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Abstract

The current review paper examines how to apply Dung’s theory of abstract
argumentation to define meaningful forms of non-monotonic inference. The idea
is that arguments are constructed using strict and defeasible inference rules, and
that it is then examined how these arguments attack (or defeat) each other. The
thus defined argumentation framework provides the basis for applying Dung-
style semantics, yielding a number of extensions of arguments. As each of the
constructed arguments has a conclusion, an extension of arguments has an as-
sociated extension of conclusions. It are these extensions of conclusions that we
are interested in. In particular, we ask ourselves whether each of these exten-
sions is (1) consistent, (2) closed under the strict inference rules and (3) free
from undesired interference. We examine the current generation of techniques
to satisfy these properties, and identify some research issues that are yet to be
dealt with.

1 Introduction
Argumentation, as it takes place in everyday life, is never completely abstract. Com-
monly, arguments are exchanged in order to determine what to do or what to believe.
These arguments tend to be composed of reasons, some of which are strict and some
of which are defeasible. Strict reasons (like rules of logic) provide conclusive evi-
dence for a claim (like “Socrates is a man. All men are mortal. Therefore, Socrates
is mortal.”) whereas defeasible reasons (like rules of thumb) provide evidence for
their claim that is only valid in the absence of counter evidence (like “Tux is a bird.
Therefore Tux can fly.”). The existence of defeasible reasons illustrates that for
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commonsense reasoning, classical logic is often not sufficient, and that some form of
nonmonotonic reasoning (as for instance provided by formal argumentation theory)
is necessary.

Whereas defeasible reasons (formally represented as defeasible rules) provide a
basis for nonmonotonic reasoning, strict reasons (formally represented as strict rules)
provide the ability to model hard constraints (like “given our budget, if we acquire
both product X and Y, then we cannot acquire product Z anymore”). By doing
so, strict rules provide an important aspect of commonsense reasoning: the ability
to reason about an outside world that has particular constraints (for instance of
physical or financial nature) that are not subject to discussion.1

Suppose one would like to apply Dung’s theory in the presence of strict and
defeasible rules. That is, the idea is to apply the strict and defeasible rules to
construct the arguments of the argumentation framework.2 How can one be sure
that the outcome makes sense from a logical perspective? Suppose there exists a
rule representing the reason “given the current budget, if we acquire both product
X and Y, then we cannot acquire product Z anymore”, together with various other
rules. In that case, what one would like to avoid is arguments for buying product X,
Y and Z becoming justified (perhaps even in the same extension) because this would
mean the constraint is violated. In principle, we could of course look inside of the
arguments to check that what we select does not violate any constraint. However, the
whole idea of Dung’s abstract argumentation theory3 is not to look at the internal
structure of the arguments, and to select them based purely on their position in the
graph. However, if one cannot look inside of the arguments when selecting them,
then how does one make sure that the overall outcome (regarding conclusions on,
say, what to do or what to believe) makes any sense?

In the current paper, we examine the question of how to apply Dung’s theory

1Some argumentation researchers have claimed (personal communication) that if one digs deep
enough, even strict rules start to have exceptions, and that therefore only defeasible rules exist.
While this may be true from a philosophical perspective, one often wants to restrict the domain
of reasoning and not take the more esoteric exceptions into account. The rule “given the current
budget, if we acquire both product X and Y, we cannot acquire product Z anymore” may have
exceptions if one is willing to steal, but this exception is of little relevance when the setting is a
meeting at work. Also, the very idea of modelling information (be it by means of rules or by any
other means) is that one limits oneself to a particular Universe of Discourse. Hence, strict rules can
be seen as defeasible rules whose exceptions are beyond our current Universe of Discourse.

2Basically, this is done by chaining the rules together into inference trees, like is for instance
done in [Modgil and Prakken, 2014; Toni, 2014; Caminada et al., 2014b; Caminada et al., 2015].

3Keep in mind that in Dung’s theory, arguments are abstract, not atomic. Atomic would mean
that arguments have no internal structure at all. Abstract means that arguments do have an internal
structure, but that one does not take this structure into account (that is, one has abstracted from
the internal structure).
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of abstract argumentation for the purpose of non-monotonic reasoning with strict
and defeasible rules. That is, we examine how to apply abstract argumentation
semantics while making sure the overall outcome (in terms of justified conclusions)
still makes sense. The remaining part of this paper is structured as follows. First,
we will state some formal preliminaries on rule-based argumentation in Section 2.
Then, in Section 3 we examine three desirable properties of the overall outcome
(direct consistency, indirect consistency and closure) and examine various ways of
satisfying these properties. Then, in Section 4 we examine two additional desirable
properties (non-interference and crash resistance) that are particularly relevant when
the strict rules are derived from classical logic, and again examine various ways of
satisfying these properties. We round off with a summary and discussion in Section
5.

2 Formal Preliminaries
In the current section, we outline the process of constructing an argumentation
framework from a set of strict and defeasible rules. For current purposes, we base
our approach on the work of Caminada et al. [2014b].4

Definition 1. Given a logical language that is closed under negation (¬), an argu-
mentation system is a tuple AS = (Rs,Rd, n,≤) where:

• Rs is a finite set of strict inference rules of the form ϕ1, . . . , ϕn → ϕ (where
ϕi, ϕ are meta-variables ranging over L and n ≥ 0)

• Rd is a finite set of defeasible inference rules of the form ϕ1, . . . , ϕn ⇒ ϕ
(where ϕi, ϕ are meta-variables ranging over L and n ≥ 0)

• n is a partial function such that n : Rd −→ L

• ≤ is a partial pre-order on Rd
We write ψ = −ϕ in case ψ = ¬ϕ or ϕ = ¬ψ (we will sometimes informally say
that formulas ϕ and −ϕ are each other’s negation).

To keep things simple, we assume that the logical language L consists of literals
only.5

4As such, we will for instance not consider the notion of contraries [Modgil and Prakken, 2014]
or any other notions in aspic+ that are not relevant for current purposes.

5In Section 4 we generalise things by having L be the language of propositional logic.
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In the following definition, arguments are constructed from strict and defeasible
rules in an inductive way. This process starts from the strict and defeasible rules
with empty antecedents (so where n = 0).

Definition 2. An argument A on the basis of an argumentation system AS =
(Rs,Rd, n,≤) is defined as:

1. A1, . . . , An → ψ if A1 . . . An (n ≥ 0) are arguments, and there is a strict rule
Conc(A1), . . . ,Conc(An)→ ψ in Rs. In that case we define
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
DefRules(A) = DefRules(A1) ∪ . . . ∪DefRules(An),
TopRule(A) = Conc(A1), . . . ,Conc(An)→ ψ

2. A1, . . . , An ⇒ ψ if A1 . . . An (n ≥ 0) are arguments, and there is a defeasible
rule Conc(A1), . . . ,Conc(An)⇒ ψ in Rd. In that case we define
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪DefRules(An) ∪
{Conc(A1), . . . ,Conc(An)⇒ ψ},
TopRule(A) = Conc(A1), . . . ,Conc(An)⇒ ψ.

Furthermore, for any argument A and set of arguments E:

• A is strict iff DefRules(A) = ∅; defeasible iff DefRules(A) 6= ∅;

• If DefRules(A) = ∅, then LastDefRules(A) = ∅, else;
if A = A1, . . . , An ⇒ φ then LastDefRules(A) = {Conc(A1), . . . ,Conc(An)⇒
φ}, otherwise LastDefRules(A) = LastDefRules(A1)∪ . . .∪ LastDefRules(An).

