
On the Existence of Answer Sets in
Normal Extended Logic Programs∗

Martin Caminada
Institute of Information

and Computing Sciences
Utrecht University, The Netherlands

martinc@cs.uu.nl

Chiaki Sakama
Department of Computer

and Communication Sciences
Wakayama University, Japan

sakama@sys.wakayama-u.ac.jp

Abstract

An often problematic feature in answer set pro-
gramming is that a program does not always pro-
duce an answer set, even for programs which repre-
sent default information in a seemingly natural way.
To cope with this problem, this paper introduces a
class of normal extended logic programs which are
extended logic programs, whose defeasible rules
are comparable to normal defaults in default logic.
Under suitable program transformations, we show
that every normal extended logic program always
yields at least one answer set.

1 Introduction
Answer set programming (ASP) is a declarative program-
ming paradigm which is useful for AI problem solving [1;
10; 11]. In ASP a problem is represented as an extended logic
program whose declarative meaning is given by the answer
set semantics [9]. An often problematic feature in ASP is that
relatively small pieces of information may cause a total ab-
sence of answer sets. For example, the existence of a single
rule like “p ← not p” in a program blocks all useful infer-
ences from other parts of the program.

From the perspective of knowledge representation, such a
“negative loop” – a literal depending on its default negation
– is often considered anomalous information. So there would
be a good reason that a program including such anomalous
information is unusual anyway. The problem, however, is
that even programs that are seemingly natural and do not
include any such anomalous information often fail to have an
answer set. This is illustrated by, for instance, the “Married
John” example from [2]: (a) “John wears something that
looks like a wedding ring.” (b) “John parties with his friends
until late.” (c) “Someone wearing a wedding ring is usually
married.” (d) “A party-animal is usually a bachelor.” (e) “A
married person, by definition, has a spouse.” (f) “A bachelor,
by definition, does not have a spouse.” These sentences are
represented by the program P :

r ← , p ← ,
m ← r, not¬ m, b ← p, not¬ b,
hs ← m, ¬hs ← b .

∗This work has been supported by the EU ASPIC project.

The program contains no negative loop, and encodes the
given information in a natural way. The program has no an-
swer set, however. It is interesting to observe that the problem
does not arise if we encode the same knowledge in Reiter’s
default logic [13]. In default theories, (a) and (b) would be-
come facts, (c) and (d) would become normal defaults, and
(e) and (f) would become material implications. With this
translation, the default theory D:

r, p, m ⊃ hs, b ⊃ ¬ hs,
r : m

m
,

p : b

b
.

has two extensions: one including {r, p, b,¬hs,¬m}, the
other including {r, p, m, hs,¬b}. In fact, the default theory
D is a so-called normal default theory and always has an ex-
tension.

What is the cause of this difference? The point is that in ex-
tended logic programs a rule is interpreted as a one-way “in-
ference rule”. According to [9, page 367], “The language of
extended programs includes classical negation, but not clas-
sical implication”. As a result, a rule does not have a contra-
positive meaning even if it is a definite rule without default
negation. On the other hand, definite information in default
logic is represented by first-order formulas having contrapos-
itive meaning. To bridge the gap between extended logic pro-
grams and default theories, the paper [9] characterizes the ex-
tended logic program P in terms of the (non-normal) default
theory:

r, p,
m :

hs
,

b :

¬ hs
,

r : m

m
,

p : b

b
.

The above default theory has no extension either.
The fact that extended logic programs with normal default

rules may not have any answer sets is somewhat discourag-
ing. This is because normal default theories are “a very large
and natural class of default theories” [13]. A knowledge en-
gineer can encode problems like “Married-John” in a normal
default theory in a straightforward manner, while he/she may
fail to encode the same problem in a logic program. Our ques-
tion is then: “How can one provide a natural meaning of an
extended logic program with normal default rules?” or “Is
there any condition to guarantee the existence of answer sets
of extended logic programs with normal default rules?”

In this paper, we study the problem and propose a solu-
tion. We first introduce the class of normal extended logic

programs whose default rules are in the form of normal de-
faults. We then consider some syntactic conditions to guaran-
tee the existence of answer sets in such programs. We prove
that under these conditions a normal extended logic program
indeed always yields at least one answer set.

The rest of this paper is organized as follows. Section 2
introduces basic terms used in this paper. Section 3 discusses
problems of ASP, and a solution for guaranteeing the pres-
ence of answer sets is given in Section 4. Section 5 verifies
the usefulness of our approach in applications. In Section 6,
we round off our discussion and related issues. Section 7 ad-
dresses conclusion as well as some open questions for future
research.

2 Basic Definitions
A program considered in this paper is an extended logic pro-
gram (ELP) [9], which is a finite set of rules of the form:

c ← a1, . . . , an, not b1, . . . , not bm (1)

where each c, ai and bj is a positive/negative literal, namely,
a or ¬a for an atom a. not stands for default negation or
negation as failure (NAF). not bj is called an NAF-literal. If
a is an atom, we identify ¬¬a with a. The literal c is the
head and the conjunction a1, . . . , an, not b1, . . . , not bm is
the body. The head is nonempty, while the body is possibly
empty. The conjunction in the body is identified with the set
of conjuncts in it. This means that a rule like c ← a, a is
identified with its factored form c ← a. For each rule r of the
form (1), head(r) represents the literal c, and body+(r) and
body−(r) represent the sets {a1, . . . , an} and {b1, . . . , bm},
respectively. A rule with the empty body c← is identified
with the literal c and is called a fact. A rule is called strict if
it is of the form:

c ← a1, . . . , an (2)
Otherwise, a rule (1) is called defeasible. Given a program P ,
we use the notation strict(P) for the set of all strict rules of
P , and defeasible(P) for the set of all defeasible rules of P .
Clearly, P = strict(P)∪defeasible (P). A program is NAF-
free if it consists of strict rules only. A program (rule, literal)
is ground if it contains no variables. Throughout the paper,
we handle finite ground programs unless stated otherwise.

