and let Lab : Ar → {in, out, undec} be
a function defined as follows. For every argument B ∈ Ar :

Lab(B) =







in, if B was labelled in during game g
out, if B was labelled out during game g

undec, otherwise

Then: Lab is an admissible labelling.

Proof. Let us first prove that Lab is well defined. For this, it is sufficient to prove
that there exists no argument B ∈ Ar such that B was labelled both in and out

during game g. From Definition 4.4, existence of such an argument would mean that
S won game g, which is not the case; hence, Lab is well-defined.
Let us now show that Lab is an admissible labelling. Let B ∈ Ar , and Lab(B) = in.

From Definition 4.4, since the labelling of admissible discussion g is finished, then
∀C ∈ Ar , if CattB, then Lab(C) = out. Let us now suppose an argument B ∈ Ar s.t.
Lab(B) = out. From Definition 4.4, we conclude that ∃C ∈ Ar such that Lab(C) = in

and CattB. From those two facts, we conclude that Lab is an admissible labelling.

The previous result allows us to define a labelling corresponding to a game won by
M.

Definition 5.9 (Associated labelling)
Let g be an admissible discussion won by M, and let Lab be a labelling defined as
in Proposition 5.8. The labelling Lab is called the associated labelling of admissible
discussion g.

It is clear that each winning strategy relies on an admissible set. However, there
may be different winning strategies relying on the same admissible set. We would like
to be able to formally represent all of them at once. For this purpose, we define a
roadmap. Informally speaking, a roadmap is just a tree containing all the winning
strategies based on the same admissible set.

Definition 5.10 (Roadmap)
Let Args ⊆ Ar be an admissible set and A ∈ Args . Let gt be the admissibility game
tree for A ∈ Ar . Then, we say that rm is a roadmap associated to Args and A if and
only if it is a maximal (with respect to number of nodes) tree such that:

• rm is a pruned version of gt

• if n is a node at odd level then n has exactly the same children in gt and rm

• if n is a node at odd level and n corresponds to a move in(B), then B ∈ Args

• every branch of rm corresponds to an admissible game won by M.

For a roadmap associated to Args and A, we use the notation AsRM (Args , A).

Note that the only difference in the definition of a winning strategy and a roadmap
is the third item: in a winning strategy, every node at even level has exactly one child,
in order to make the playing algorithm of M deterministic, while in a roadmap, every
node at even level can have one child or multiple children, but they all have to be
in the admissible set Args . Thus, from every roadmap, we can construct a winning
strategy, by simply keeping one (arbitrary) child of every node at even level.
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Also, for any pair (Args , A), if Args is an admissible set and A ∈ Args , then there
exists a unique associated roadmap AsRM (Args , A). As another important fact, note
that for a given pair (Args , A), there exists an associated roadmap if and only if there
exists an associated winning strategy. We already know how to convert a roadmap
to a winning strategy. Conversely, if we are given a winning strategy, it is sufficient
to select the admissible set it is based on, and to construct a corresponding roadmap
relying on that set.
We can show that for any given pair (Args , A), where Args is an admissible set

containing A, if |Args−| is minimal, then every branch of the associated roadmap is
won by M and has length 2 · |Args−|+ 1.

Proposition 5.11

Let Args ⊆ Ar be a set such that

1. Args is admissible

2. A ∈ Args

3. there is no other set Args ′ satisfying (1) and (2) s.t. |Args ′−| < |Args−|

Then:

1. each branch of AsRM (Args , A) is won by M

2. each branch of AsRM (Args , A) has the length 2 · |Args−|+ 1.

Proof. The first part of the proposition holds from the fourth item of Definition
5.10. We now prove the second statement. Note that M is only allowed to utter
arguments from Args . Also, for every argument uttered by M, S must utter all its
attackers. Now we prove that since |Args−| is minimal, every argument from Args−

will be uttered during every admissible discussion in which M plays according to a
branch from AsRM (Args , A). We proceed by reductio ad absurdum. Let there exist
an admissible discussion in which M plays according to a branch from AsRM (Args , A)
such that there exists an argument E ∈ Args− such that S does not utter E during the
discussion. Let Args ′ be the set of arguments uttered by M during this discussion. It
is trivial that Args ′ ⊆ Args . Also, for every D ∈ Args , if EattD then D /∈ Args ′. We
also must have A ∈ Args ′. Consequently, |Args ′−| < |Args−|. Contradiction. Thus,
it must be that every argument from Args− is uttered by S during every discussion
where M plays according to a branch of AsRM (Args , A). Since S must utter all the
attackers of all the arguments uttered by M, and S cannot repeat his moves, then
S will move exactly |Args−| times. Since M plays first, and M has an attacker of
every argument uttered by S, M will play |Args−|+1 times. Thus, the discussion has
2 · |Args−|+ 1 moves.

One particular consequence of Proposition 5.11 is that once a minimal admissible
set Args containing A has been fixed, the length of discussion does not depend on
the particular moves of player S, as long as player M follows the associated roadmap
when choosing his moves.

6 Computational Aspects

Suppose the aim is to apply the admissible discussion game to convince the user
that a particular argument is in an admissible set. In general, there might be
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several different strategies for doing so. For instance, in the example of Figure
7, there are two winning strategies for argument A, corresponding to admissible
sets {A,C} and {A,D}. The first winning strategy consists of a single discussion:
in(A), out(B), in(C), out(E), in(C). The second winning strategy consists of a sin-
gle discussion: in(A), out(B), in(D). Although both winning strategies do the job of
showing that an argument is in an admissible set, the second strategy has less moves
than the first one.

A

B

D

C

E

Fig. 7. How to find the shortest discussion?