• Concs(E) = {Conc(A) | A ∈ E}

• The closure under strict rules of E, denoted ClS(E) is the smallest set con-
taining Concs(E) and the consequent of any strict rule in Rs whose antecedent
is contained in ClS(E).

For current purposes (as well as is done in [Caminada and Amgoud, 2007;
Prakken, 2010; Caminada et al., 2014b]) we assume that the set of strict rules is
consistent in the following way.

Definition 3. Let AS = (Rs,Rd, n,≤) be an argumentation system. We say that
AS and Rs are consistent iff no strict arguments A and B exist such that Conc(A)
= −Conc(B)
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Definition 4. Let A and B be arguments. We say that

• A undercuts B (on B′) iff Conc(A) = −n(r) for some B′ ∈ Sub(B) with
TopRule(B′) = r and r ∈ Rd

• A restrictively rebuts B (on B′) iff Conc(A) = −Conc(B′) for some B′ ∈
Sub(B) with TopRule(B′) ∈ Rd
• A unrestrictively rebuts B (on B′) iff Conc(A) = −Conc(B′) for some B′ ∈

Sub(B) with B′ being a defeasible argument

To illustrate the difference between restricted rebut and unrestricted rebut,
first consider the example of an argumentation system AS1 with Rs = ∅ and
Rd = {⇒ a; a⇒ b; ⇒ c; c⇒ ¬b}. Here, the argument (⇒ a)⇒ b restrictively and
unrestrictively rebuts the argument (⇒ c)⇒ ¬b, and vice versa. In the argumenta-
tion system AS2 with Rs = {→ a; a→ b} and Rd = {⇒ c; c⇒ ¬b}, the argument
(→ a) → b restrictively and unrestrictively rebuts the argument (⇒ c) ⇒ ¬b, but
the argument (⇒ c) ⇒ ¬b does not restrictively or unrestrictively rebut the argu-
ment (→ a) → b. In the argumentation system AS3 with Rs = {a → b; → c} and
Rd = {⇒ a; c ⇒ ¬b} the argument (⇒ a) → b restrictively and unrestrictively re-
buts the argument (→ c)⇒ ¬b, and the argument (→ c)⇒ ¬b unrestrictively (but
not restrictively) rebuts the argument (⇒ a)→ b. To sum up, with restrictive rebut
one needs to check whether the last rule of the attacked conclusion6 is defeasible
whereas with unrestricted rebut one needs to check whether any previous rule of the
attacked conclusion is defeasible.

The intuition behind unrestricted rebut is that a conclusion is defeasible iff it has
been derived using at least one defeasible rule. If the conclusion has been derived
using strict rules only, then the conclusion is strict and cannot be argued against.
The intuition behind restricted rebut, on the other hand, is that (like in classical
logic) in order to argue against a particular derivation, one has to argue against its
premises. So instead of attacking the consequent of a strict rule, one has to attack
its antecedent, unless this antecedent itself consists of the consequents of strict rules,
in which case one has to keep on going backwards until finding a defeasible rule. It
holds that if A restrictively rebuts B, then A also unrestrictively rebuts B, but not
vice versa.

One last subtle aspect of the definition of restricted and unrestricted rebut
(Definition 4) is that one only looks at the subargument B′ that yields the con-
clusion that one is arguing against. So in the argumentation system AS4 with
Rs = {→ c; c → ¬b} and Rd = {⇒ a; a ⇒ b; ¬b ⇒ d} the argument (⇒ a) ⇒ b

6meaning: of the conclusion one argues against by providing an argument for its contrary
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does not (restrictively or unrestrictively) rebut the argument ((→ c) → ¬b) ⇒ d,
even though the latter argument is defeasible, because the subargument that yields
the attacked conclusion ¬b is strict.

The difference between restricted and unrestricted rebut is relevant not just be-
cause they are based on different intuitions, but also because choosing to implement
either restricted or unrestricted rebut has consequences for how one should define
the rest of the argumentation formalism if the aim is to yield some kind of reasonable
output in terms of justified conclusions. Details will follow further on in the current
paper.

Apart from (restrictive and unrestrictive) rebutting, Definition 4 also introduces
the concept of undercutting. Whereas with rebutting, one argues against the conclu-
sion of an argument (or against the conclusion of a subargument), with undercutting
one argues against the applicability of a particular defeasible rule. A classical ex-
ample of undercutting has been given by Pollock [1995]: “If an object looks red,
then it actually is red, unless it is illuminated by a red light”. Formally, this can
be modelled using argumentation system AS5 with Rs = {→ looksred; → redlight},
Rd = {looksred ⇒ isred; redlight ⇒ ¬lris} and n(looksred ⇒ isred) = lris. Here, the
argument (→ looksred) ⇒ isred is undercut by the argument (→ redlight) ⇒ ¬lris.
Although undercutting does not play a major role in the remaining part of the cur-
rent paper, we have still chosen to introduce it, as it is a piece of functionality that
can be implemented while still warranting an overall reasonable outcome regarding
the justified conclusions.

Another piece of functionality that some formalisms have implemented is that
of argument strength.7 Argument strength is often defined based on an ordering of
the defeasible rules. However, as arguments can be constructed using more than one
defeasible rule, one needs a way of applying the strength ordering between individual
rules to determine a strength ordering between sets of rules. Two principles for doing
so have been defined in the literature: the elitist and the democratic set ordering
[Modgil and Prakken, 2014; Caminada et al., 2014b].

Definition 5. Let ≤⊆ (Rd×Rd) be a total pre-ordering on the defeasible inference
rules, where as usual, r < r′ iff r ≤ r′ and r � r′, and r ≡ r′ iff r ≤ r′ and r′ ≤ r.
Then for any E , E ′ ⊆ Rd Es (s ∈ {Eli, Dem}) is defined as follows:

1. If E = ∅ then E 5s E ′ ;

2. If E ′ = ∅ and E 6= ∅ then E Es E ′; else:

7Argument strength is sometimes referred to as argument preferences in the work of Prakken
[2010], Modgil and Prakken [2014] and of Caminada et al. [2014b].
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3. if s = Eli: E EEli E ′ if ∃r1 ∈ E s.t. ∀r2 ∈ E ′, r1 ≤ r2; else:

4. if s = Dem: E EDem E ′ if ∀r1 ∈ E, ∃r2 ∈ E ′, r1 ≤ r2.

As usual E �s E ′ iff E Es E ′ and E ′ 5s E

The elitist and democratic set ordering principles assume the presence of sets of
defeasible rules. This leads to the question of how to determine the relevant sets
of defeasible rules when one argument rebuts another. Again, two principles have
been formulated in the literature, called weakest link and last link. With weakest
link, one takes into account all defeasible rules (of both the rebutting argument and
the rebutted (sub)argument), whereas with last link, one takes into account only
the last defeasible rule(s). Given the weakest link and the last link principles for
determining the sets of relevant defeasible rules, as well as the elitist and democratic
set ordering principles for evaluating these sets of defeasible rules, one can identify
four different principles for determining argument strength.