The semantics of ELPs is given by the answer set seman-
tics [9]. Let Lit be the set of all ground literals in the lan-
guage of a program. A set S(⊆ Lit) satisfies a ground rule r
if body+(r) ⊆ S and body−(r)∩ S = ∅ imply head(r) ∈ S.
S satisfies a program P if S satisfies every rule in P . Let P
be an NAF-free ELP. Then, a set S(⊆ Lit) is an answer set
of P if S is a minimal set such that (i) S satisfies every rule
from P ; and (ii) if S contains a pair of complementary literals
L and ¬L, S = Lit. Next, let P be any ELP and S ⊆ Lit.
For every rule r of P , the rule head(r) ← body+(r) is in-
cluded in the reduct P S if body−(r) ∩ S = ∅. Then, S is an
answer set of P if S is an answer set of P S . An answer set is
consistent if it is not Lit. A program P is consistent if it has
a consistent answer set; otherwise P is inconsistent. Remark
that, by the definition, an ELP P has the answer set Lit iff
strict(P) has the answer set Lit.

3 The Problem
In nonmonotonic logics, a theory often fails to have an exten-
sion. To deal with the problem of the potential non-existence
of extensions, a possible solution is to restrict the syntax of
knowledge representation. In default logic, for instance, it
is known that a normal default theory, in which every default
has the form α:β

β
, always yields at least one extension. In spite

of their restricted syntax, normal default theories are useful to
encode a large class of commonsense knowledge. An inter-
esting question is then whether such an approach would also
be feasible for logic programming. That is, can we state some
possible restrictions on the syntax and content of an ELP, un-
der which the existence of answer sets is guaranteed?

Analogously to default logic, one possible solution would
be to restrict the use of NAF in defeasible rules. That is,
we restrict default negation only to occur for a literal that is
the opposite of the head of the same rule. More precisely, a
defeasible rule of the form:

c← a1, . . . , an, not ¬c (3)
is called a normal rule. There is a good reason to call this type
of rule normal. In fact, according to [9], the above normal
rule is essentially the same as a normal default of the form:
a1 ∧ · · · ∧ an : c / c.

Unfortunately, the mere restriction that all defeasible rules
should be normal rules is not enough to warrant the existence
of answer sets. The “Married John” example in Section 1
is a counter-example of this. One possible diagnosis of the
“Married John” example is that, apparently, some information
is missing. From our commonsense knowledge, we know that
someone without a spouse is not married (¬m← ¬hs) and
that someone who has a spouse is not a bachelor (¬b← hs).
Notice that these two rules are actually contraposed forms of
the existing rules hs← m and ¬hs← b. Adding these rules
yields the following logic program.
Example 1. (Married John, continued)

r ← , hs ← m,
p ← , ¬m ← ¬hs,
m ← r, not¬ m, ¬hs ← b,
b ← p, not¬ b, ¬b ← hs .

The above program has two answer sets: {r, p, m, hs} and
{r, p, b,¬hs}. This outcome can be seen as more desirable
than the outcome of the original program, where no answer
set exists. Thus, one can see that at least in this example,
adding the contraposed version of the strict rules solves the
problem. Nevertheless, contraposition (or even transposition,
as introduced in [2]) may not be enough to guarantee the ex-
istence of answer sets.
Example 2. Consider the program P0:

a←, b← a, not¬ b, c← b, ¬b← c .

In this program, all defeasible rules are normal, but even
when one adds the rules¬b← ¬c and¬c← b (which makes
the set of strict rules closed under contraposition) the program
still does not yield any answer set.

One may consider that interpreting strict rules as clauses
in propositional logic and representing strict rules as disjunc-
tive facts would solve the problem. Rewriting strict rules as

disjunctive facts in the above program, it becomes

a←, b← a, not¬ b, c ∨ ¬b←, ¬b ∨ ¬c← .

The modified disjunctive program has the single answer set
{ a,¬b }. Unfortunately, such rewriting does not work in gen-
eral. For instance, the following program, normal defeasible
rules and disjunctive facts, has no answer set.1

¬a ← b, not a, b ← a, not¬ b, c ← ¬ a, not¬ c,
d ← c, not¬ d, a ← d, not¬ a, a ∨ b ∨ c← .

The above discussion indicates that to warrant the existence
of answer sets is not a simple problem, even if defeasible rules
are restricted to normal default rules. In the next section, we
investigate additional conditions to be put on strict rules.