When applying a discussion game in a human-computer setting, it can make sense
to try to minimise the number of moves in the game in order not to have the user
interact with the system unnecessarily long. From the results in the previous section,
we know that the length of the discussion (more precisely, the length of the discussion
within a winning strategy or roadmap) is 2 · |Args−|+1, where Args is the associated
admissible set. That is, a minimal length discussion corresponds to an admissible set
Args with minimal |Args−|. Therefore, it makes sense to try to find an admissible set
Args that contains the argument we are interested in and where |Args−| is minimal. In
the following we will call an admissible set Args minimal admissible for an argument
A if A ∈ Args and |Args−| is minimal among all these sets. In the current section,
we show the complexity of the related problems.
We first consider the following two decision problems, verifying that a given discus-

sion is of minimal length and deciding whether there is a discussion within a given
bound on the length of the discussion.

Definition 6.1 (Verification problem)
Given: An argumentation framework (Ar , att) an argument A ∈ Ar and a set Args ⊆
Ar .
Question: Is Args minimal admissible for A?

Definition 6.2 (Existence problem)
Given: An argumentation framework (Ar , att), an argument A∈Ar and an integer k.
Question: Is there a set Args that is minimal admissible for A with |Args−| ≤ k?

It is well-known that verifying an admissible set, i.e. a witness that an argument
is credulously accepted, can be done in polynomial time (see e.g. [19]), but as we
show next, adding minimality of |Args−| makes even the Verification problem coNP-
complete.
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We first show that the problem can be solved in coNP.

Lemma 6.3

The Verification Problem is in coNP.

Proof. The membership in the class coNP is by a guess and check algorithm for
falsifying a set to be a minimal admissible set. Given Args the algorithm first checks
whether Args is an admissible set and A ∈ Args , and if not the algorithm immediately
terminates. Then the algorithm guesses a set Args ′ and checks whether Args ′ is an
admissible set and A ∈ Args ′ (both can be done in polynomial time). Now it is
sufficient to test whether |Args ′−| < |Args−|, which can also be done in polynomial
time. Hence falsifying a minimal admissible set is in NP, and thus verifying it is in
coNP.

To show hardness we introduce a reduction from the 3-SAT problem which is an
extension of the standard reduction for abstract argumentation [21].

Reduction 6.4

Given a 3-CNF formula ϕ over variables X = {X1, . . . , Xn} as a set C of clauses,
where each clause C ∈ C is a set over atoms and negated atoms (denoted by X̄). The
argumentation framework AFϕ = (Ar , att) with

Ar = X ∪ X̄ ∪ C ∪ {T, T̄ , B,G} ∪ {Fi | 1 ≤ i ≤ |X |+ |C|+ 1}

att = {(X, X̄), (X̄,X) | X ∈ X} ∪ {(L,C) | L ∈ C,C ∈ C}∪

{(C, T ) | C ∈ C}∪

{(Fi, T̄ ), (T̄ , Fi), (Fi, Fi) | 1 ≤ i ≤ |Ar |+ |att |+ 1}∪

{(T,B), (T̄ , B), (B,B), (B,G)}

where X̄ = {X̄ | X ∈ X} and Fi, T, T̄ , B,G are fresh arguments.

Reduction 6.4 is illustrated in Figure 8 for the 3-CNF ϕ with clauses C1 =
{X1, X2, X3}, C2 = {X̄2, X̄3, X̄4}, and C3 = {X̄1, X2, X4}. The idea behind Re-
duction 6.4 is that we are interested in admissible sets containing G and there are
only two ways to defend G against the attack from argumentB. First, we can add T̄ to
the admissible set. This results in the admissible set {G, T } which has |Ar |+ |att|+3
attackers. Second we can add T to the admissible set. But by the structure of AFϕ
the argument T can only be defended if ϕ is satisfiable. If this is the case this gives
an admissible set with at most |Ar | + |att | + 2 attackers. Thus we then have that
{G, T } is minimal admissible if and only if ϕ is unsatisfiable. We make this argument
formal by the following lemma.

Lemma 6.5

For each 3-CNF formula ϕ it holds that ϕ is satisfiable iff Args = {T̄ , G} is not a
minimal admissible set for AFϕ.

Proof. We first show that {T̄ , G} is always an admissible set. First it is conflict-free
as there is no attack between T̄ and G. Further we have that Args− = {Fi | 1 ≤ i ≤
|X |+ |C|+ 1} ∪ {T,B} and each of these arguments is attacked by T̄ . Hence {T̄ , G}
is admissible.
⇒: Let us assume ϕ is satisfiable and let M ⊆ X be a model of ϕ. Then it is easy

to verify that the set Args ′ = {T,G} ∪M ∪ {X̄ | X ∈ X \ M} is conflict free in
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T

C1 C2 C3

X1 X̄1 X2 X̄2 X3 X̄3 X4 X̄4

BG

T̄

F1

F2

.

.

.

F8

Fig. 8: The argumentation framework AFϕ, as defined in Reduction 6.4, for a CNF for-
mula ϕ with clauses C1 = {X1, X2, X3}, C2 = {X̄2, X̄3, X̄4}, and C3 = {X̄1, X2, X4}.

AFϕ. The set Args ′− is given by X \M ∪ {X̄ | X ∈ M} ∪ C ∪ {T̄ , B}. Now (i) the
arguments in the set X \M ∪ {X̄ | X ∈ X ∩M} are attacked by their duals in Args ′;
(ii) by the assumption that M is a model each C ∈ C is attacked by an argument in
M ∪{X̄ | X ∈ X \M}; and (iii) T̄ , B are attacked by T . Now as the set Args ′ attacks
all arguments in Args ′− it is also admissible.
Now let us compare Args ′− with Args−. By construction of AFϕ we have that

Args− = {Fi | 1 ≤ i ≤ |X |+ |C|+ 1} ∪ {T,B}. Now as |Args ′−| = |X | + |C|+ 2 and
|Args−| = |X |+ |C|+ 3 the set Args is not minimal admissible for G.
⇐: Let us assume that {T̄ , G} is not minimal admissible for G. As {T̄ , G} is

admissible there also exists a minimal admissible set Args ′ for G. As |(.)−| is a
monotonic operator Args ′ cannot be a superset of {T̄ , G} and thus we can conclude
that T̄ 6∈ Args ′. Now as Args ′ has to defend G against B and B is only attacked by
itself, T and T̄ we obtain that T ∈ Args ′. Furthermore, Args ′ must defend T against
all C ∈ C and thus, by construction of AFϕ, we have Args ′ ∩X is a model of ϕ, i.e. ϕ
is satisfiable.