Definition 6. Let Ar be the set of arguments that can be constructed using argu-
mentation system (Rs,Rd, n,≤). Then ∀A,B ∈ Ar:

1. A �Ewl B iff DefRules(A) EEli DefRules(B)

2. A �Ell B iff LastDefRules(A) EEli LastDefRules(B)

3. A �Dwl B iff DefRules(A) EDem DefRules(B)

4. A �Dll B iff LastDefRules(A) EDem LastDefRules(B)

where Ewl, Ell, Dwl and Dll respectively denote ‘ Elitist weakest link’,
‘ Elitist last link’, ‘ Democratic weakest link’ and ‘ Democratic last link’.
We may write A ≺p B iff A �p B and B �p A, and write A ≈p B iff A �p B,B �p
A (where p ∈ {Ewl, Ell, Dwl, Dll}). It is straightforward to show that ≺p is a strict
partial ordering (irreflexive, transitive and asymmetric).

We are now ready to define the overall notion of defeat. For this, we follow
the approach of formalisms like aspic+ [Modgil and Prakken, 2014] and aspic-
[Caminada et al., 2014b], where the notion of defeat stands for attack after argument
strength has been taken into account. It is defeat, not attack, that is then used to
define the argumentation framework.

Definition 7. Let Ar be the set of arguments that can be constructed using argu-
mentation system AS = (Rs,Rd, n,≤). Let �p be the associated argument strength
order on Ar as defined in Definition 6. Then def ur ⊆ Ar × Ar is defined as
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(A,B) ∈ def ur iff A undercuts B or A unrestrictively rebuts B on B′ and A 6≺p B′,
and def rr ⊆ Ar×Ar is defined as (A,B) ∈ def rr iff A undercuts B or A restrictively
rebuts B on B′ and A 6≺p B′.

We observe that the set of arguments Ar , together with the associated defeat
relation (either def ur or def rr) defines a Dung-style argumentation framework. On
this argumentation framework, one can then apply the standard argumentation se-
mantics.

3 Direct Consistency, Indirect Consistency and Closure
To illustrate the issue of rationality postulates, consider the following example.

Example 1 ([Caminada and Amgoud, 2007]). Consider an argumentation system
AS = (Rs,Rd, n,≤) with Rs = {→ r; → n; m → hs; b → ¬hs}, Rd = {r ⇒
m; n⇒ b}, n = ∅ and ≤= ∅.

An intuitive interpretation of this example is the following:
“John wears a ring (r) on his finger. John is also a regular nightclubber (n). Some-
one who wears a ring on his finger is usually married (m). Someone who is a
regular nightclubber is usually bachelor (b). Someone who’s married by definition
has a spouse (hs). Someone who’s bachelor by definition does not have a spouse
(¬hs).”

We can construct the following arguments.
A1 :→ r A3 : A1 ⇒ m A5 : A3 → hs
A2 :→ n A4 : A2 ⇒ b A6 : A4 → ¬hs
If one were to apply unrestricted rebut, the only defeat would be between A5

and A6. That is, def ur = {(A5, A6), (A6, A5)}. This then implies that for instance
the grounded extension is {A1, A2, A3, A4}, yielding the associated set of (grounded)
justified conclusions {r, n,m, b}. The problem with these conclusions, however, is
that they do not take into account the meaning of the strict rules of the argumentation
system: that if one holds the antecedent of a strict rule to be the case, one must also
hold what deductively follows from it (the consequent of the rule). For instance,
from the fact that we obtain m, together with the strict rule m → hs we should
also have obtained hs, as a married person by definition has a spouse, so by John
being married we cannot escape the conclusion that he has a spouse. Yet, the fact
that John has a spouse is not represented in the set of justified conclusions (that is,
hs 6∈ {r, n,m, b}). This brings us to the first problem: the set of justified conclusions
is not closed under the strict rules.

Another problem appears when also applying the strict rule b → ¬hs. After all,
John is also considered to be a bachelor, so we cannot escape the conclusion that he
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does not have a spouse (¬hs). However, when we also apply the rule m→ hs, as we
did earlier, then we derive that John both has a spouse and does not have a spouse.
So not only is our set {r, n,m, b} of justified conclusions not closed under the strict
rules, if we do try to compute its closure, this closure turns out to be inconsistent!

So far, we examined what happens regarding the justified conclusions in case
we apply unrestricted rebut. However, if we were to base the defeat relation on
restricted rebut instead, then the outcome would even be worse, as the defeat relation
would become empty (that is, def rr = ∅) which means that (when still applying
grounded semantics) one obtains {A1, A2, A3, A4, A5, A6} as the grounded extension
and {r, n,m, b, hs,¬hs} as the associated justified conclusions. So here, we don’t
even need to close the justified conclusions under the strict rules in order to obtain
an inconsistent outcome, as the set of justified conclusions is already inconsistent by
itself.

From Example 1 we observe that there are at least three desirable properties a
set of conclusions should satisfy.

Postulate 1. Let S ⊆ L be a set of justified conclusions yielded by an argumentation
system. S should satisfy:

• direct consistency, meaning that ¬∃x : x,−x ∈ S

• closure, meaning that ClRs(S) = S

• indirect consistency, meaning that ¬∃x : x,−x ∈ ClRs(S)

Early formalisations of argumentation theory tried to avoid problems like those
illustrated in Example 1 by tinkering with the definition of defeat. However, as
explained by Caminada and Amgoud [2007], this does not actually lead to the prop-
erties of Postulate 1 being satisfied. Clearly, some more fundamental solutions are
needed. In the following two subsections, we examine some of the solutions that have
been described in the literature, distinguishing between solutions that have been ob-
tained for restricted rebut and solutions that have been obtained for unrestricted
rebut.

3.1 Restricted Rebut Solutions
In the current section, we examine some of the solutions that have been described
in the literature for satisfying direct consistency, indirect consistency and closure
when the defeat relation is based on restricted rebut.

We recall that, when applying restricted rebut to Example 1 this results in the
empty defeat relation, that is def rr = ∅. One could argue that this is because
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something is wrong with the information encoded in the argumentation system AS ,
in particular with the set of strict rule Rs. If one were for instance to add the
additional strict rules ¬hs → ¬m and hs → ¬b then the problem would be solved.
This is because one could then construct additional arguments A7 : A5 → ¬b and
A8 : A6 → ¬m. It holds that A7 restrictively rebuts A4 (as well as each argument
that contains A4, so also A6 and A8) and that A8 restrictively rebuts A3 (as well
as each argument that contains A3, so also A5 and A7). So overall we obtain the
argumentation framework shown in Figure 1. This argumentation framework yields
the grounded extension {A1, A2} (with associated conclusions {r, n}) and preferred
extensions {A1, A2, A3, A5, A7} (with associated conclusions {r, n,m, hs,¬b}) and
{A1, A2, A4, A6, A8} (with associated conclusions {r, n, b,¬hs,¬m}). As we can see,
each set of conclusions yielded under grounded or preferred semantics satisfies the
postulates of direct consistency, closure and indirect consistency.

A2A1

A3 A7 A5

A6A8A4

Figure 1: Argumentation framework of Example 1 after adding the rules ¬hs→ ¬m
and hs→ ¬b.

Adding the rules ¬hs→ ¬m and hs → ¬b can be seen as a reasonable thing to
do. After all, Rs already contains a rule m → hs, meaning that without possible
exception, someone who is married by definition has a spouse. This implies that
someone who does not have a spouse cannot be married. Hence, ¬hs→ ¬m. Using
similar reasoning, one can use the rule b → ¬hs to derive hs → ¬b. Hence, the
rules ¬hs → ¬m and hs → ¬b were already “implicitly” contained in Rs. Adding
them explicitly can therefore be seen as doing justice to Rs, and has as a side effect
that the postulates of direct consistency, closure and indirect consistency become
satisfied.