4 Normal Extended Logic Programs
We introduce three closure operators on a set of strict rules.
Definition 1. Let s1 and s2 be strict rules. We say that s2 is
a transpositive version of s1 iff:

s1 = c← a1, . . . , an and
s2 = ¬ai ← a1, . . . , ai−1,¬c, ai+1, . . . , an

(for some 1 ≤ i ≤ n).
Let s1, s2 and s3 be strict rules. We say that s3 is a transitive
version of s1 and s2 iff:

s1 = c← a1, . . . , an,
s2 = ai ← b1, . . . , bm for some 1 ≤ i ≤ n, and
s3 = c← a1, . . . , ai−1, b1, . . . , bm, ai+1, . . . , an.

Let s1 and s2 be strict rules. We say that s2 is an antecedent
cleaned version of s1 iff:

s1 = ¬ai ← a1, . . . , ai, . . . , an and
s2 = ¬ai ← a1, . . . , ai−1, ai+1, . . . , an.

The intuition behind transposition can be illustrated
by translating a strict rule c← a1, . . . , an to a ma-
terial implication c ⊂ a1 ∧ · · · ∧ an. This implica-
tion is rewritten as a disjunction c ∨ ¬(a1 ∧ · · · ∧ an),
which in its turn can be written as a disjunction
c ∨ ¬a1 ∨ · · · ∨ ¬an. In this disjunction, different disjuncts
can be put in front. Putting for instance ai in front yields
¬ai ∨ ¬a1 ∨ · · · ∨ ¬ai−1 ∨ c ∨ ¬ai+1 ∨ · · · ∨ ¬an, which
is equivalent to ¬ai ∨ ¬(a1 ∧ · · · ∧ ai−1 ∧ ¬c ∧ ai+1 ∧ · · ·
∧an). This implication is logically equivalent to ¬ai ⊂
a1 ∧ · · · ∧ ai−1 ∧ ¬c ∧ ai+1 ∧ · · · ∧ an, which is again
translated to ¬ai ← a1, . . . , ai−1,¬c, ai+1, . . . , an. Notice
that, when n = 1, transposition coincides with classical
contraposition.

Transitivity basically boils down to the substitution of a
literal in the body of a rule with the body of another rule that
has this literal as its head.

The intuition behind antecedent cleaning can be illustrated
by translating a strict rule ¬ai ← a1, . . . , ai . . . , an to
a material implication ¬ai ⊂ a1 ∧ · · · ∧ ai ∧ · · · ∧ an,
which is then equivalent to the disjunction
¬ai ∨ ¬a1 ∨ · · · ∨ ¬ai ∨ · · · ∨ ¬an. In this formula,
the double occurrence of ¬ai can be eliminated, yielding

1We invite those who claim to have found one to verify the min-
imality of their solution.

¬ai ∨ ¬a1 ∨ · · · ∨ ¬ai−1 ∨ ¬ai+1 ∨ · · · ∨ an, which is
equivalent to ¬ai ⊂ a1 ∧ · · · ∧ ai−1∧ ai+1 ∧ · · · ∧ an.
This is then translated to the rule ¬a1 ← a1, . . . , ai−1,
ai+1, . . . , an.
Definition 2. Let S be a set of strict rules. Then,

(i) S is closed under transposition iff for each rule s1 ∈ S,
if s2 is a transpositive version of s1 then s2 ∈ S.

(ii) S is closed under transitivity iff for each rule s1, s2 ∈ S,
if r3 is a transitive version of s1 and s2 then s3 ∈ S.

(iii) S is closed under antecedent cleaning iff for each rule
s1 ∈ S, if s2 is an antecedent cleaned version of s1 then
s2 ∈ S.

Definition 3. A program P is called a normal extended logic
program (normal ELP, for short) iff:

1. strict(P) is closed under transposition, transitivity and
antecedent cleaning, and

2. defeasible(P) consists of normal rules only.
Example 3. The program P0 of Example 2 becomes P1

below by closing under transposition, transitivity, and an-
tecedent cleaning:
P1 : a ← , b ← a, not¬ b, c ← b, ¬b ← c,

¬b ← ¬c, ¬c ← b, ¬b ← b, ¬b ← .

Given a set S of strict rules, let Cl transposition(S),
Cl transitivity(S), and Cl antclearning(S) be closure
computation under transposition, transitivity, and antecedent
cleaning, respectively. Then, a closed set S under each clo-
sure computation is a set satisfying the following three con-
ditions:

S = Cl transposition(S),

S = Cl transitivity(S),

S = Cl antcleaning(S).

A procedure for computing such a closed set S from a non-
closed set S′ of strict rules is given as follows.
Repeat

S := S′

S′ := Cl transposition(S′);

S′ := Cl transitivity(S′);

S′ := Cl antcleaning(S′);

Until (S = S′).
Within the above loop, all the operations

Cl transposition, Cl transitivity, and Cl antcleaning,
can be applied in any order (i.e., the final result S = S′ is
always unique). Formally, we have the following result.
Proposition 1. Given a (non-closed) set S ′ of strict rules, let
S and T be any two closed sets that result from the above
procedure by applying the three closure operations in some
specific (possibly different) order. Then, S = T holds.