Together with the previous results we obtain that the Verification Problem is com-
plete for the class coNP.

Theorem 6.6

The Verification Problem is coNP complete.

Proof. The membership in the class coNP is by Lemma 6.3. Hardness follows from
the facts that Reduction 6.4 (i) can be performed in polynomial time and (ii) by
Lemma 6.5 reduces the coNP-hard problem of 3-UNSAT to the Verification Problem.

We now turn to the Existence Problem.
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Theorem 6.7

The Existence Problem is NP-complete.

Proof. The membership is again by a guess and check algorithm. Simply guess a
set Args ⊆ Ar and test whether it is admissible, a ∈ Args and |S−| ≤ k.
Hardness follows from the fact that for k = |Ar | this problem coincides with cred-

ulous acceptance w.r.t. admissible sets, i.e. with the problem of deciding whether
an argument is in at least one admissible set, which is well-known to be NP-
complete [16, 19].

The above results already show that computing a minimal admissible set is compu-
tationally hard. However the above studied decision problems do not fully cover the
characteristics of constructing a minimal admissible set for a given argument. In the
following we give results about the functional complexity of computing the length of
the minimal discussions and constructing a minimal admissible set. More precisely,
we show that our problem is closely related to MAX-SAT, the problem of determining
the maximal number of simultaneously satisfiable clauses of a CNF formula.
When dealing with function problems we use a more general notion of reductions,

so called metric reductions.

Definition 6.8 (metric reductions)
A metric reduction from a (function) problem A to a (function) problem B is a pair
(R, T ) of polynomial time computable functions such that

• if x is an instance of A then R(x) is an instance of B; and

• if x is an instance of A and z a correct output of B w.r.t. R(x) then T (x, z) is a
correct output of A(x).

In the following, we consider function problems concerning minimal admissible sets.
First, we are interested in the minimal length of a discussion supporting an argument
A, or in other terms the minimum |Args−| for all minimal admissible sets Args for A.

Definition 6.9 (Minimum Discussion Length Problem)
Given: An argumentation framework (Ar , att) and an argument A ∈ Ar .
Task: Compute the minimum |Args−| for all minimal admissible sets Args for A.

Further we are interested in constructing a minimal admissible set for an given
argument:

Definition 6.10 (Minimal Admissible Set Problem)
Given: An argumentation framework (Ar , att) and an argument A ∈ Ar .
Task: Compute a minimal admissible set Args for A.

Clearly the second problem is the harder one, as whenever a minimal admissible
set Args for A is given one can easily compute |Args−|.
Next, let us formally define the two corresponding problems for MAX-SAT, and

then review known complexity results for them.

Definition 6.11 (MAX-SAT)
Given: A formula in CNF (or, equivalently, a set of clauses).
Task: Compute the maximal number of clauses simultaneously satisfied by a truth
assignment.
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Definition 6.12 (MAX-SAT Assignment)
Given: A formula in CNF (or, equivalently, a set of clauses).
Task: Find a truth assignment satisfying a maximal number of clauses.

Next let us briefly recapitulate the concept of oracle machines and complexity
classes defined on top of them. Let C denote some complexity class. By a C-oracle
machine we mean a polynomial time Turing machine which can access an oracle that
decides a given (sub)-problem in C within one step. We denote the class of function
problems, that can be solved by such machines, as FP C if the underlying Turing
machine is deterministic. Concretely, we will consider the class FPNP[log n], i.e. the
class of functions that can be computed in polynomial time with a logarithmic number
of calls to an NP-oracle.

Theorem 6.13 ([28])
MAX-SAT is FPNP[log n]-complete.

However, to the best of the authors’ knowledge there is no explicit complexity classi-
fication for the above MAX-SAT Assignment problem in terms of metric reductions9.
We are now prepared for treating the functional complexity of our problems. We

will show that the MAX-SAT problems are of the same complexity as the corre-
sponding versions of our minimal admissible set problem. To prove this we provide
two reductions. The first one constructs an argumentation framework out of 3-CNF
formula while the other one works in the reverse direction and builds a propositional
formula out of a given argumentation framework. Then given that the problems are
reducible to each other we obtain that they are of the same complexity. We first
present the reduction from 3-CNF formulas to argumentation frameworks.

Reduction 6.14

For a 3-CNF formula ϕ over variables X given as a set C of clauses, where the argu-
mentation framework AFϕ = (Ar , att) is given by

Ar = X ∪ X̄ ∪ C ∪ C′ ∪ {T } ∪ {Gi,C | 1 ≤ i ≤ |X |+ 1, C ∈ C}

att = {(X, X̄), (X̄,X) | X ∈ X} ∪ {(L,C) | L ∈ C,C ∈ C}∪

{(C, T ), (C′, C) | C ∈ C}∪

{(Gi,C , C
′), (C′, Gi,C), (Gi,C , Gi,C) | 1 ≤ i ≤ |X |+ 1, C ∈ C}

where X̄ = {X̄ | X ∈ X}, C′ = {C′ | C ∈ C} and T,Gi,c are fresh arguments.

An example of Reduction 6.14 is given in Figure 9. Before proving the correctness
of the reduction we first discuss the intuition behind it. We are interested in the
argument T which is attacked by the arguments Ci encoding the clauses of ϕ. Thus
an admissible set has to attack all Ci. This can be done by arguments Xi, X̄i corre-
sponding to a (partial) truth assignment of ϕ or by the additional arguments C′

i. But
each argument C′

i has |X |+1 many attackers and thus a minimal admissible set min-
imizes the number of such arguments. Hence it also maximizes the number of clauses
satisfied by the (partial) truth assignment corresponding to the Xi, X̄i arguments in
the set.

