
Minimal Strong Admissibility:
a Complexity Analysis

Martin CAMINADA a and Paul E. DUNNE b

a Cardiff University, Queen’s Buildings, 5 The Parade, Cardiff CF24 2LQ, UK
(CaminadaM@cardiff.ac.uk)

b University of Liverpool, Ashton Building, Liverpool L69 7ZF, UK
(P.E.Dunne@liverpool.ac.uk)

Abstract. The concept of strong admissibility plays an important role

in some of the dialectical proof procedures that have been stated for
grounded semantics. As the grounded extension is the (unique) biggest

strongly admissible set, to show that an argument is in the grounded

extension it suffices to show that it is in a strongly admissible set. We
are interested in identifying a strongly admissible set that minimizes the

number of steps needed in the associated dialectical proof procedure. In

the current work, we look at the computational complexity of doing so.

Keywords. strong admissibility, computational complexity, explainable

AI

1. Introduction

The concept of strong admissibility was first introduced in the work of Baroni and
Giacomin [1] and has subsequently been studied by Caminada and Dunne [6,4].
Strong admissibility is particularly useful for showing that a particular argument
is part of the grounded extension. As the grounded extension is the (unique)
biggest strongly admissible set, showing membership of any strongly admissible
set is sufficient to prove that the argument is in the grounded extension.

Alternatively, one could apply the concept of a strongly admissible labelling
[6,4]. As the grounded labelling is the (unique) biggest strongly admissible la-
belling,1 showing that an argument is labelled in by any strongly admissible la-
belling is sufficient to prove that the argument is labelled in by the grounded
labelling (and therefore is an element of the grounded extension [5,11]).

As an argument can be labelled in by more than one strongly admissible
labelling (or be an element of more than one strongly admissible set) the question
then becomes which particular strongly admissible labelling to show in order to
prove membership of the grounded extension. Although in principle any strongly
admissible labelling that labels the argument in will do, it can have advantages
to select a strongly admissible labelling that is minimal, especially when the aim
is explainability.

1Biggest w.r.t. “v” [12,4].

The concept of a strongly admissible labelling matters because it is at the
basis of some of the proof procedures for grounded semantics [4], in particular
of the Grounded Discussion Game [7]. The Grounded Discussion Game is a di-
alectical proof procedure with two players: the proponent and the opponent. The
game is such that an argument is in the grounded extension iff it is possible for
the proponent to win the discussion. The idea is that this discussion can serve
as an explanation of why a particular argument should be accepted as being in
the grounded extension. In such a case, the computer will assume the role of pro-
ponent and a human user will assume the role of opponent [3]. If an argument
is in the grounded extension, the proponent can win the discussion by using a
strongly admissible labelling as a roadmap [6]. In order to minimize the number
of discussion steps (and hence save the user’s time during the discussion) the
strongly admissible labelling that is to be applied as a roadmap should have a
minimal size2 among all strongly admissible labellings that label the argument in.
In the current paper we examine the computational complexity of verifying such
a minimal strongly admissible labelling. In addition, we study the computational
complexity of determining whether there is a strongly admissible labelling that
labels a particular argument in and has a size of at most k.

This paper is structured as follows. First, in Section 2 we present some formal
preliminaries regarding abstract argumentation and strong admissibility. Then,
in Section 3 we present some results regarding the computational complexity of
identifying strongly admissible labellings with bounded or minimal size. We round
off in Section 4 with a discussion of the obtained results.

2. Preliminaries

For current purposes, we restrict ourselves to finite argumentation frameworks.

Definition 1. An argumentation framework is a pair (Ar , att) where Ar is a finite
set of entities, called arguments, whose internal structure can be left unspecified,
and att is a binary relation on Ar. For any A,B ∈ Ar we say that A attacks B
iff (A,B) ∈ att.

Definition 2. Let (Ar , att) be an argumentation framework, A ∈ Ar and Args ⊆
Ar. We define A+ as {B ∈ Ar | A attacks B}, A− as {B ∈ Ar | B attacks A},
Args+ as ∪{A+ | A ∈ Args}, and Args− as ∪{A− | A ∈ Args}. Args is said to
be conflict-free iff Args ∩ Args+ = ∅. Args is said to defend A iff A− ⊆ Args+.
The characteristic function F : 2Ar → 2Ar is defined as F (Args) = {A | Args
defends A}.

Definition 3. Let (Ar , att) be an argumentation framework. Args ⊆ Ar is

• an admissible set iff Args is conflict-free and Args ⊆ F (Args)
• a complete extension iff Args is conflict-free and Args = F (Args)
• a grounded extension iff Args is the smallest (w.r.t. ⊆) complete extension
• a preferred extension iff Args is a maximal (w.r.t. ⊆) complete extension

2We recall that the size of a labelling Lab is |in(Lab) ∪ out(Lab)|.