Adding the “contraposed” version of a strict rule is relatively straightforward
when the antecedent of the rule consists just of a single formula (as is for instance
the case for m→ hs and b→ ¬hs) but gets more complicated when the antecedent
consists of multiple formulas. For this, a generalised version of contraposition is
needed, which is referred to as transposition [Caminada and Amgoud, 2007].
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Definition 8 ([Caminada and Amgoud, 2007]). Let ϕ1, . . . , ϕn → ϕ (n ≥ 0)
be a strict rule. A transposed version of this rule is of the form ϕ1, . . . , ϕi−1,
−ϕ,ϕi+1, . . . , ϕn → −ϕ (for some i ∈ {1 . . . n}). We say that a set of strict rules Rs
is closed under transposition when for each strict rule in Rs, each of its transposed
versions is also in Rs.

As an example, the strict rule a,¬b, c→ d has three transposed versions:
¬d,¬b, c→ ¬a; a,¬d, c→ b and a,¬b,¬d→ ¬c.

An example of an argumentation formalism that applies transposition to satisfy
direct consistency, closure and indirect consistency is aspic+ [Modgil and Prakken,
2014]. In aspic+ the following design choices have been made:

• the set of strict rules Rs is consistent and closed under transposition

• restricted rebut is applied

• argument strength is based on a partial pre-order on the defeasible rules, to-
gether with either the last-link or weakest link selection principle and either
the elitist or democratic set ordering principle8

• the argumentation semantics is complete-based, meaning that it selects one or
more complete extensions (examples of complete-based semantics are
grounded, preferred, complete, semi-stable, ideal and eager semantics)

It is shown that under these choices, the overall outcome of the formalism satisfies
direct consistency, closure and indirect consistency.

To understand why transposition plays an important role in satisfying the prop-
erties of direct consistency, closure and indirect consistency, it can be useful to give
a sketch of proof. We start with the property of direct consistency. Suppose, to-
wards a contradiction, that there exists a complete extension yielding conclusions
that are directly inconsistent. This means there exists an argument A for conclusion
c and an argument B for conclusion −c (see Figure 2). As the set of strict rules Rs
is consistent, at least one of these arguments must be defeasible. Assume without
loss of generality that argument A is defeasible. Then A must contain at least one
defeasible rule. Now, identify a defeasible rule r that is “as high as possible” in A
(that is, whose distance to the conclusion c is minimal). Let e be the consequent of
r and let Ai be the subargument of A that has r as its top rule (so Conc(Ai) = e).
Let A1, . . . , An be the subarguments of A that have the same “depth” as Ai (that

8More precisely, argument strength has to be based on a reasonable argument ordering [Modgil
and Prakken, 2014], which is satisfied by applying either the weakest link or the last link selection
principle, in combination with applying either the democratic or the elitist set ordering principle.
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Figure 2: Sketch of proof direct consistency (restricted rebut)

is, whose respective top-rules have the same distance to conclusion c). It turns out
to be possible to build an argument D′ that defeats Ai by deriving conclusion −e.
Recall that “above” each Ai there are only strict rules in A (after all, r was the
“highest” defeasible rule in A). In case these strict rules consist of only one layer,
there exists a single strict rule Conc(A1), . . . ,Conc(An) → c) with transposed ver-
sion Conc(A1), . . . ,Conc(Ai−1),−c,Conc(Ai+1), . . . ,Conc(An) → −Conc(Ai), so
Conc(A1), . . . ,Conc(Ai−1),Conc(B),Conc(Ai+1), . . . ,Conc(An) → −c, which im-
plies we can use A1, . . . Ai−1, B and Ai+1, . . . , An to construct an argument that
restrictively rebuts Ai. In case the strict rules above each Ai consist of more than
one layer, then one can still use transposition to construct an argument that restric-
tively rebuts Ai (basically by induction over the number of layers of strict rules).
Let D′ be the thus constructed argument that restrictively rebuts Ai. As Ai is a
subargument of A, it follows that D′ also restrictively rebuts A. From the fact that
we are considering a complete extension, it follows that the extension has to con-
tain an argument (say C) that defeats D′. However, as each defeasible rule of D′
also occurs in A or B, it follows that C also defeats A or B.9 Hence, the complete
extension is not conflict-free. Contradiction.

It is important to observe that the above sketch of proof uses the facts that (1)
Rs is consistent, (2) Rs is closed under transposition, (3) restricted rebut is being
applied, and (4) we are considering a complete extension (or at least an admissible
set).10

As for the property of closure, suppose there exists a strict rule ϕ1, . . . , ϕn → ϕ
and that the conclusions ϕ1, . . . , ϕn are yielded by our complete extension. We need
to show that conclusion ϕ is also yielded by the complete extension. From the fact

9This is straightforward to see when the strength ordering between the rules is empty, but also
holds when the strength ordering is non-empty. See the work of Modgil and Prakken [2013] for
details.

10There are also some requirements regarding argument strength. These are such that �Ewl, �Ell,
�Dwl, and �Dll (Definition 6) satisfy them. We refer to the work of Modgil and Prakken [2013; 2014]
for details.
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that conclusions ϕ1, . . . , ϕn are yielded, it follows that the complete extension con-
tains arguments A1, . . . , An with conclusions ϕ1, . . . , ϕn respectively. Now consider
the argument A : A1, . . . , An → ϕ. Let B be an arbitrary argument that defeats
A. Then from the definition of defeat, it follows that B also defeats at least one of
A1, . . . , An. From the fact that our extension is complete (and therefore also admis-
sible) it follows that it contains an argument (say C) that defeats B. This means
that A is defended by the complete extension, and must therefore also be contained
in the complete extension.11 This then implies that the complete extension also
yields conclusion Conc(A) = ϕ.

Given that we have obtained both direct consistency and closure, the property
of indirect consistency is trivially satisfied.

As was mentioned above, the property of transposition plays an important role
for satisfying direct consistency, closure and indirect consistency. However, if one
takes a closer look at the above sketch of proof, what is actually applied is a prop-
erty that is more general than transposition. Going back to Figure 2 then what is
actually needed is that if from Conc(A1), . . . ,Conc(An) one can apply strict rules to
derive c, then from Conc(A1), . . . ,Conc(Ai−1),−c,Conc(Ai+1), . . . , Conc(An) one
can also apply strict rules to derive −Conc(Ai). This property is called contraposi-
tion by Modgil and Prakken [2013; 2014], who show that direct consistency, closure
and indirect consistency are satisfied when the set of strict rules is closed under
contraposition.

One can ask the question of whether it is possible to derive even more general
conditions than transposition and contraposition, under which direct consistency,
closure and indirect consistency are still satisfied. This question is answered pos-
itively by Dung and Thang [2014] who present a semi-abstract approach that ab-
stracts away from most aspects of argument structure (making explicit only the
notions of a conclusion and that of a subargument). However, their approach does
rely on particular constraints on the defeat relation, and it can be observed that these
constraints can only be satisfied under restricted (and not unrestricted) rebut.12

3.2 Unrestricted Rebut Solutions
Although restricted rebut has become the most popular principle for defining the
overall defeat relationship (as is for instance evidenced by the various versions of the

11Notice that for this reasoning step, a complete extension is really needed; an admissible set is
not sufficient.