Proof. Let Cl1, Cl2 and Cl3 be three different clo-
sure operators such that Cli is one of Cl transposition,
Cl transitivity, and Cl antclearning. Since each itera-
tion of the loop in the procedure monotonically increases S ′,

it holds that S′ ⊆ S. The fact that the loop terminates means
that S is closed under Cl1, Cl2 and Cl3, namely, Cl1(S) =
S, Cl2(S) = S, and Cl3(S) = S. Suppose that the pro-
cedure produces a set T such that S ′ ⊆ T , Cl1(T) = T ,
Cl2(T) = T , Cl3(T) = T , but S 6= T . In this case, there
is some element that is in S but not in T , or in T but not in
S. Assume without loss of generality that there is some el-
ement that is in S but not in T (i.e., S \ T 6= ∅). Suppose
a sequence S0, . . . Sk of sets of strict rules where S0 = S′

and Sk = S. Let Si (0 ≤ i ≤ k) be the first set in the se-
quence that contains an element in S \ T . This implies that
Si−1 ⊆ T . Assume that Si is constructed from Si−1 by ap-
plying Clj , namely, Clj(Si−1) = Si. By the monotonicity of
a closure operator, Si−1 ⊆ T implies Clj(Si−1) ⊆ Clj(T).
The equations Clj(Si−1) = Si and Clj(T) = T then imply
that Si ⊆ T . This contradicts the assumption that Si contains
an element in S \ T .

By Proposition 1, given two programs P1 and P2 such
that strict(P1) = strict(P2) and defeasible(P1) =
defeasible(P2), the same normal ELP is constructed by clos-
ing P1 and P2 under three operations.

Our goal is to prove that a normal ELP always has at least
one answer set. We first introduce some notions.
Definition 4. Let P be a program. An entailment tree (ET)
under P is a finite non-empty tree satisfying the following:

1. each node of the tree is a strict rule from P , and
2. if a strict rule s2 is a child node of a strict rule s1, then

the head of s2 appears in the body of s1. That is:
s1 = c← a1, . . . , an, and
s2 = ai ← b1, . . . , bm for some 1 ≤ i ≤ n.

We say that an entailment tree ET needs a literal ai iff ET
contains a node c← a1, . . . , an that has no child with ai (1 ≤
i ≤ n) as a head.
Definition 5. We say that a literal c follows from a set L of
literals under a program P iff:

1. c is in L, or
2. there is an entailment tree ET, of which every node is in

strict(P), with c as the head of its root-node and where
every literal l needed by ET is in L.

By definition, the set of strict rules strict(P) is consistent
iff there is no literal p such that both p and ¬p follow from ∅
under strict(P).
Definition 6. Let P be a program and [d1, . . . , dn]
(n ≥ 0) a list of defeasible rules from P . We define
ResultP ([d1, . . . , dn]) as the set of all literals that follow
from {head (d1), . . . , head (dn)} under P . We say that
ResultP ([d1, . . . , dn]) is consistent if it does not contain both
p and ¬p at the same time for any literal p.
Definition 7. Let P be a program and [d1, . . . , dn] (n ≥ 0) a
list of defeasible rules from P . We say that [d1, . . . , dn] is a
trace of P iff:

1. for any i, j (s.t. 1 ≤ i ≤ n and 1 ≤ j ≤ n and i 6= j) it
holds that di 6= dj , and

2. for any di ∈ {d1, . . . , dn} with di =
qi ← p1, . . . , pmi , not¬qi, it holds that:
(a) p1, . . . , pmi ∈ ResultP ([d1, . . . , di−1]) and
(b) ¬qi 6∈ ResultP ([d1, . . . , di−1]).

In particular, a trace [d1, . . . , dn] is called terminated iff there
is no dn+1 ∈ defeasible(P) such that [d1, . . . , dn, dn+1] is a
trace of P .
Proposition 2. Any normal ELP has at least one terminated
trace.

Proof. Such a trace is constructed by starting with the empty
trace and successively adding defeasible rules until no defea-
sible rule can be added anymore. As a program is finite, every
trace terminates.

Example 4. Let P1 be the program of Example 3. Then,
ResultP1

([]) = {a,¬b} and ResultP1
([b← a, not¬b]) =

{a,¬b}, where [b← a, not¬b] is a terminated trace.
In what follows, we write Head i for {head(d1), . . . , head (di)}.
Lemma 1. Let [d1, . . . , dn] be a trace of a normal ELP P . If
strict(P) is consistent, ResultP ([d1, . . . , dn]) is consistent.

Proof. Suppose ResultP ([d1, . . . , dn]) is inconsistent while
strict(P) is consistent. As strict(P) is consistent, there
must be some smallest (but non-empty) sublist [d1, . . . , di]
(with 1 ≤ i ≤ n) where ResultP ([d1, . . . , di]) is incon-
sistent. The fact that this sublist is the smallest means
that ResultP ([d1, . . . , di−1]) is consistent. The fact that
ResultP ([d1, . . . , di]) is inconsistent means, by Definition 6,
that there is some literal r such that both r and ¬r follow
from Headi under P . Given the fact that both r and ¬r fol-
low from Headi, we prove that this must be the case because
of point 2 (and not point 1) of Definition 5. Suppose that this
is not the case. Then point 1 of Definition 5 is the case for at
least r or ¬r. We distinguish three cases:

1. Both r and ¬r follow from Headi because of point 1 of
Definition 5. In that case r ∈ Headi and ¬r ∈ Headi.
But then [d1, . . . , di] would not be a trace, since it cannot
contain both r and ¬r. Contradiction.