9There are several complexity classifications concerning the approximability of MAX-SAT, see e.g. [35, 15].
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Fig. 9: The argumentation framework AFϕ, as constructed by Reduction 6.14, for
a CNF formula ϕ with clauses C1 = {X1, X2, X3}, C2 = {X̄2, X̄3, X̄4}, and C3 =
{X̄1, X2, X4}.

Definition 6.15

For a CNF formula ϕ and a partial truth assignment α we use cϕ(α) to denote the
number of clauses satisfied by α and dom(α) to denote the domain of α, i.e. the set
of the atoms X ∈ X that α assigns to a truth value.

We first relate (partial) truth assignments to admissible sets.

Lemma 6.16

Given a (partial) truth assignment α then the set Args = {T }∪{X | α(X) = 1}∪{X̄ |
α(X) = 0} ∪ {C′ | α(C) 6= 1} is admissible in AFϕ and |Args−| = |C| + | dom(α)| +
(|C| − cϕ(α))(|X | + 1).

Proof. It is easy to check that Args is conflict-free and thus it remains to show that
each argument in Args is defended by Args . First consider an argument A ∈ {X |
α(X) = 1}. Then A is only attacked by Ā. As also A attacks Ā, we obtain that A is
defended by Args . By symmetry also each A ∈ {X̄ | α(X) = 0} is defended. Next,
consider A ∈ {C′ | α(C) 6= 1}. Again as all incoming attacks are mutual attacks, A
defends itself. Finally, consider the argument T which is attacked by all C ∈ C. By
construction we have that if α(C) = 1 then there is either a X ∈ C with α(X) = 1
attacking C or a X̄ ∈ C with α(X) = 0 attacking C. In both cases, C is attacked
by Args . Otherwise if α(C) 6= 1 then C′ ∈ Args and as C′ attacks C we obtain that
Args attacks all C ∈ C and thus defends T .
Next, consider |Args−|. As mentioned before, C ⊆ Args− as each C ∈ C attacks the

argument T . Then for each argument X / X̄ that is assigned by α the dual argument
X̄ / X goes to Args−. That adds | dom(α)| arguments to the set. Finally, for each
unsatisfied clause C, we get the |X | + 1 attackers of C. As there are |C| − cϕ(α)
unsatisfied clauses this adds (|C| − cϕ(α))(|X | + 1) arguments to Args−.

Next we relate admissible sets to (partial) truth assignments.
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Lemma 6.17

Given an admissible set Args of AFϕ with T ∈ Args and the (partial) truth assignment
α, with α(X) = 1 if X ∈ Args and α(X) = 0 if X̄ ∈ Args then for each C ∈ C, α(C) =
1 if C′ 6∈ Args . Moreover there is an admissible set Args ′ with T ∈ Args ′ ⊆ Args and
|Args ′−| = |C|+ | dom(α)|+ (|C| − cϕ(α))(|X | + 1).

Proof. First notice that for an admissible set it cannot be the case that both X ∈
Args and X̄ ∈ Args as they attack each other. Thus the partial truth assignment α is
well-defined. As T ∈ Args , the set Args attacks all C ∈ C. Now consider a C ∈ C such
that C′ 6∈ Args . Then, by construction of AFϕ, C

′ is either attacked by an X ∈ Args
with X ∈ C or by an X̄ ∈ Args with X̄ ∈ C. In both cases, α(C) = 1.
Next consider the set Args ′ = Args \ {C′ | α(C) = 1}. By Definition T ∈ Args ′ ⊆
Args . Now consider the cardinality of the set Args ′−. As in Lemma 6.16, C ⊆ Args ′−

and for each argument X / X̄ that is assigned by α the dual argument X̄ / X goes
to Args ′−. Also for each C′ ∈ Args we get the |X | + 1 attackers Gi,C of C′. As
there are |X |− cϕ(α) unsatisfied clauses, by the above observation, there are as many
C′ ∈ Args ′. Hence this adds at least (|X | − cϕ(α))(|X | + 1) arguments to Args ′−.

Together Lemma 6.16 and Lemma 6.17 give us a correspondence between partial truth
assignments and admissible sets containing T .
The following lemma exploits this correspondence to show that Reduction 6.14 is a

valid reduction from the MAX-SAT problems to our minimal admissible set problems.

Lemma 6.18

Consider a 3-CNF ϕ and the argumentation framework AFϕ from Reduction 6.14.

1. For a minimal admissible set Args the truth assignment α, with α(X) = 1 if
X ∈ Args and α(X) = 0 otherwise, satisfies the maximal number of clauses of ϕ.

2. Given a minimal admissible set Args then the number of simultaneously satisfiable

clauses is given by |C| −
⌊

|Args−|−|C|
|X |+1

⌋

.

Proof. Using lemmas 6.16 and 6.17 and the fact that | dom(α)| < |X | + 1 we get
that an admissible set is minimal iff cϕ(α) is maximal for the corresponding partial
truth assignment α, i.e. the minimal admissible sets corresponds to an optimal partial
truth assignments. So given a minimal admissible set for T , by Lemma 6.17 we can
construct a truth-assignment satisfying the maximal number of clauses of ϕ. This
shows (1).
For a minimal admissible set Args by Lemma 6.17 we have |Args−| = |C| +

| dom(α)|+(|C|−cϕ(α))(|X |+1) which is equivalent to cϕ(α) = |C|− |Args−|−|C|−dom(α)
|X |+1 .

To eliminate the dom(α) term we use that | dom(α)| ≤ |X | and obtain cϕ(α) =

|C| −
⌊

|Args−|−|C|
|X |+1

⌋

. This shows (2).

For the reverse direction we give a reduction from an arbitrary minimal admissible
set instance to a MAX-SAT instance.