12More precisely, unrestricted rebut trivialises the notion of a base [Dung and Thang, 2014], which
prevents the results of Dung and Thang [2014] from being applied in the context of unrestricted
rebut.
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aspic+ formalism [Prakken, 2010; Modgil and Prakken, 2013; Modgil and Prakken,
2014]) it does have some disadvantages, especially when applied in a dialectical
context. Consider for instance the following discussion taken from [Caminada et al.,
2014b].
John: “Bob will attend both AAMAS and IJCAI this year, as he has papers accepted
at each of these conferences.“
Mary: “That won’t be possible, as his budget of £1000 only allows for one foreign
trip.”

Formally, this discussion can be modelled using the argumentation system (Rs,
Rd, n,≤) with Rd = {accA ⇒ attA; accI ⇒ attI; budget ⇒ ¬attboth} and
Rs = {→ accA; → accI; → budget; attA, attI → attboth; ¬attboth, attI →
¬attA; attA,¬attboth→ ¬attI}.13

John: ((→ accA)⇒ attA), ((→ accI)⇒ attI)→ attboth
Mary: (→ budget)⇒ ¬attboth

The problem is that when applying restricted rebut, Mary’s argument does not
defeat John’s argument. This is because the conclusion that Mary wants to attack
(attboth) is the consequent of a strict rule. If Mary wants to restrictively rebut
John’s argument, she can only do so by attacking the consequent of a defeasible
rule. That is, she would be forced to choose to defeat either attA or attI, meaning
that she essentially has to utter one of the following statements.
Mary′: Bob won’t attend AAMAS because he will already attend IJCAI, and his
budget doesn’t allow him to attend both.
Mary′′: Bob won’t attend IJCAI because he will already attend AAMAS, and his
budget doesn’t allow him to attend both.
The associated formal counterarguments are as follows.
Mary′: ((→ budget)⇒ ¬attboth), ((→ accI)⇒ attI)→ ¬attA
Mary′′: ((→ accA)⇒ attA), ((→ budget)⇒ ¬attboth)→ ¬attI

Critically, Mary does not know which of the two conferences Bob will attend,
yet the principle of restricted rebut forces her to make concrete statements on this.
From the perspective of commitment in dialogue [Walton and Krabbe, 1995], this
is unnatural. One should not be forced to commit to things one has insufficient
reasons to believe in.

It should be stressed that the problem outlined above is particularly relevant in
dialectical contexts, where different agents make commitments during the exchange
of arguments. This contrasts with a formalism like aspic+, which is more monolithic
in nature, in that from the given rules and premises, one constructs a graph of each
other defeating arguments and simply computes which arguments (and associated

13We observe that Rs is consistent and closed under transposition.
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conclusions) are justified. Concepts like different agents, communication steps or
commitment stores do not play a role in aspic+, and hence restricted rebut seems
acceptable. However, if one wants to add dialectical aspects to formal argumentation
(c.f., [Caminada and Wu, 2009; Caminada and Podlaszewski, 2012; Caminada et al.,
2014a]) then one is forced to take the limitations of restricted rebut seriously.

The obvious way to deal with problems like sketched above would be to sim-
ply replace restricted rebut by unrestricted rebut (thus replacing def rr by def ur).
Unfortunately, doing so also has far reaching consequences regarding the ability to
satisfy the postulates of indirect consistency and closure. This is illustrated by the
following example, taken from [Caminada and Wu, 2011].

Example 2. Consider the argumentation system (Rs,Rd, n,≤) with Rs = {→
jw; → mw; → sw; mt, st → ¬jt; jt, st → ¬mt; jt,mt → ¬st} and Rd = {jw ⇒
jt; mw ⇒ mt; sw ⇒ st}. This example can be interpreted as follows. John, Mary
and Suzy want to go cycling in the countryside (→ jw; → mw; → sw). They have a
tandem bicycle that each of them would like to be on (jw ⇒ jt; mw ⇒ mt; sw ⇒ st).
However, as the tandem only has two seats, if two of them are on it, the third one
cannot be on it (mt, st→ ¬jt; jt, st→ ¬mt; jt,mt→ ¬st). Using this argumenta-
tion system, we can construct the following arguments.
A1 :→ jw A4 : A1 ⇒ jt A7 : A5, A6 → ¬jt
A2 :→ mw A5 : A2 ⇒ mt A8 : A4, A6 → ¬mt
A3 :→ sw A6 : A3 ⇒ st A9 : A4, A5 → ¬st
When applying restricted rebut (and assuming the empty rule strength ordering)

argument A7 defeats A4 (as well as A8 and A9, which contain A4), argument A8
defeats A5 (as well as A7 and A9, which contain A5) and argument A9 defeats A6
(as well as A7 and A8, which contain A6). This yields the argumentation framework
at the left hand side of Figure 3, which we will refer to as AF rr.

AF rr has four complete extensions: {A1, A2, A3, A5, A6, A7} (yielding conclu-
sions {jw,mw, sw,¬jt,mt, st}), {A1, A2, A3, A4, A6, A8} (yielding conclusions {jw,
mw, sw, jt,¬mt, st}), {A1, A2, A3, A4, A5, A9} (yielding conclusions {jw,mw, sw,
jt, mt,¬st}), and {A1, A2, A3} (yielding conclusions {jw,mw, sw}). The first three
complete extensions are also preferred (as well as stable and semi-stable). The last
one is also grounded. We observe that the conclusions of each complete extension
satisfy direct consistency, closure and indirectly consistency.

Now, let us consider what happens if we were to replace restricted rebut by un-
restricted rebut. In that case, A7 would still defeat A4 (as well as A8 and A9), A8
would still defeat A5 (as well as A7 and A9) and A9 would still defeat A6 (as well
as A7 and A8). However, additionally A4 would defeat A7, A5 would defeat A8 and
A6 would defeat A9. This is because A7, A8 and A9 are defeasible arguments, as
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Figure 3: restricted rebut versus unrestricted rebut

their subarguments contain defeasible rules. So with unrestricted rebut, the argu-
ments A4, A5 and A6 are able to “strike back” against their respective defeaters.
This yields the argumentation framework at the right hand side of Figure 3, which
we will refer to as AFur. AFur has five complete extensions. The first four are
the same as those of AF rr. The fifth one is {A1, A2, A3, A4, A5, A6} yielding con-
clusions {jw,mw, sw, jt,mt, st}, hence violating closure and indirect consistency.
As this fifth complete extension is also preferred, stable and semi-stable, we have a
counterexample against applying unrestricted rebut under each of these semantics.

Example 2 illustrates a fundamental difference between restricted and unre-
stricted rebut. Whereas under restricted rebut (in combination with Rs being
consistent and closed under transposition or contraposition) any admissible set of
arguments will yield conclusions that are indirectly consistent, under unrestricted
rebut admissibility alone is not sufficient (the set {A1, A2, A3, A4, A5, A6} being the
counter example). It turns out that what is needed is a property that is stronger
than admissibility: strong admissibility [Baroni and Giacomin, 2009; Caminada,
2014].14 We observe that although the set {A1, A2, A3, A4, A5, A6} is admissible,
it is not strongly admissible. Furthermore, we observe that the set {A1, A2, A3} is
both admissible and strongly admissible and yields conclusions {jw,mw, sw} that
are closed and indirectly consistent.