2. r follows from Headi because of point 1 of Definition 5
and ¬r follows from Headi because of point 2 of Defi-
nition 5. In that case, r ∈ Headi and there exists some
entailment-tree ET for ¬r such that every literal l that
ET needs is in Headi. We distinguish two subcases:
(a) ET does not need head (di). In that case,

because strict(P) is closed under transitivity,
strict(P) contains a rule ¬r← s1, . . . , sn where
{s1, . . . , sn} ⊆ Headi−1. In that case, since
ResultP ([d1, . . . , di−1]) is assumed to be consis-
tent, r must be equal to head (di). But then
[d1, . . . , di] would not be a trace. Contradiction.

(b) ET does need head (di). In that case, because
strict(P) is closed under transitivity, strict(P)
contains a rule ¬r← s1, . . . , sn, head (di) where
{s1, . . . , sn} ⊆ Headi−1. Because ¬r is assumed
to be ¬head (dj) (for some 1 ≤ j ≤ i), this rule
is actually ¬head(dj)← s1, . . . , sn, head (di). As

strict(P) is closed under transposition, there also
exists a rule ¬head(di)← s1, . . . , sn,head(dj).
We distinguish two cases:
i. j = i. In that case, because strict(P) is closed

under antecedent cleaning, there also exists a
strict rule ¬head(di)← s1, . . . , sn. But then
[d1, . . . , di] would not be a trace as ¬head (di)
follows from Headi−1. Contradiction.

ii. j 6= i. This can only be the case if j <
i. In that case, every element of the body
of ¬head(di)← s1, . . . , sn, head(dj) is an ele-
ment of Headi−1. But then [d1, . . . , di] would
not be a trace as ¬head (di) follows from
Headi−1. Contradiction.

3. r follows from Headi because of point 2 of Definition 5
and ¬r follows from Headi because of point 1 of Defi-
nition 5. This case goes similar to the preceding case.

As it is now proved that r and¬r follow from Headi because
of point 2 of Definition 5, it holds that both r and ¬r have
entailment trees. Let ET1 be the entailment-tree for r and
ET2 be the entailment-tree for ¬r. We distinguish four cases:

1. Neither ET1 nor ET2 needs head(di). In this case,
ResultP ([d1, . . . , di−1]) would also be inconsistent.
Contradiction.

2. ET1 needs head (di) but ET2 does not need head (di).
As strict(P) is closed under transitivity, it contains
the rule r← p1, . . . , pn, head(di) from ET1 and the
rule ¬r← s1, . . . , sm from ET2, where each pj ∈
Headi−1 (1 ≤ j ≤ n) and each sj ∈ Headi−1 (1 ≤
j ≤ m). As strict(P) is closed under transposi-
tion, there exists a rule: ¬head(di)← p1, . . . , pn,¬r
in strict(P). As strict(P) is closed under transitivity,
there exists a rule: ¬head(di)← p1, . . . , pn, s1, . . . , sm
in strict(P). Now, the body of this rule contains literals
exclusively from Headi−1. This means that ¬head (di)
follows from Headi−1. But this means that [d1, . . . , di]
would not be a trace. Contradiction.

3. ET1 does not need head (di) but ET2 does need
head (di). This case is similar to the preceding case.

4. Both ET1 and ET2 need head (di). As strict(P)
is closed under transitivity, it contains the following
two rules: r← p1, . . . , pn, head(di) from ET1 and
¬r← s1, . . . , sm, head(di) from ET2, where pj ∈
Headi−1 (1 ≤ j ≤ n) and sj ∈ Headi−1 (1 ≤ j ≤
m). As strict(P) is closed under transposition, there
exists a rule: ¬head (di)← p1, . . . , pn,¬r in strict(P).
As strict(P) is closed under transitivity, there exists a
rule: ¬head (di)← p1, . . . , pn, s1, . . . , sm, head(di) in
strict(P). As strict(P) is closed under antecedent
cleaning, there exists a rule: ¬head (di)← p1, . . . , pn,
s1, . . . , sm in strict(P). Now, the body of this rule con-
tains literals exclusively from Headi−1. This means that
¬head (di) follows from Headi−1. But this means that
[d1, . . . , di] would not be a trace. Contradiction. 2

Theorem 1. Let [d1, . . . , dn] be a terminated trace of a nor-
mal ELP P . If strict(P) is consistent, ResultP ([d1, . . . , dn])
is an answer set of P .

Proof. When strict(P) is consistent, ResultP ([d1, . . . , dn])
is consistent by Lemma 1. Let S = ResultP ([d1, . . . , dn]).

First of all, S satisfies P S. Suppose this is not the case.
Then there is some rule c← a1, . . . , am in P S such that
{a1, . . . , am} ⊆ S but c 6∈ S. We distinguish two cases:

1. c← a1, . . . , am is in strict(P). By the defini-
tion of ResultP ([d1, . . . , dn]) and from the fact that
{a1, . . . , am} ⊆ S, it follows that c ∈ S. Contradiction.

2. c← a1, . . . , am is generated as a reduct of a defeasible
rule c← a1, . . . , am, not ¬c. This, by the definition of
P S , means that ¬c 6∈ S. But then the trace [d1, . . . , dn]
would not be terminated, as it would be possible to ex-
tend it with the defeasible rule c← a1, . . . , am, not ¬c.
Contradiction.