The concept of strong admissibility was introduced by Baroni and Giacomin
[1]. For current purposes we will apply the equivalent definition of Caminada [6,4].

Definition 4. Let (Ar , att) be an argumentation framework. Args ⊆ Ar is strongly
admissible iff every A ∈ Args is defended by some Args ′ ⊆ Args \ {A} which in
its turn is again strongly admissible.

HG

A

D

B

E F

C

Figure 1. An example of an argumentation framework.

As an example (taken from [4]), in the argumentation framework of Fig-
ure 1 the strongly admissible sets are ∅, {A}, {A,C}, {A,C, F}, {D}, {A,D},
{A,C,D}, {D,F}, {A,D,F} and {A,C,D, F}, the latter also being the grounded
extension. The set {A,C, F} is strongly admissible as A is defended by ∅, C is
defended by {A} and F is defended by {A,C}, each of which is a strongly admis-
sible subset of {A,C, F} not containing the argument it defends. Please notice
that although the set {A,F} defends argument C in {A,C, F}, it is in its turn
not strongly admissible (unlike {A}). Hence the requirement in Definition 4 for
Args ′ to be a subset of Args \ {A}. We also observe that although {C,H} is an
admissible set, it is not a strongly admissible set, since no subset of {C,H} \ {H}
defends H.

It can be shown that each strongly admissible set is conflict-free and admissi-
ble [4]. The strongly admissible sets form a lattice, of which the empty set is the
bottom element and the grounded extension is the top element [4].

The above definitions essentially follow the extension based approach as de-
scribed in [13]. It is also possible to define the key argumentation concepts in
terms of argument labellings [5,11].

Definition 5. Let (Ar , att) be an argumentation framework. An argument labelling
is a function Lab : Ar → {in, out, undec}. An argument labelling is called an
admissible labelling iff for each A ∈ Ar it holds that:

• if Lab(A) = in then for each B that attacks A it holds that Lab(B) = out

• if Lab(A) = out then there exists a B that attacks A such that Lab(B) = in

Lab is called a complete labelling iff it is an admissible labelling and for each
A ∈ Ar it also holds that:

• if Lab(A) = undec then there is a B that attacks A such that Lab(B) =
undec, and for each B that attacks A such that Lab(B) 6= undec it holds
that Lab(B) = out

As a labelling is essentially a function, we sometimes write it as a set of pairs.
Also, if Lab is a labelling, we write in(Lab) for {A ∈ Ar | Lab(A) = in}, out(Lab)
for {A ∈ Ar | Lab(A) = out} and undec(Lab) for {A ∈ Ar | Lab(A) = undec}. As

a labelling is also a partition of the arguments into sets of in-labelled arguments,
out-labelled arguments and undec-labelled arguments, we sometimes write it as
a triplet (in(Lab), out(Lab), undec(Lab)).

Definition 6 ([12]). Let Lab and Lab′ be argument labellings of argumentation
framework (Ar , att). We say that Lab v Lab′ iff in(Lab) ⊆ in(Lab′) and
out(Lab) ⊆ out(Lab′).

Definition 7. Let Lab be a complete labelling of argumentation framework
(Ar , att). Lab is said to be

• a grounded labelling iff Lab is the (unique) smallest (w.r.t. v) complete
labelling

• a preferred labelling iff Lab is a maximal (w.r.t. v) complete labelling

The next step is to define a strongly admissible labelling. In order to do so,
we first need to introduce the concept of a min-max numbering [4].

Definition 8. Let Lab be an admissible labelling of argumentation framework
(Ar , att). A min-max numbering is a total function MMLab : in(Lab) ∪
out(Lab)→ N ∪ {∞} such that for each A ∈ in(Lab) ∪ out(Lab) it holds that:

• if Lab(A) = in then MMLab(A) = max({MMLab(B) | B attacks A and
Lab(B) = out}) + 1 (with max(∅) defined as 0)

• if Lab(A) = out then MMLab(A) = min({MMLab(B) | B attacks A and
Lab(B) = in}) + 1 (with min(∅) defined as ∞)

It has been proved that every admissible labelling has a unique min-max
numbering [4]. A strongly admissible labelling can then be defined as follows [4].

Definition 9. A strongly admissible labelling is an admissible labelling whose min-
max numbering yields natural numbers only (so no argument is numbered ∞).

