
On the Existence of Answer Sets in
Normal Extended Logic Programs

Martin Caminada1 and Chiaki Sakama2

Abstract. One of the serious problems in answer set programming
is that relatively small pieces of information can cause a total absence
of answer sets. To cope with this problem, this paper introduces a
class of normal extended logic programs which are extended logic
programs, whose defeasible rules are comparable to normal defaults
in default logic. Under suitable program transformations, we show
that every normal extended logic program always yields at least one
answer set.

1 Introduction

Answer set programming (ASP) is a declarative programming
paradigm which is useful for AI problem solving [1, 4]. In ASP a
program is represented as an extended logic program whose declar-
ative meaning is given by the answer set semantics [3]. However, it
is well-known that a program does not always have an answer set. A
notorious example is the rule like p← not p. The existence of such
a “negative loop” – an atom depending on its default negation, can
cause a total absence of answer sets, and blocks all useful inferences
from other parts of the program.

From the knowledge representation viewpoint, a negative loop is
often considered anomalous information. So there would be a good
reason that a program including such anomalous information is un-
usual anyway. The problem, however, is that even programs that do
not include any such anomalous information often fail to have an
answer set. This is illustrated by, for instance, the “Married John”
example from [2]: (a) “John wears something that looks like a wed-
ding ring.” (b) “John parties with his friends until late.” (c) “Some-
one wearing a wedding ring is usually married.” (d) “A party-animal
is usually a bachelor.” (e) “A married person, by its definition, has
a spouse.” (f) “A bachelor, by definition, does not have a spouse.”
These sentences are represented by the following program:

r ← p ←
m ← r, not¬ m b ← p, not¬ b
hs ← m ¬hs ← b .

This program contains no negative cycle, and encodes given infor-
mation in a natural way. The program has no answer set, however.

One may consider that interpreting strict (NAF-free) rules as
clauses in propositional logic and representing them as disjunctive
facts would solve the problem. Rewriting the strict rules as disjunc-
tive facts in the above program would yield the following.

1 Institute of Information and Computing Sciences, P.O. Box 80 089 3508
TB Utrecht The Netherlands; email: martinc@cs.uu.nl

2 Department of Computer and Communication Sciences, Wakayama Univer-
sity, Wakayama 640-8510, Japan; email: sakama@sys.wakayama-u.ac.jp

r ← p ←
m ← r, not¬ m b ← p, not¬ b

hs ∨ ¬m ← ¬hs ∨ ¬b ← .

This program has two answer sets: {r, p, m,¬b, hs} and
{r, p, b,¬m,¬hs}. Unfortunately, such rewriting does not work in
general. For instance, the following program contains only normal
defeasible rules and disjunctive facts but still has no answer set.3

¬a ← b, not a, b ← a, not¬ b,
c ← ¬ a, not¬ c, d ← c, not¬ d,
a ← d, not¬ a, a ∨ b ∨ c← .

The above discussion indicates that specifying syntactic restric-
tions under which an extended logic program is guarenteed to have
answer sets is not a trivial task, especially when one also want to
preserve a form of strict reasoning.

2 Basic Definitions

A program considered in this paper is an extended logic program
(ELP) [3], which is a finite set of rules of the form:

c ← a1, . . . , an, not b1, . . . , not bm (1)

where each c, ai and bj is a positive/negative literal and not stands
for default negation or negation as failure (NAF). not bj is called an
NAF-literal. If a is an atom, we identify ¬¬a with a. The literal c
is the head and the conjunction a1, . . . , an, not b1, . . . , not bm is
the body. The head is nonempty, while the body is possibly empty.
For each rule r of the form (1), head(r) represents the literal c,
and body+(r) and body−(r) represent the sets {a1, . . . , an} and
{b1, . . . , bm}, respectively. A rule is called strict if it is of the form:

c ← a1, . . . , an . (2)

Otherwise, a rule (1) is called defeasible. Given a program P , we
use the notation strict(P ) for the set of all strict rules of P , and
defeasible(P ) for the set of all defeasible rules of P . Clearly, P =
strict(P ) ∪ defeasible(P ). A program is NAF-free if it consists
of strict rules only. A program (rule, literal) is ground if it contains
no variable. Throughout the paper, we handle finite ground programs
unless stated otherwise.