Reduction 6.19

Given an argumentation framework (Ar , att) and an argument β ∈ Ar , we build the
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following CNF formula

ϕ(Ar ,att),β = xβ ∧
∧

(A,B)∈att

(¬xA ∨ ¬xB) ∧
∧

(B,A)∈att

(¬xA ∨
∨

(C,B)∈att

xC) ∧ (6.1)

∧

(A,B)∈att

(x′A ∨ ¬xB) ∧
∧

A∈Ar

(¬x′A ∨
∨

(A,B)∈att

xB) ∧ (6.2)

∧

A∈Ar

¬x′A (6.3)

Moreover we make |Ar |+ 1 many copies of each clause in (6.1) and(6.2).

With the clauses (6.1) we encode that the set Args = {A ∈ Ar | xA = 1} must be
admissible and contain α. The clauses (6.2) introduce additional variables x′A encod-
ing that A ∈ Args−. We will use the clauses (6.3) to minimize the set Args−. The
copies of the clauses in (6.1) and (6.2) implement a higher weighting of these clauses
and encode that we do not want that any of these clauses is violated. We exemplify
Reduction 6.19 for the argumentation framework in Figure 7 (for convenience we omit
repetitions of clauses):

ϕ(Ar ,att),A = xA ∧ (¬xA ∨ ¬xB) ∧ (¬xB ∨ ¬xC) ∧ (¬xB ∨ ¬xD) ∧ (¬xC ∨ ¬xE) ∧

(¬xA ∨ xC ∨ xD) ∧ (¬xB ∨ xE) ∧ (¬xB) ∧ (¬xC ∨ xC) ∧ (¬xE ∨ xE) ∧

(x′B ∨ ¬xA) ∧ (x′C ∨ ¬xB) ∧ (x′D ∨ ¬xB) ∧ (x′E ∨ ¬xC) ∧ (x′C ∨ ¬xE) ∧

¬x′A ∧ (¬x′B ∨ xA) ∧ (¬x′C ∨ xB ∨ xE) ∧ (¬x′D ∨ xB) ∧ (¬x′E ∨ xC) ∧

¬x′A ∧ ¬x′B ∧ ¬x′C ∧ ¬x′D ∧ ¬x′E

Lemma 6.20

For an optimal satisfying truth assignment α of ϕ(Ar ,att),β and cα the number of
satisfied clauses, either (i) Args = {A ∈ Ar | α(xA) = 1} is a minimal admissible
set of (Ar , att) containing β and |Args−| = |Ar | − (cα − m · (|Ar | + 1)), or (ii)
cα < m · (|Ar | + 1) and there is no admissible set containing β, with m being the
number of clauses in (6.1) and (6.2), i.e. m = (3 · |att |+ |Ar |+ 1).

Proof. First, Args satisfies the clauses in (6.1) iff it is admissible and contains the
argument β (cf. [2, 22]). Next we show that {A ∈ Ar | α(x′A) = 1} = Args− iff the
clauses in (6.2) are satisfied.

• Assume {A ∈ Ar | α(x′A) = 1} = Args−: For each attack (A,B) either B 6∈ Args
or A ∈ Args− and thus the clause (x′A ∨ ¬xB) is satisfied.

If A ∈ Args− then there exits an B with (A,B) ∈ attack and B ∈ Args . Thus
¬x′A ∨

∨

(A,B)∈att xB) is satisfied. Finally all the clauses in (6.2) are satisfied.

• Now assume the clauses in (6.2) are satisfied. We first show that {A ∈ Ar |
α(x′A) = 1} ⊆ Args−. So consider an argument A with α(x′A) = 1. As the
clause (¬x′A ∨

∨

(A,B)∈att xB) is satisfied we obtain that there exits an B with

(A,B) ∈ attack and B ∈ Args . Thus A ∈ Args−.

It remains to show that {A ∈ Ar | α(x′A) = 1} ⊇ Args−. To this end consider
A ∈ Args−. There exists an B with (A,B) ∈ attack and B ∈ Args . Now as the
clause (x′A ∨ ¬xB) is satisfied we obtain α(x′A) = 1.
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To sum up, if α satisfies (6.1) and (6.2) then Args is an admissible set containing
β such that α(x′A) = 1 iff A ∈ Args−.
Next consider the number of satisfied clauses cα. If there is an admissible set

containing β then there is also an assignment satisfying all clauses (6.1) and (6.2).
As we have |Ar | + 1 copies of these clauses the optimal assignment then satisfied at
least m · (|Ar | + 1) clauses. On the other side if an assignment misses one of the
clause it misses all (|Ar | + 1) copies and as there are only |Ar | clauses in (6.3) such
an assignment clearly satisfies less than m · (|Ar |+ 1) clauses.
Hence, if the best assignment satisfies less than m · (|Ar |+1) clauses then we know

that that there is no minimal admissible set wrt. β. If the best assignment α satisfies
at least m · (|Ar |+1) clauses then we know that Args is an admissible set containing
β. Now as all assignments corresponding to admissible sets containing β satisfy the
clauses in (6.1) and (6.2), we know that α is the one satisfying a maximal number
of clauses in (6.3). But as (6.2) are satisfied this is equivalent to minimizing the set
Args−. Hence, Args is minimal admissible. The equation |Args−| = |Ar | − (cα −m ·
(|Ar |+ 1)) is immediate by the fact hat all clauses in (6.1) and (6.2) are satisfied.

We are now ready to state our theorems.

Theorem 6.21

The Minimum Discussion Length Problem is of the same complexity as MAX-SAT

and thus is FPNP(log n)-complete.