As the grounded extension is the unique biggest strongly admissible set [Baroni
and Giacomin, 2009; Caminada, 2014], grounded semantics is a natural starting

14We recall that a set of arguments Args is strongly admissible iff each A ∈ Args is defended
by some Args′ ⊆ Args \ {A} which in its turn is again strongly admissible. Informally, the idea of
strong admissibility is that each argument should be defended without going around in circles.
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point for proving the properties of direct consistency, indirect consistency and clo-
sure when applying unrestricted rebut. Proving the property of direct consistency
is relatively straightforward. After all, if the grounded extension was to yield con-
clusions that are directly inconsistent, it would have to contain two arguments A
and B with opposite conclusions. As Rs is consistent, at least one of them has to
be defeasible, which means that one would defeat (unrestrictedly rebut) the other,
which would implies that the grounded extension is not conflict-free. Contradiction.

Proving the property of closure is a bit more complex, as it is done by induction
using the inductive definition of the grounded extension. We refer to the work of
Caminada and Amgoud [2007] and of Caminada et al. [2014b] for details. Indirect
consistency then follows trivially from direct consistency and closure.

As for argument strength, two possibilities have been observed when it comes
to satisfying closure and indirect consistency under unrestricted rebut. The first
approach, of Caminada and Amgoud [2007], is to essentially have the empty ordering
on the defeasible rules. A later approach, by Caminada et al. [2014b] is to have a
total (!) pre-order among the defeasible rules.

An overall overview of approaches to satisfy direct consistency, closure and indi-
rect consistency is provided in Table 1.

4 Non-Interference and Crash Resistance
One of the issues to decide when formulating an argumentation system is whether
the (strict and defeasible) rules should be domain dependent or domain indepen-
dent. An example of a domain dependent strict rule would be cow → mammal. An
example of a domain independent strict rule would be modus ponens, so cow, cow ⊃
mammal→ mammal. When the aim is to implement domain independent reason-
ing, the most obvious thing to do would be to base the strict rules on some form of
classical logic. For current purposes, we examine what happens if one were to base
the set of strict rules on propositional logic.

Definition 9. Given the language L of propositional logic, a defeasible theory is a
tuple (P,Rd, n,≤) where

• P is a consistent set of propositions (called premises)

• Rd is a set of defeasible rules of the form ϕ1, . . . , ϕn ⇒ ϕ (where ϕi, ϕ are
meta-variables ranging over L)

• n is a function such that n : Rd −→ L
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Table 1: Approaches for satisfying closure and direct/indirect consistency

Given a defeasible theory (P,Rd, n,≤), we define the associated argumentation sys-
tem as (Rs,Rd, n,≤) with Rs = {→ ϕ | ϕ ∈ P}∪{ϕ1, . . . , ϕn → ϕ | ϕ1, . . . , ϕn ` ϕ}

As P is a consistent set of formulas, Rs will be consistent. Moreover, Rs is
also closed under transposition. This is because the set {→ ϕ | ϕ ∈ P} is trivially
closed under transposition (as a rule with an empty antecedent does not have any
transposed versions) and the set {ϕ1, . . . , ϕn → ϕ | ϕ1, . . . , ϕn ` ϕ} is closed under
transposition as ϕ1, . . . , ϕn ` ϕ implies ϕ1, . . . , ϕi−1,−ϕ,ϕi+1, . . . , ϕn ` −ϕ. How-
ever, basing strict rules on classical logic also brings an additional type of problems.
Consider the following example.

Example 3. Consider the defeasible theory (P,Rd, n,≤) with P = {js,mns}, Rd =
{js ⇒ s; mns ⇒ ¬s; wfr ⇒ r} and n and ≤ being the empty ordering. This
example can be interpreted as follows. John says the cup of coffee contains sugar,
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Figure 4: Strict rules as classical logic can have side effects (simple example)

so it probably contains sugar (→ js; js⇒ s). Mary says the cup of coffee does not
contain sugar (→ mns; mns⇒ ¬s). The weather forecaster predicts rain tomorrow,
so it will rain tomorrow (→ wfr; wfr ⇒ r). Hence, although we’re not sure about
whether the cup of coffee contains sugar, at least we should believe that it will rain
tomorrow. Using this argumentation system, at least the following arguments can be
constructed.
A1 :→ js A4 : A1 ⇒ s
A2 :→ mns A5 : A2 ⇒ ¬s
A3 :→ wfr A6 : A3 ⇒ r

However, classical logic also yields the strict rule s,¬s→ ¬r, as s,¬s ` ¬r ( ex falso
quodlibet). With this rule, we can construct the following argument.
A7 : A4, A5 → ¬r
This yields the argumentation framework of Figure 4.15

If one were to apply for instance grounded semantics, the grounded extension
{A1, A2, A3} would yield conclusions {j,m,wf}. Thus, the weather forecast is not
believed because John and Mary are having a disagreement about a cup of coffee.

The first thing to observe about Example 3 is that the underlying problem cannot
be solved simply by removing rules with an inconsistent antecedent. This is because
the effects of the rule s,¬s → ¬r can be simulated by the rules s → s ∨ ¬r and
s ∨ ¬r,¬s→ ¬r, which still allow us to construct an argument for ¬r from A4 and
A5.

One approach that has been proposed in the literature [Prakken, 2010] is to
change the semantics. If one were to apply for instance not grounded but pre-
ferred semantics to the argumentation framework of Figure 4, then two exten-
sions would result: {A1, A2, A3, A4, A6} (yielding conclusions {j,m,wf, s, r}) and
{A1, A2, A3, A5, A6} (yielding conclusions {j,m,wf,¬s, r}). We observe that each
set of conclusions contains r, so r is a justified conclusion under preferred semantics.

Although changing grounded semantics to preferred semantics seems to yield the
15Notice that we are applying restricted rebut, but similar problems also occur when applying

unrestricted rebut.
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Figure 5: Strict rules as classical logic can have side effects (complex example)

desired outcome in Example 3, there exists a slightly more complex example where
preferred semantics does not yield the desired outcome.

Example 4. Consider the defeasible theory (P,Rd, n,≤) with P = {js,mns, junrel,
munrel, wfr}, Rd = {js ⇒ s; mns ⇒ ¬s; wfr ⇒ r; junrel ⇒ ¬jrel; munrel →
¬mrel}, n(js ⇒ s) = n(junrel ⇒ ¬jrel) = jrel, n(mns ⇒ ¬s) = n(munrel ⇒
¬mrel) = mrel and ≤ being the empty ordering. So now, in addition to John
saying that the cup of coffee contains sugar, he also says that he is unreliable, so
John is probably unreliable (junrel ⇒ ¬jrel). However, if John is unreliable, then
the fact that he says something is no longer a reason to believe it. Hence the rule
(js ⇒ s) is undercut, just like the rule (junrel ⇒ ¬jrel). Similarly, in addition
to Mary saying that the cup of coffee does not contain sugar, she also says that she
is unreliable, so Mary is probably unreliable (munrel ⇒ ¬mrel). However, if Mary
is unreliable, then the fact that she says something is no longer a reason to believe
it. Hence the rule (mns ⇒ ¬s) is undercut, just like the rule (munrel ⇒ ¬mrel).
Overall, we can construct at least the following arguments.
A1 :→ js A4 : A1 ⇒ s
A2 :→ mns A5 : A2 ⇒ ¬s
A3 :→ wfr A6 : A3 ⇒ r
A8 :→ junrel A10 : A8 ⇒ ¬jrel
A9 :→ munrel A11 : A9 ⇒ ¬mrel

Classical logic again yields the strict rule s,¬s→ ¬r, which allows the construction
of the following argument.
A7 : A4, A5 → ¬r
This yields the argumentation framework of Figure 5.16

In the argumentation framework of Figure 5 there exists just a single complete ex-
tension (that is also grounded, preferred, ideal and semi-stable): {A1, A2, A3, A8, A9}
yielding conclusions {js,mns,wfr, junrel,munrel}. So again, we have that the
weather forecast is not believed (under any admissibility-based semantics) because

16Notice that we are again applying restricted rebut, although similar problems also occur when
applying unrestricted rebut.
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John and Mary are having a disagreement about a cup of coffee.
Before continuing to discuss some solutions that have been proposed in the liter-

ature, it can be useful to first define what precisely is it that we are trying to satisfy.
Or, to put it in other words, what is the property that is actually being violated
in Example 3 and Example 4? For this, we follow the approach of Caminada et al.
[2012].