Secondly, S is also a minimal set that satisfies P S . Suppose
that S was not minimal. Then there would be some T $ S
that also satisfies P S . Let U = S\T . Notice that U is not
empty. Let [d1, . . . , di] be the smallest sublist of [d1, . . . , dn]
such that ResultP ([d1, . . . , di]) contains an element c ∈ U .
We distinguish two cases:

1. c is in S because it is the head of some rule c← a1, . . . ,
am, not ¬c in [d1, . . . , dn]. As [d1, . . . , di] is the small-
est sublist such that ResultP ([d1, . . . , di]) contains c,
this means that di = c← a1, . . . , am, not ¬c. By the
definition of a trace, this means that {a1, . . . , am} ⊆
ResultP ([d1, . . . , di−1]). As [d1, . . . , di] is the small-
est sublist such that ResultP ([d1, . . . , di]) contains an
element of U , it holds that ResultP ([d1, . . . , di−1])
does not contain any element of U . Therefore,
ResultP ([d1, . . . , di−1]) ⊆ T . Therefore, {a1, . . . , am}
⊆ T . As S (and T) is consistent (by Lemma 1), it holds
that ¬c 6∈ S (or T). Therefore, c← a1, . . . , am ∈ P S .
As T is assumed to satisfy P S and {a1, . . . , am} ⊆ T ,
this also means that c ∈ T . Contradiction.

2. The preceding case is not applicable and c is in S be-
cause it is the head of some strict rule c← a1, . . . , am.
Now, let’s examine the entailment tree ET for c. For the
top-rule of ET, which is c← a1, . . . , am, it holds that c
is not in T , so from the fact that T satisfies strict(P),
it follows that there must be some ai (1 ≤ i ≤ m)
such that ai 6∈ T . Now, let’s look at the subtree for
ai. It contains a top-rule ai ← b1, . . . , bk, for which
it holds that ai is not in T , so from the fact that T
satisfies strict(P) it follows that there must be some
bj (1 ≤ j ≤ k) such that bj 6∈ T . So, basically,
the entailment tree ET contains a path of strict rules of
which the head is not in T and at least one literal in the
body is not in T . When this path ends, it does so with
a strict rule e← f1, . . . , fl where each fh(1 ≤ h ≤ l)
is in Headi−1. But Headi−1 ⊆ T . This is because
ResultP ([d1, . . . , di−1]) does not contain an element
of U , as [d1, . . . , di] is the smallest sublist such that
ResultP ([d1, . . . , di]) contains an element of U . But
then T does not satisfy the strict rule e← f1, . . . , fl.
Contradiction. 2

Theorem 2. Any normal ELP P has at least one answer set.

Proof. When strict(P) is consistent, P has a terminated
trace [d1, . . . , dn] (Proposition 2), and ResultP ([d1, . . . , dn])
becomes an answer set of P (Theorem 1). Else when
strict(P) is inconsistent, P has the answer set Lit.

Example 5. P1 in Example 4 has the answer set {a,¬b}.

5 Application
Normal ELPs restrict defeasible rules to normal ones. Never-
theless, they are still useful for representing many interesting
problems. For instance, a number of constraint satisfaction
problems (CSPs) are represented using normal rules in an-
swer set programming. The following example is due to [11].
Example 6. Put N pigeons into M holes so that there is at
most one pigeon in a hole. This problem is coded in the pro-
gram:

pos(P, H)← pigeon(P), hole(H), not ¬ pos(P, H),

¬ pos(P, H)← pigeon(P), hole(H), not pos(P, H),

← pigeon(P), hole(H), hole(H′),

pos(P, H), pos(P, H′), H 6= H′,

← pigeon(P), not hashole(P),

hashole(P)← pigeon(P), hole(H), pos(P, H),

← pigeon(P), pigeon(P′), hole(H),

pos(P, H), pos(P′, H), P 6= P′,

where hole and pigeon give the available holes and pigeons,
and pos(P, H) represents a legal position of a pigeon P in a
hole H.

A careful reader may notice that the above program is be-
yond the class of normal ELPs, even after closing the strict
rule under three operations, due to the existence of integrity
constraints. By definition, normal ELPs do not contain in-
tegrity constraints – rules with with empty heads. In fact, an
integrity constraint of the form: ← F where F is a conjunc-
tion of literals and NAF-literals, is semantically equivalent to
the defeasible rule of the form: c ← F, not c for any literal
c, under the answer set semantics. The defeasible rule pre-
sented above is not a normal rule, so that there is a reason
to exclude integrity constraints from normal ELPs. In ASP,
however, integrity constrains play an important role; impos-
ing conditions on the solutions or pruning unwanted answer
sets [11].

To manage integrity constrains in the context of normal
ELPs, we handle them separate from a program. Formally,
a set IC of integrity constrains is a set of rules of the form:

← a1, . . . , an, not b1, . . . , not bm

where each c, ai and bj is a positive/negative literal. Then,
the following result holds.
Proposition 3. Let P be a normal ELP and IC a set of in-
tegrity constraints. Then, if S is an answer set of P ∪ IC,
then S is an answer set of P .

Proposition 3 presents that given a normal ELP P and a set
IC of constrains, P ∪ IC eliminates answer sets of P which
do not satisfy the constraints. If P ∪ IC has no answer set,

this implies that P has no answer set satisfying IC. Thus,
we can handle integrity constrains in normal ELPs as well.
Normal rules plus integrity constrains can naturally encode
many CSP problems and combinatorial problems such as the
n-queen problems, the k-colorability problem, etc [11].