The semantics of ELPs is given by the answer set semantics [3].
Let Lit be the set of all ground literals in the language of a pro-
gram. A set S(⊆ Lit) satisfies a ground rule r if body+(r) ⊆ S and
body−(r) ∩ S = ∅ imply head(r) ∈ S. S satisfies a program P if
3 We invite those who claim to have found one to verify the minimality of

their solution.



S satisfies every rule in P . Let P be an NAF-free ELP. Then, a set
S(⊆ Lit) is an answer set of P if S is a minimal set such that (i) S
satisfies every rule from P ; and (ii) if S contains a pair of comple-
mentary literals L and ¬L, S = Lit. Next, let P be any ELP and
S ⊆ Lit. For every rule r of P , the rule head(r)← body+(r) is in-
cluded in the reduct P S if body−(r)∩ S = ∅. Then, S is an answer
set of P if S is an answer set of P S . An answer set is consistent if
it is not Lit. A program P is consistent if it has a consistent answer
set; otherwise P is inconsistent. Remark that, by the definition, an
ELP P has the answer set Lit iff strict(P ) has the answer set Lit.

3 Normal Extended Logic Programs

Extended logic programs often fail to have an answer set. A similar
problem arises in the context of Reiter’s default logic. To deal with
the problem of the potential non-existence of extensions in default
logic, a possible solution is to restrict the syntax of knowledge repre-
sentation. In [5], for instance, it is shown that a normal default theory,
in which every default has the form α:β

β
, always yields at least one

extension. In spite of their restricted syntax, normal default theories
are useful to encode a large class of commonsense knowledge. An
interesting question is then whether such an approach would also be
feasible for logic programming. That is, can we state some possible
restrictions on the syntax and content of an ELP, under which the
existence of answer sets is guaranteed?

Analogously to default logic, one possible solution would be to
restrict the use of NAF in defeasible rules. That is, we restrict default
negation only to occur for a literal that is the opposite of the head of
the same rule. More precisely, a defeasible rule of the form:

c← a1, . . . , an, not ¬c (3)

is called a normal rule. There is a good reason to call this type of rules
normal. In fact, according to [3], the above normal rule is essentially
the same as a normal default of the form: a1 ∧ · · · ∧ an : c / c.

Unfortunately, the mere restriction that all defeasible rules should
be normal rules is not enough to guarantee the existence of an-
swer sets. The “Married John” example illustrated in Section 1 is
a counter-example of this restriction. One possible diagnosis of the
“Married John” example is that, apparently, some information is
missing. From our commonsense knowledge, we know that some-
one without a spouse is not married (¬m← ¬hs) and that someone
who has a spouse is not a bachelor (¬b← hs). Notice that these two
rules are actually contraposed forms of the existing rules hs← m and
¬hs← b. Adding these rules yields the following logic program.

r ← hs ← m

p ← ¬m ← ¬hs
m ← r, not¬ m ¬hs ← b

b ← p, not¬ b ¬b ← hs .
The above program has two answer sets: {r, p, m, hs} and

{r, p, b,¬hs}. This outcome can be seen as more desirable than the
outcome of the original program, where no answer set exists.

Nevertheless, contraposition (or even transposition, as introduced
in [2]) may not be enough to guarantee the existence of answer sets.
Consider the following program:

a ← b ← a, not¬ b
c ← b ¬b ← c .

In this program, all defeasible rules are normal, but even when one
adds the rules ¬b← ¬c and ¬c← b (which makes the set of strict
rules closed under contraposition) the program still does not yield
any answer sets. It indicates that in order to guarantee the existence
of answer sets, additional requirements are necessary.