First of all, if DT = (P,Rd, n,≤) is a defeasible theory, then we write Atoms(DT )
for the set of all propositional atoms occurring in DT . We say that defeasible
theories DT 1 and DT 2 are syntactically disjoint iff Atoms(DT1) ∩ Atoms(DT2) = ∅.
For syntactically disjoint defeasible theories DT 1 = (P1,Rd1, n1,≤1) and DT 2 =
(P2,Rd2, n2,≤2) we define the union DT 1 ∪DT 2 as (P1 ∪ P2,Rd1 ∪Rd2, n1 ∪ n2,≤1
∪ ≤2). Also, given a defeasible theory DT , we define its consequences Cnσ(DT )
as {Concs(Args1}, . . . ,Concs(Argsn)} where Args1, . . . ,Argsn are the extensions of
arguments (under semantics σ) of the argumentation framework yielded by defeasible
theory DT . Given a set of propositions S and a set of propositional atoms A, we
define S|A as {ϕ ∈ S | each atom in ϕ is an element of A}. Similarly, given a set
S = {S1, . . . , Sn} where each Si (i ∈ {1 . . . n}) is a set of propositions, we define S|A
as {S1|A, . . . , Sn|A}.
Definition 10. An argumentation formalism (applying semantics σ) satisfies non-
interference iff for every pair of syntactically disjoint defeasible theories DT 1 and
DT 2 it holds that Cnσ(DT 1)|Atoms(DT1) = Cnσ(DT 1 ∪DT 2)|Atoms(DT1).

To see how non-interference can be violated, consider again Example 3. In
essence, the defeasible theory of this example can be seen as the union of two syntac-
tically disjoint defeasible theories DT 1 = (P1,Rd1, n1,≤1) and DT 2 = (P2,Rd2, n2,
≤2) with P1 = {wfr}, Rd1 = {wfr ⇒ r}, P2 = {js,mns}, Rd2 = {js⇒ s; mns⇒
¬s}, n1 = n2 = ∅ and ≤1=≤2= ∅. When applying grounded semantics, it holds
that Cngr(DT 1)|Atoms(DT1) = {{wfr, r}} whereas Cngr(DT 1 ∪ DT 2)|Atoms(DT1) =
{{wfr}}. So merging DT 1 with the completely unrelated defeasible theory DT 2
affects the outcome that is relevant w.r.t. DT 1. Hence, non-interference is violated.

An even stronger property is that of crash resistance.
Definition 11. A defeasible theory DT 1 = (P1,Rd1, n1,≤1) (with Atoms(DT 1) (
Atoms(L)) is called contaminating (under semantics σ) iff for each syntactically
disjoint defeasible theory DT 2 it holds that Cnσ(DT 1) = Cnσ(DT 1 ∪ DT 2). An
argumentation formalism satisfies crash resistance iff there exists no defeasible theory
that is contaminating.

To see how crash resistance can be violated, consider Example 4. Again, the
defeasible theory of this example can be seen as the union of two syntactically
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disjoint defeasible theories DT 1 = (P1,Rd1, n1,≤1) and DT 2 = (P2,Rd2, n2,≤2)
with P1 = {js,mns, junrel,munrel}, Rd1 = {js ⇒ s; mns ⇒ ¬s; junrel ⇒
¬jrel; munrel ⇒ ¬mrel}, n1(js ⇒ s) = n1(junrel ⇒ ¬jrel) = jrel, n1(mns ⇒
¬s) = n1(munrel ⇒ ¬mrel) = mrel, ≤1= ∅, P2 = {wfr}, Rd2 = {wfr ⇒ r},
n2 = ∅ and ≤2= ∅. When applying stable semantics, it holds that Cnst(DT 1) = ∅,
just like Cnst(DT 1∪DT 2) = ∅. Moreover, it can be verified that for any DT ′2 that is
syntactically disjoint with DT 1, it holds that Cnst(DT 1∪DT ′2) = ∅, hence violating
crash resistance under stable semantics.

Conceptually, the difference between non-interference and crash resistance is
as follows. A violation of non-interference means that a defeasible theory somehow
influences the entailment of a completely unrelated (syntactically disjoint) defeasible
theory when being merged to it. A violation of crash resistance is more severe, as this
means that a defeasible theory influences the entailment of a completely unrelated
(syntactically disjoint) defeasible theory to such an extent that the actual contents of
this other defeasible theory become totally irrelevant. An argumentation formalism
that satisfies non-interference also satisfies crash resistance.17

Now that the relevant properties have been identified, we proceed to examine
some of the approaches in the literature for satisfying these. The first approach to
be discussed is that of Wu and Podlaszewski [2015]. Their main idea is simply to
erase inconsistent arguments18 from the argumentation framework before applying
argumentation semantics.

Definition 12. Let (Ar , def ) be the argumentation framework constructed from de-
feasible theory DT (by applying restricted rebut). Let Arc be {A ∈ Ar | A is consis-
tent } and let def c be def ∩ (Arc × Arc). (Arc, def c) is defined as the inconsistency
cleaned argumentation framework of DT.

As an example of how Definition 12 is used, in Example 3 and Example 4 ar-
gument A7 would be removed, as well as all attacks from and to A7. The resulting
inconsistency cleaned argumentation framework is such that r is a conclusion of each
complete extension.

One of the main results proved by Wu and Podlaszewski [2015] is that removing
inconsistent arguments from the argumentation framework does not lead to any
violations of direct consistency, closure and indirect consistency.19 They also prove

17That is, as long as the argumentation formalism is non-trivial in the sense of [Caminada et al.,
2012].

18An argument A is called inconsistent iff {Conc(A′) | A′ ∈ Sub(A)} is inconsistent.
19This is unlike what for instance would happen when removing self-defeating (self-undercutting)

arguments, which can lead to violations of closure. As an example (free after [Pollock, 1995]) take
the argumentation system (Rs,Rd, n,≤) with Rs = {→ a; b→ ¬c; c→ ¬b}, Rd = {a⇒ b}, n(a⇒
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that the properties of non-interference and crash resistance are satisfied. However,
the work of Wu and Podlaszewski [2015] assumes that the strength ordering among
the defeasible rules is the empty one, and they provide an example of how their
approach of erasing inconsistent arguments violates consistency and closure when
applying non-empty rule strengths in combination with the last link principle.

The second approach to be discussed is that of Grooters and Prakken [2016].
Here, one of the basic ideas is to change the way strict rules are generated from
propositional logic. Instead of generating a strict rule ϕ1, . . . , ϕn → ϕ whenever
ϕ1, . . . , ϕn ` ϕ, they are generating such a strict rule only when from some consistent
set Φ ⊆ {ϕ1, . . . , ϕn} it holds that Φ ` ϕ. So instead of the strict rules coinciding
with all propositional entailment, the idea is to have the strict rules coinciding with
consistent propositional entailment.