Proof. First we have the following reduction from MAX-SAT to the Minimum Dis-
cussion Length Problem. First build AFϕ from Reduction 6.14. Solving this returns
|Args−| for a minimal admissible set Args . By Lemma 6.18 (2) we can then compute

the number of simultaneously satisfiable clauses by |C| −
⌊

|Args−|−|C|
|X |+1

⌋

. Both the

construction of AFϕ and the final calculation can be clearly performed in polynomial
time.
Second we have a reduction from the Minimum Discussion Length Problem to

MAX-SAT. First, build the formula ϕ(Ar ,att),β from Reduction 6.19. Then compute
cα the number of clauses satisfied by a maximal satisfying assignment α. If cα <
m · (|Ar | + 1), by Lemma 6.20, we know that there is no such set. Otherwise, by
Lemma 6.20, we can easily compute the cardinality of |Args−| using the number of
satisfied clauses cα as |Args−| = |Ar | − (cα −m · (|Ar |+ 1)). Again the construction
of AFϕ and the final calculation can be performed in polynomial time.

Theorem 6.22

The Minimal Admissible Set Problem is of the same complexity as the MAX-SAT
Assignment problem.

Proof. A reduction from MAX-SAT to the Minimum Discussion Length Problem:
First build AFϕ from Reduction 6.14. Solving this returns a minimal admissible set
Args . By Lemma 6.18 (1) the truth assignment α, with α(X) = 1 if X ∈ Args
and α(X) = 0 otherwise, satisfies the maximal number of clauses of ϕ. Both the
construction of AFϕ and the construction of α can be clearly performed in polynomial
time.
A reduction from Minimum Discussion Length Problem to MAX-SAT. First, build

the formula ϕ(Ar ,att),β from Reduction 6.19. Then compute a maximal satisfying as-
signment α. Finally construct Args = {A ∈ Ar | α(xA) = 1} which, by Lemma 6.20,
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is a minimal admissible set. Again the construction of AFϕ and the construction of
Args can be performed in polynomial time.

Let us briefly relate the complexity of computing a minimal discussion support-
ing an argument with computing an arbitrary discussion supporting an argument.
As mentioned before the latter is equivalent to credulous reasoning with preferred
semantics which lies on the NP-layer, i.e. credulous acceptance is NP-complete and
computing an admissible set is in FNP (the function variant of NP), and thus is of the
same complexity as SAT. Our results show that adding the requirement of minimality
of discussion length increases complexity to the level of MAX-SAT.
Finally, the complexity results also guide a way to a possible implementation. One

can use the encoding as propositional formula provided in Reduction 6.19 and then
use one of the available maxsat-solvers 10 to compute a minimal admissible set for
the considered argument.

7 Other Semantics

Preferred semantics is not the only semantics that can be expressed as a particular
type of semi-natural discussion. We now briefly discuss three other semantics (stable,
ideal and grounded) and their associated discussion games.

Stable Semantics

The question of how to express stable semantics as structured discussion has been
treated by Caminada and Wu [14]. Basically, the idea is to take the discussion game
for preferred semantics, as described in the current paper, and allow player S (who
assumes the role of Socrates) to use one additional type of move: question.
To illustrate the role of the question move, consider again the argumentation

framework of Figure 2 (page 12). Here, there are two preferred labellings:

• Lab1 with in(Lab1) = {A}, out(Lab1) = {B} and undec(Lab1) = {C,D,E}

• Lab2 with in(Lab2) = {B,D}, out(Lab2) = {A,C,E} and undec(Lab2) = ∅

Of these two preferred labellings, only Lab2 is also a stable labelling.11 So although
argument A is labelled in by a preferred labelling (A is an element of a preferred
extension), A is not labelled in by any stable labelling (it is not an element of any
stable extension).
To see why A is labelled in by at least one admissible labelling, consider the fol-

lowing discussion.

10See http://maxsat.ia.udl.cat/solvers/ for an overview of maxsat-solvers.
11We recall that a stable labelling is an admissible labelling without any arguments that are labelled undec, just

like a stable extension is an admissible set (or equivalently, a conflict-free set) that attacks each argument that is

outside of it.
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M: in(A)
“I have an admissible labelling where A is labelled in.”

S: out(B)
“Then in your labelling, argument B must be labelled out. Based on
which grounds?”

M: in(A)
“B is labelled out because A is labelled in”

The point is, however, that once it has been committed that A is labelled in and B is
labelled out, it is not possible any more to label the remaining arguments such that
final result is a stable labelling. This can be seen as follows. Suppose C is labelled in.
Then E must be labelled out, so D should be labelled in, which means that C would
be labelled out. Contradiction. Similarly, suppose that C is labelled out. Then E
must be labelled in, so D should be labelled out, so C should be labelled in. Again,
contradiction.
As is argued by Caminada and Wu [14], the discussion game for stable semantics

requires an additional type of move: question. To illustrate the role of this new
move, imagine a politician being interviewed for TV. At first, the discussion may be
about financial matters (say, whether the banking system should be nationalized).
Then, the discussion may be about the consequences of the politician’s opinion (“If
you accept to nationalize the banks, then you must reject the possibility to improve
healthcare, because there will not be enough money left to do so.”). However, at some
moment, the interviewer could choose to totally change topic (“By the way, what are
your opinions about abortion?”). It is this change of topic that is enabled by the
question move.
For the discussion game for stable semantics, the idea is to use the question move

to involve those arguments that have never been uttered before so that we can ex-
plicitly label all arguments of the argumentation framework. By questioning an ar-
gument (question(A)), the opponent asks the proponent to give an explicit opinion
on whether A should be labelled in or out. If the proponent thinks that A should be
labelled in then it should respond with in(A). If the proponent thinks that A should
be labelled out then it should respond with in(B) where B is an attacker of A.
As an example of the use of the discussion game and the role of the question

move, consider again the argumentation framework depicted in Figure 2. Suppose
player M would like to start a discussion about A.

M: in(A)
“I have a stable labelling in which A is labelled in.”

S: out(B)
“Then in your labelling, A’s attacker B must be labelled out. Based on
which grounds?”

M: in(A)
“B is labelled out because A is labelled in.”

S: question(C)
“What about C?”