Normal ELPs have some advantage for providing a col-
lective semantics for multiple knowledge bases. Suppose a
multi-agent system which consists of k-agents. An agent i
has a knowledge base Pi (1 ≤ i ≤ k) in ASP, where defi-
nite knowledge is shared by every agent strict(P1) = · · · =
strict(Pk) (e.g., a shared ontology), while individual agents
have their own default knowledge as defeasible(Pi). In this
situation, combining knowledge bases

⋃k

i=1
Pi may produce

no answer set, even if each individual program Pi is consis-
tent and meaningful. This is a serious problem of ASP in
developing a large knowledge base or cooperative problem
solving in multi-agent systems. When every Pi is coded in
normal ELPs, the problem does not arise. The combined pro-
gram

⋃k

i=1
Pi is also a normal ELP, so that it produces an

answer set. The produced answer set is guaranteed to be con-
sistent as far as the shared definite knowledge is consistent
(because an ELP P has the answer set Lit iff strict(P) has
the answer set Lit).

Normal ELPs also have an advantage in program develop-
ment. In ASP, a piece of information introduced to a pro-
gram may lead to a total collapse of all entailment (no answer
sets). This is a serious drawback when dealing with knowl-
edge bases that evolve with time and change dynamically. In
normal ELPs, on the other hand, such a “total collapse” prob-
lem never happens. A knowledge engineer feels free to up-
date a part of a program without spoiling the global meaning
as far as defeasible information is encoded in the form of nor-
mal rules.

6 Discussion
As for the problem of the potential absence of answer sets,
one can distinguish two approaches. The first approach would
be to change the semantics of logic programming. The use of
the well-founded semantics and its variants [6], or the fam-
ily of paraconsistent semantics [5] are of this kind. It would
also be akin to the field of formal argumentation, where sta-
ble semantics has been changed for preferred or grounded se-
mantics [7]. The second approach would be not to change
the semantics but instead to syntactically restrict the form of
knowledge that can be put into a knowledge base. It is this
second approach that has been explored in this paper.

The idea of restricting the syntax of logic programs in or-
der to warrant the existence of answer sets is not entirely new.
For instance, Fages [8] and Costantini [4] investigate suffi-
cient conditions for the existence of stable models of normal
logic programs. However, a normal logic program contains
no negative literal, so that it contains no rule of the form
c← a1, . . . , an, not ¬c . Thus, the result of this paper is not
subsumed by preceding studies under the stable model se-
mantics. Conversely, the class of normal ELPs does not cover
the class of normal logic programs having stable models, such
as call-consistent programs or locally stratified programs. In
fact, such programs always have an answer set (or a stable

model) and there is no need for closing the strict rules in those
programs.

Syrjänen [14] develops a debugger in ASP. The debug-
ger can detect inconsistencies stemming from negative-loops,
but it cannot detect inconsistencies in a program like the
“Married-John” example. Van Nieuwenborgh and Vermeir
[12] propose a program transformation in which every rule of
an ELP would become normal (i.e., c← a1, . . . , an, not¬c).
This approach is in fact a special case of the approach put
forward in this paper. By making all rules normal (and thus
defeasible) the resulting program does not contain any strict
rules. As an empty set of strict rules is trivially closed under
transposition, transitivity and antecedent-cleaning, the result
is by definition a normal ELP (in the sense of Definition 3).
However, transforming every strict rule to a defeasible rule
would be a very high price for warranting the existence of an-
swer sets. In real life, one can find definite knowledge that
always hold without exception. For instance, a human be-
ing is a mammal, a natural number is a rational number, etc.
Strict rules represent such persistent information and, from
the knowledge representation viewpoint, they should not be
replaced by defeasible rules.

In our proposed solution, strict rules are supposed to be
closed under transposition, transitivity, and antecedent clean-
ing. Among them, transitivity preserves answer sets of ELPs
when executed as partial evaluation [6]. On the other hand,
transposition and antecedent cleaning increase the entailment
power of ASP in general. For instance, consider the program:

p←, ¬p← ¬q, r← ¬r .

The program has a single answer set {p}, while transposition
and antecedent cleaning produce additional consequences q
and r. Strengthening the entailment power of a logic may
cause a problem such that hidden conflicts and inconsisten-
cies can suddenly be entailed. For instance, the program

p←, ¬p← q, ¬p← ¬q .

has the consistent answer set {p}, but introducing contrapo-
sition makes the program inconsistent. Such a conflict, in our
view, in fact already existed, but was left concealed because
entailment was too weak.

In ASP, strict rules do not have contrapositive meaning.
This makes the theory of logic programming different from
first-order logic. For instance, suppose an agent is having
the information P = {p← q}. When a new information
Q = {¬p} has arrived, which conclusion should be derived
by the agent? If P is read as a Horn logic program, ¬q
is derived from P ∪ Q because it is logically equivalent to
{p ∨ ¬q, ¬p}. If P is read as an extended logic program, by
contrast, ¬q is not derived from P ∪ Q. Thus, the same pro-
gram may have different meaning depending on its reading,
even in the absence of defeasible rules. In default logic, on
the other hand, defeasible rules are represented by defaults,
and strict rules are represented by first-order formulas. Com-
paring these two frameworks, default logic appears relatively
simple, intuitive and straightforward to understand the prin-
ciple of knowledge representation. Normal ELPs proposed in
this paper have the same spirit as default logic in this sense.
They can naturally encode normal default theories in logic

programming, and enhance the use of ASP in knowledge rep-
resentation.