However, ruling out inconsistent inferences alone is not sufficient, as the problem
of ex falso quodlibet can also occur when successively applying several strict inference
steps, as was for instance observed earlier, using the rules s→ s∨r and s∨r,¬s→ ¬r.
The solution proposed by Grooters and Prakken [2016] is simple: when constructing
arguments, disallow the application of a strict rule after the application of another
strict rule.

It has to be mentioned that the approach of Grooters and Prakken [2016] has not
been proven to satisfy any of the properties of direct consistency, closure, indirect
consistency, non-interference and crash-resistance. Weaker properties have been
proven instead. We refer to [Grooters and Prakken, 2016] for details.

5 Discussion
It is important to observe that the properties examined in the current paper (some-
times called “rationality postulates” in the literature) are not specific to argumenta-
tion theory. In fact, they are general properties that can be applied to each formalism
for non-monotonic reasoning that aims to encapsulate some form of strict reasoning.
This is why the notion of an argument is not mentioned in the postulates of di-
rect consistency, closure, indirect consistency, non-interference and crash-resistance.

b) = c and ≤= ∅. Here, we can construct arguments A1 :→ a, A2 : A1 ⇒ b and A3 : A2 → ¬c. It
holds that A3 defeats (undercuts) both itself and A2. This yields a unique complete extension {A1}
whose set of conclusions {a} satisfies direct consistency, closure and indirect consistency. However,
if one were to remove the self-defeating argument A3, then this would yield a unique complete
extension {A1, A2}, whose set of conclusions {a, b} violates closure, as it contains b but not ¬c. The
key point is that whenever one removes a particular class of arguments from the argumentation
framework (be it inconsistent or self-attacking arguments) one has to examine whether this results
in any violations of direct consistency, indirect consistency and closure.
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Instead, these postulates are defined purely based on the outcome (in terms of con-
clusions) of the argumentation formalism. That is, the postulates abstract from the
notion of an argument.

This is not to say that no postulates have been formulated specifically about the
arguments yielded (instead of about the conclusions yielded). An example of such
a postulate would be subargument closure [Caminada and Amgoud, 2007]. This
postulate says that if a particular extension contains argument A, then it should
also contain all subarguments of A (so each A′ ∈ Sub(A)). Satisfying subargument
closure is not difficult. From the definition of defeat (under either restricted or
unrestricted rebut) it follows that each argument that attacks A′ also attacks A. So
from A being in, say, a complete extension it follows that A is defended against these
attackers, so A′ is also being defended. Therefore, A′ is also part of the complete
extension (which contains everything it defends).

In the current paper, we have mainly focused on rule-based argumentation for-
malisms, like aspic+. However, similar issues also play a role in classical logic
based argumentation [Gorogiannis and Hunter, 2011]. Here, the idea is, given a
set of propositions ∆ (called the knowledge base), to construct arguments as pairs
〈Φ, ϕ〉 where ϕ is a proposition (called the conclusion) and Φ is a set of propositions
(called the assumptions) such that Φ ` ϕ, Φ 6` ⊥ and ¬∃φ ∈ Φ: Φ \ {φ} ` ϕ. Given
this argument form, various ways of defining the notion of defeat (or attack, as no
strength order is taken into account) are examined, especially for their ability to
yield a consistent outcome. We refer to the work of Gorogiannis and Hunter [2011]
for details. While Gorogiannis and Hunter [2011] do not consider use of preferences,
a recent alternative formalisation of classical logic argumentation of D’Agostino and
Modgil [2016] satisfies the consistency and non-contamination postulates while sup-
porting the use of preferences. Moreover, this is done without the requirement that
an argument’s premises need to be checked for consistency and subset minimality,
and with the resulting argumentation frameworks only including finite subsets of the
arguments defined by a set of classical well-formed formulas. As such, their theory
provides a rational account that is suitable for resource bounded agents.

One key point that we want to emphasise is that the satisfaction of rationality
postulates is not just a matter of theoretical elegance. If we were to apply argu-
mentation theory for practical purposes, to determine what should be the actions
to take, and our formalism tells us to put three people on a tandem bicycle, then
this advice will be of little use, as the actions to implement it will fail. If we believe
the world to be such that there exist some hard (inviolable) constraints, then it
makes sense to model these using nondefeasible (strict) rules and expect the argu-
mentation formalism to deal with them in a proper way. Similarly, if one were for
instance to build a robot that uses argumentation theory for its internal reasoning,
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what we would like to avoid is the situation where after being fed some specific
snippets of input (like John whispering in its ear “The cup of coffee contains sugar,
and I’m unreliable”, and Mary whispering in its ear “The cup of coffee contains
no sugar, and I’m unreliable”) all inference will come to a grinding halt, and the
robot essentially stops functioning. Hence, satisfaction of the rationality postulates
is important not just for theoretical elegance, but also to make the theory suitable
for actual applications.

Given the important role of rationality postulates when it comes to applications
of argumentation theory, we observe that the current state of affairs (at the time
of writing) is somewhat unsatisfying. As for the postulates of direct consistency,
closure and indirect consistency, there seems to be a dilemma. If, on one hand, one
chooses to implement restricted rebut then these postulates can be satisfied under
any complete-based semantics. The disadvantage, however, is that restricted rebut
can be seen as unintuitive, especially in a dialectical context. If, on the other hand,
one chooses to implement unrestricted rebut, then the notion of defeat becomes more
in line with natural discussion. The disadvantage, however, is that one can only
apply grounded semantics, which tends to yield a very sceptical result. Moreover,
satisfaction of the rationality postulates is only guaranteed if the strength order on
the defeasible rules is either empty or total (hence ruling out a proper partial oder).

As for the postulates of non-inferference and crash resistance, the situation is
even more troublesome. First of all, all the approaches that we are aware of [Wu,
2012; Wu and Podlaszewski, 2015; Podlaszewski, 2015; Grooters and Prakken, 2016]
work only with restricted rebut. Moreover, the approach of Wu and Podlaszewski
[2015] requires the empty ordering regarding rule strength, whereas in many appli-
cation domains different rules can have different strengths. The work of Grooters
and Prakken [2016], does allow for a non-empty rule strength ordering, but fails to
prove any of the forementioned postulates, opting to prove much weaker properties
instead.

Overall, when it comes to the development of formal argumentation theory, one
can observe that the topic of pure abstract argumentation tends to receive quite
some more research attention than the topic of instantiated argumentation. Much
work has for instance been done on how to select nodes from a graph. However,
the real challenge is how to select nodes from a graph in a meaningful way, that
is, such that the overall outcome makes sense from a logical perspective so the
conclusions could be relied upon regarding what to do or what to believe. If formal
argumentation is to be applied in situations that matter, some proper solutions to
the issue of rationality postulates would be highly desirable.
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Afterword

At the time the current paper was submitted, a paper of Heyninck and Straßer [2017]
has just been accepted to be presented at IJCAI 2017. The authors’ main idea is
to allow for arguments to be attacked on several of its (sub)conclusions (that is, on
the conclusions of one or more of its subarguments). This is done by an attacker
with a disjunctive conclusion, such that each disjunct is the contrary (negation)
of one of the (sub)conclusions of the attacked argument. As far as we know, this
yields the first ever instantiation of Dung’s argumentation theory that (1) works
with a combination of classical logic and defeasible inference rules, (2) satisfies all
the rationality postulates and (3) implements argument preferences.
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