M: in(C)
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“C is labelled in.”
S: out(E)

“Then C’s attacker E must be labelled out. Based on which grounds?”
M: in(D)

“E is labelled out because D is labelled in.”
S: out(C)

“Then D’s attacker C has to be labelled out. This contradicts with your
earlier claim that C is labelled in.”

Player S wins the discussion because he managed to point out a contradiction in the
position of player M. A similar contradiction would have been pointed out if player M
had responded to question(C) by in(E). Hence, once playerM starts the discussion
with in(A), he has no way of winning it any more when player S is allowed to use the
question move. Hence, argument A is not in a stable extension.
For a fully formal account of the stable semantics discussion game, as well as for

proofs of its correctness and completeness, we refer to Caminada and Wu’s work
[14]. For now, the main point we want to convey is that the type of discussion that
is associated with stable semantics is essentially Socratic, with one little twist: the
player who assumes the role of Socrates is allowed to change topic.

Ideal Semantics

An ideal set of arguments [17] is an admissible set that is a subset of each preferred
extension.12 It has been proven that the maximal ideal set is unique and is also
a complete extension [17]. An alternative way to characterise an ideal set is as an
admissible set that is not attacked by any other admissible set. This clears the way
of expressing ideal semantics in terms of Socratic discussion. Basically, the discussion
whether an argument (say A) is in an ideal set consists of two phases. In the first
phase, one runs the standard Socratic discussion game, as is described in the current
paper. This is to determine whether the argument is in an admissible set. Then, in the
second phase of the discussion, one needs to determine whether this set is attacked
by another admissible set. This is done by again running the discussion game for
each of the arguments that were rejected (labelled out) during the first phase of the
discussion, this time trying to defend (label in) the argument.
As an example, consider again the argumentation framework of Figure 2. Now

consider the question of whether argument D is in an ideal set. The first phase of the
discussion would be like Example 4.1. Then, in the second phase of the discussion,
one has to try to find an argument that was labelled out during the first phase (say
A) and can be defended in a new Socratic discussion game. Such a game would be as
follows.

M: in(A)
“I have a reasonable position (admissible labelling) in which A is accepted
(labelled in).”

S: out(B)
“Then in your position, argument B must be rejected (labelled out).
Based on which grounds?”

12A treatment of ideal semantics in terms of argument labellings is given in [11].
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M: in(A)
“B is rejected (labelled out) because A is accepted (labelled in).”

Hence, we have an admissible set (labelling) that attacks the admissible set (la-
belling) found during the first phase, so the admissible set (labelling) of the first
phase is not an ideal set (labelling).13

The overall procedure for ideal semantics puts an extra burden on the proponent
of the argument. Not only does he have to win the standard Socratic discussion game
in the first phase, but he has to win it in such a way14 that the resulting position
(labelling) cannot be argued against in the second phase. Hence, the idea is to build
a reasonable position that cannot be attacked by any reasonable position.

Grounded Semantics

Whereas the discussion games of stable and ideal semantics, as treated in the previous
sections, are essentially based on the standard Socratic discussion game, the discus-
sion game for grounded semantics appears to have a fundamentally different nature.
Perhaps the best way of explaining this is from the perspective of complete labellings
[6, 13]. We recall that, given an argumentation framework (Ar , att), a complete la-
belling is an argument labelling Lab such that for each argument A ∈ Ar it holds
that:

• if Lab(A) = in then ∀B ∈ Ar : (BattA ⊃ Lab(B) = out)

• if Lab(A) = out then ∃B ∈ Ar : (BattA ∧ Lab(B) = in)

• if Lab(A) = undec then ¬∀B ∈ Ar : (BattA ⊃ Lab(B) = out) and
¬∃B ∈ Ar : (BattA ∧ Lab(B) = in)

Notice that the first two conditions are those of an admissible labelling. Hence,
whereas an admissible labelling requires one to explain everything one accepts (be-
cause all attackers are rejected) and everything one rejects (because there is an at-
tacker that is accepted), a complete labelling also requires one to explain everything
one abstains from having an explicit opinion about (because there are insufficient
reasons to accept it, and insufficient reasons to reject it). Hence, the overall idea
of a complete labelling is that one has to be able to explain everything one accepts,
everything one rejects and everything one abstains from having an explicit opinion
about.
If one regards a complete labelling as a reasonable position one can take in the

presence of the conflicting information represented in the argumentation framework,
then two questions become relevant:
(1) Is there at least one reasonable position (complete labelling) in which the argument
is accepted (labelled in) ?
(2) Does the argument have to be accepted (labelled in) in every reasonable position15

13In fact, for the argumentation framework of Figure 2, the only ideal set is the empty set.
14Since an argument can be element of more than one admissible set, there can be different ways to win the

Socratic discussion game.
15The question “does the argument have to be accepted in every reasonable position” becomes trivial when we

equate a reasonable position with an admissible labelling, since it is always possible to construct an admissible

labelling by abstaining on everything (labelling each argument undec). Hence, one needs an additional clause that

puts restrictions on when one is allowed to abstain. Such a restriction is provided by the concept of a complete

labelling (third clause).
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(complete labelling) ?
Questions (1) and (2) are fundamentally different, also from the perspective of formal
discussion. To resolve whether there exists at least one reasonable position in which a
particular argument is accepted, one can have one of the parties adopt the argument
and the other party critically questioning whether the resulting position is in fact
reasonable. To resolve whether an argument has to be accepted in every reasonable
position, on the other hand, one can try to convince a sceptical but rational party
that he cannot avoid accepting the argument. Hence, whereas the discussion around
question (1) is of the form “I’m being reasonable when I accept that...”, the discussion
around question (2) is of the form “If you are being reasonable then you have to accept
that...”
As we have seen, the discussion around question (1) is essentially of a Socratic

nature, where the proponent (player M) claims that his position is reasonable, whereas
the opponent (player S) tries to show that the position is not reasonable, by leading
proponent to refutation. Standard argumentation theory states that an argument
is labelled in by at least one complete labelling iff it is labelled in by at least one
admissible labelling [13]. Therefore, to determine whether an argument is labelled in

by at least one complete labelling, one can simply run the standard Socratic discussion
game as was described in Section 4.
As for question (2), it has to be observed that the discussion around the issue