Definition 3.1 (transpositive, transitive, antecedent-cleaned)
Let s1 and s2 be strict rules. We say that s2 is a transpositive version
of s1 iff:
s1 = c← a1, . . . , an and
s2 = ¬ai ← a1, . . . , ai−1,¬c, ai+1, . . . , an for some 1 ≤ i ≤ n.
Let s1, s2 and s3 be strict rules. We say that s3 is a transitive version
of s1 and s2 iff:
s1 = c← a1, . . . , an,
s2 = ai ← b1, . . . , bm for some 1 ≤ i ≤ n, and
s3 = c← a1, . . . , ai−1, b1, . . . , bm, ai+1, . . . , an.
Let s1 and s2 be strict rules. We say that s2 is an antecedent cleaned
version of s1 iff:
s1 = ¬ai ← a1, . . . , ai, . . . , an and
s2 = ¬ai ← a1, . . . , ai−1, ai+1, . . . , an.

The intuition behind transposition can be illustrated by trans-
lating a strict rule c← a1, . . . , an to a material implica-
tion c ⊂ a1 ∧ · · · ∧ an. This implication is logically equivalent
to ¬ai ⊂ a1 ∧ · · · ∧ ai−1 ∧ ¬c ∧ ai+1 ∧ · · · ∧ an, which is again
translated to ¬ai ← a1, . . . , ai−1,¬c, ai+1, . . . , an. Notice that,
when n = 1, transposition coincides with classical contraposition.
Transitivity, as used in Definition 3.1, basically boils down to the sub-
stitution of a literal in the body of a rule with the body of another rule
that has this literal as its head. The meaning of antecedent cleaning is
also straightforward. Translate a strict rule ¬ai ← a1, . . . , ai . . . , an
to a material implication ¬ai ⊂ a1 ∧ · · · ∧ ai ∧ · · · ∧ an, which
is equivalent to ¬ai ∨ ¬a1 ∨ · · · ∨ ¬ai ∨ · · · ∨ ¬an. In this for-
mula, the double occurrence of ¬ai can be eliminated, yielding
¬ai ∨ ¬a1 ∨ · · · ∨ ¬ai−1 ∨ ¬ai+1 ∨ · · · ∨ an, which is equivalent
to ¬ai ⊂ a1 ∧ · · · ∧ ai−1 ∧ ai+1 ∧ · · · ∧ an, and is translated back
to ¬a1 ← a1, . . . , ai−1, ai+1, . . . , an.

Definition 3.2 (closed) Let S be a set of strict rules. Then,
(i) S is closed under transposition iff for each rule s1 in S, a rule s2

is in S if s2 is a transpositive version of s1.
(ii) S is closed under transitivity iff for each rule s1 and s2 in S, a
rule s3 is in S if r3 is a transitive version of s1 and s2.
(iii) S is closed under antecedent cleaning iff for each rule s1 in S,
a rule s2 is in S if s2 is an antecedent cleaned version of s1.

Definition 3.3 (normal ELP) A program P is called a normal ex-
tended logic program (normal ELP, for short) iff:
(1) strict (P ) is closed under transposition, transitivity and an-
tecedent cleaning, and
(2) defeasible(P ) consists of normal rules only.

Theorem 1 Any normal ELP P has at least one answer set.

REFERENCES
[1] C. Baral. Knowledge Representation, Reasoning and Declarative

Problem Solving, Cambridge University Press, 2002.
[2] M. Caminada and L. Amgoud. An axiomatic account of formal argu-

mentation. In: Proceedings of the 20th National Conference of Artifi-
cial Intelligence, MIT Press, 2005.

[3] M. Gelfond and V. Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing 9(3/4):365–385,
1991.

[4] V. Lifschitz. Answer set programming and plan generation. Artificial
Intelligence 138:39–54, 2002.

[5] R. Reiter. A logic for default reasoning, Artificial Intelligence 13:81–
132, 1980.