From the perspective of computational complexity, com-
puting a closure under transitivity, transposition and
antecedent-cleaning introduces additional costs. In particu-
lar, transitivity would exponentially increase the number of
strict rules in a program. The problem is, however, much re-
lated to the structure of a program. For instance, compare two
programs:

P2 : a←,

b← a,

c← b, not¬c,

d← c,

e← d, not¬e,

f← e;

P3 : a←,

b← a, not¬b,

c← b,

d← c,

e← d,

f← e, not¬f.

In P3 the cost of computing the closure of the strict rules is
significantly higher than that of P2, even though both pro-
grams have the same number of strict rules. As observed in
the example, the exponential blow-up of closure computation
would be caused not by the number of the all strict rules in a
program, but by the number of “related” strict rules. If one
could divide the strict rules into disjoint sets S1, . . . , Sn such
that there is no atom occurring both in a rule in Si and in
a rule in Sj (i 6= j), then the maximal complexity is expo-
nential with respect to the size of the largest Si. So, even if
a program P contains a large number of strict rules, the en-
tire cost of closing the strict rules does not have to be huge,
as long as the largest Si is relatively small compared to the
size of strict(P). Computing transitivity is popularly done
as partial evaluation in logic programming. In practice, the
entire closure computation could be automatically done as a
compilation process. Alternatively, in runtime environments
the closure computation could be done only for the part of
strict rules that are needed to solve a particular problem. The
issue of how the additional rules of this closure could be gen-
erated dynamically when needed, is an interesting topic for
future research. As normality of defeasible rules are known
by their syntax, the task of checking whether an ELP is nor-
mal or not is equivalent to checking whether the strict part of
the program is closed or not. Complexity for reasoning tasks
in normal ELPs is the same as the one in ELPs.

Finally, it is worth mentioning that in the context of the
well-founded semantics a semi-normal extended logic pro-
gram, which consists of a set of defeasible rules of the form

c← a1, . . . , an, not b1, . . . , not bm, not ¬c

and a set of strict rules that are closed under transposition, al-
ways has a consistent well-founded model [3]. In contrast to

the present work, the study shows that it requires weaker con-
ditions on the strict part and the defeasible part of a program.
Detailed comparison and connection to the present work are
topics for future research.

7 Summary
The potential absence of answer sets for extended logic pro-
grams is a serious problem that justifies efforts to find solu-
tions for it. In this paper, we have examined the approach
of restricting extended logic programs to be of a particular
form. We have shown that for a normal extended logic pro-
gram, where defeasible rules are normal and strict rules are
closed under transposition, antecedent cleaning and transitiv-
ity, there always exists at least one answer set. This can be
seen as similar to the field of default logic, where normal de-
fault theories also have at least one extension. In fact, it turns
that there is a close relation between normal ELPs and normal
default theories. A formal discussion on this connection will
be reported elsewhere. An extension of the proposed frame-
work to programs possibly containing disjunctions is another
issue to be investigated.

References
[1] C. Baral. Knowledge Representation, Reasoning and

Declarative Problem Solving, Cambridge University
Press, 2002.

[2] M. Caminada and L. Amgoud. An axiomatic account
of formal argumentation. In: Proc. AAAI-05, pp. 608–
613, AAAI Press.

[3] M. Caminada. Well-founded semantics for semi-
normal extended logic programs. In: Proc. 11th Int’l
Workshop on Nonmonotonic Reasoning, Clausthal Uni-
versity of Technology, TR IfI-06-04, pp. 103–108,
2006.

[4] S. Costantini. On the existence of stable models. The-
ory and Practice of Logic Programming 6(1/2):169–
212, 2006.

[5] C. V. Damásio and L. M. Pereira. A survey of para-
consistent semantics for logic programs. In: Handbook
of Defeasible Reasoning and Uncertainty Management
Systems, vol. 2, D. M. Gabbay and Ph. Smets (eds.),
Kluwer Academic, pp. 241–320, 1998.

[6] J. Dix. A classification theory of semantics of normal
logic programs: weak properties. Fundamenta Infor-
matica 22(3):257-288, 1995.

[7] P. M. Dung. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelli-
gence 77:321–357, 1995.

[8] F. Fages. Consistency of Clark’s completion and exis-
tence of stable models. Methods of Logic in Computer
Science 2:51–60, 1994.

[9] M. Gelfond and V. Lifschitz. Classical negation in logic
programs and disjunctive databases. New Generation
Computing 9(3/4):365–385, 1991.

[10] V. Lifschitz. Answer set programming and plan gener-
ation. Artificial Intelligence 138:39–54, 2002.

[11] I. Niemelä. Logic programs with stable model seman-
tics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence:25(3/4): 241–
273, 1999.

[12] D. Van Nieuwenborgh and D. Vermeir. Preferred an-
swer sets for ordered logic programs. Proc. 8th Eu-
ropean Conference on Logics in Artificial Intelligence,
LNAI 2424, pp. 432–443, Springer, 2002.

[13] R. Reiter. A logic for default reasoning, Artificial In-
telligence 13:81–132, 1980.

[14] T. Syrjänen. Debugging inconsistent answer set pro-
grams. In: Proc. 11th International Workshop on Non-
monotonic Reasoning, Clausthal University of Tech-
nology, TR IfI-06-04, pp. 77–83, 2006.