“If you are being reasonable then you have to accept that...” is of a fundamentally
different form. Instead of merely having to avoid being refuted, the proponent faces
the more challenging task of actually convincing the opponent to accept the argument
in question. In terms of the typology of Walton and Krabbe [51], such a discussion
would be regarded as persuasion. The idea is to persuade the opponent that, by
adopting the rationality conditions of a complete labelling, the opponent also has to
accept the argument in question, even when being maximally sceptical.
As an example of how such a discussion could take place, consider an argumentation

framework with arguments A, B and C, where A attacks B and B attacks C.
Prop: in(C)

“C has to be accepted in every reasonable position, therefore also in your
position”

Opp: out(B)?
“Are you sure? Perhaps there is a reasonable position in which C’s
attacker B is not rejected. Why does B always have to be rejected?”

Prop: in(A)
“B has to be rejected because its attacker A has to be accepted, since A
doesn’t have any attackers itself.”

After the third move, the opponent has to admit (concede) that A has to be accepted,
and that therefore B has to be rejected and A accepted. Hence, the proponent wins
the discussion game.
As an example of a discussion that the proponent is unable to win, consider an

argumentation framework with two arguments, A and B, where A attacks B, and B
attacks A.
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Prop: in(A)
“A has to be accepted in every reasonable position, therefore also in your
position.”

Opp: out(B)?
“Are you sure? Perhaps there is a reasonable position in which A’s
attacker B is not rejected. Why does B always have to be rejected?”

After the opponent’s move, the proponent could of course reply with in(A) again, but
this would mean the discussion could go on perpetually, without the proponent ever
convincing the opponent.16 Hence, it is not possible for the proponent to convince
the opponent. This result is different than for the Socratic discussion game, in which
the proponent (player M) wins after just three moves. This illustrates that, at least
in abstract argumentation theory, the treshold is lower for maintaining one’s own
position is merely reasonable, rather than for actually convincing the other party of
one’s own position.
Standard argumentation theory says that an argument is labelled in by every com-

plete labelling iff it is labelled in by the grounded labelling [6, 13].17 Therefore, we
can use the grounded game as defined by many researchers [42, 5, 33] to determine
whether an argument is labelled in by every complete labelling. In fact, the two
example discussions above are actually instances of this discussion game. In general,
just like the preferred game can be interpreted as a particular form of Socratic dis-
cussion, the grounded game can be interpreted as a particular form of persuasion
discussion.
Apart from the conceptual difference, there also exists an important technical differ-

ence between the preferred game and the grounded game. Whereas for the preferred
game, it is sufficient that there exists at least one preferred game won by the pro-
ponent (player M) for an argument to be in a preferred extension (or equivalently,
in an admissible set or a complete extension), for the grounded game the existence
of a single game won by the proponent is not enough. In fact, the proponent needs
to have a winning strategy for the grounded game, in order for the argument to be
in the grounded extension (or equivalently, to be labelled in by every complete la-
belling). Conceptually, this is a bit odd, since whether or not one persuades the other
party should depend on the actual discussion only, and not on the discussions that
could have been taken place. Hence, an interesting research question is whether it is
possible to reformulate the grounded game in such a way that a single discussion is
sufficient.18 Ideally, the precise rules of such a game should naturally follow from the
nature of a persuasion dialogue, just like the rules of the preferred game can easily
be explained by examining the concept of Socratic dialogue (“Don’t ask the same
question twice”, “It’s possible for different questions to have the same answer”, etc).
A paper that addresses these issues has recently been published [3].

16This is why in the discussion game [42, 5, 33] the proponent is disallowed to repeat his moves.
17We recall that the grounded labelling is the (unique) complete labelling whose set of in-labelled arguments is

minimal (w.r.t. set-inclusion) among all complete labellings [6, 13], just like the grounded extension is the (unique)

minimal complete extension [18]. We also recall that the set of in-labelled arguments of the grounded labelling is

the grounded extension [6, 13].
18It has to be mentioned that the original preferred game [49] also requires a winning strategy, and that it were

Caminada and Wu [14] who reformulated this game such that this requirement could be dropped.
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8 Discussion

In the current paper, we contributed to bridging the gap between formal Dung-style
argumentation theory and the kind of informal discussion that one observes in con-
versational arguments. To the newcomer in abstract argumentation theory, it may
sometimes appear that the field is mainly about things like fixpoints and graph the-
ory. However, as we have pointed out in the current paper, it is very well possible
to reinterpret abstract argumentation theory in the form of semi-natural discussion.
Whereas classical logic is concerned mainly with what is true19, argumentation the-
ory, in this view, is about what can be defended in rational discussion. Different
argumentation semantics, in essence, represent different ideas about the nature of
rational discussion and their associated proof standards. An overview is presented in
Table 1.

Semantics type of discussion (credulous acceptance)

preferred, complete Socratic discussion
and admissible

stable Socratic discussion
in which Socrates can change topic

ideal Socratic discussion whose results cannot be
argued against in another Socratic discussion

grounded persuasion discussion

Table 1. Argumentation semantics and their associated discussion games

The connection between abstract argumentation theory and discussion games is
relevant for more than just theoretical reasons. For an argumentation-based expert
system, it can be hugely beneficial if it were able to explain its answers not in terms
of monotonic functions and fixpoints, but by means of (semi-) natural discussion
that the user is intuitively already familiar with. After all, Socratic dialogue, as we
mentioned earlier, goes back to classical antiquity, and is essentially still in use for
purposes like legal cross-examination and critical interviews, and similar observations
can be made regarding persuasion dialogue. Ideally, if an argumentation-based expert
system provides an answer that is not immediately understood by the user, then the
user should be able to do the same as when disagreeing with another person: start a
discussion.20
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