As an example (taken from [4]), consider again the argumentation framework
of Figure 1. Here, the admissible labelling Lab1 = ({A,C, F,G}, {B,E,H}, {D})
has min-max numbering {(A : 1), (B : 2), (C : 3), (E : 4), (F : 5), (G : ∞), (H :
∞)}, which means that it is not strongly admissible. The admissible labelling
Lab2 = ({A,C,D, F}, {B,E}, {G,H}) has min-max numbering {(A : 1), (B :
2), (C : 3), (D : 1), (E : 2), (F : 3)}, which means that it is strongly admissible.

The strongly admissible labellings also form a lattice, of which the all-undec
labelling is the bottom element and the grounded labelling is the top element [4].

A strongly admissible set is at the basis of the Grounded Discussion Game
[7], which is a sound and complete dialectical proof procedure for proving that an
argument is in the grounded extension. The game is played by two parties, called
the proponent and the opponent, who each utter moves that contain arguments.
The proponent starts by uttering what is called the main argument.The rules of
the game are such that the main argument is in the grounded extension iff the
proponent has a winning strategy for the game. The proponent is able to play
such a winning strategy by basing his moves on a strongly admissible labelling
and its associated min-max numbering. As the main argument can be labelled in

by several strongly admissible labellings, this raises the question of which strongly
admissible labelling to choose. If the aim is to use the Grounded Discussion Game
for purposes of explanation and human-computer interaction (as is suggested in
[8]) one would like to choose a strongly admissible labelling that minimizes the
required number of steps in the associated discussion. It has been observed [7]
that such a strongly admissible labelling Lab should have a minimal size (that is,
|in(Lab)∪out(Lab)| should be minimal) among all strongly admissible labellings
that label the main argument in.

3. Computational Complexity

We will, generally, exploit the criteria specified in Definition 9 in order to validate
that the labellings in the constructions are, indeed, strongly admissible labellings.

Formally, the bounded labelling problem is given as:

bounded strong admissible labelling (bsal)
Instance: An af, H = (Ar , att), an argument x ∈ Ar and a positive integer k ∈ N.
Question: Is there a strongly admissible labelling, Lab, of Ar for which

Lab(x) = in and |{ y : Lab(y) = in } ∪ { y : Lab(y) = out}| ≤ k ?

Theorem 1. bsal is np–complete.

Proof. We first note that bsal ∈ np by virtue of the fact that for any strongly
admissible labelling

Lab : Ar → {in, out, undec}

its correctness may be checked in polynomial time (cf. [4]).
In order to show that bsal is np–hard we use a reduction from the well-known

np–complete problem of cnf satisfiability (cnf-sat).
Given ϕ(Z) a cnf formula over the propositional variables Z = {z1, . . . , zn}

and having m clauses, {C1, C2. . . . , Cm} we form the af, Hϕ(Arϕ, attϕ) with
|Arϕ| = 3n+m+ 1 and arguments named

ϕ
Cj For each clause Cj and 1 ≤ j ≤ m
Di For each variable zi in Z
zi For each variable zi in Z
¬zi For each variable zi in Z

The attacks in attϕ are

< Cj , ϕ > For each 1 ≤ j ≤ m
< Di, ϕ > For each 1 ≤ i ≤ n
< zi, Di > For each 1 ≤ i ≤ n
< ¬zi, Di > For each 1 ≤ i ≤ n
< zi, Cj > if zi is a literal in clause Cj of ϕ(Z)
< ¬zi, Cj > if ¬zi is a literal in clause Cj of ϕ(Z)

The instance of bsal is formed as < Hϕ, ϕ, 1+m+2n >. Notice that as Hvarphi
is an acyclic af, each admissible labelling is a strongly admissible labelling [9]
and vice versa. We therefore only need to prove admissibility in order to show
strong admissibility.

We claim this instance is accepted if and only if ϕ(Z) is satisfiable.
First notice that any admissible labelling of Hϕ in which Lab(ϕ) = in must

be such that |{x : Lab(x) = undec}| ≤ n. In other words a labelling with
minimal size must fix the status of at least 1 +m+ 2n arguments. If Lab(ϕ) = in

then we must have Lab(Cj) = out for every 1 ≤ j ≤ m and Lab(Di) = out for
every 1 ≤ i ≤ n. In order to ensure the second of these we must have at least one
of Lab(zi) = in or Lab(¬zi) = in. In total any strongly admissible labelling with
Lab(ϕ) = in commits at least 1 + m + 2n arguments to a definite status (in or
out).

Now suppose that ϕ(Z) is satisfiable using some setting α = (a1, a2, . . . , an)
of its propositional variables. Choose the labelling, Labα of Arϕ for which

Labα(x) = =

in if x = ϕ
out if x ∈ {C1, . . . , Cm}
out if x ∈ {D1, . . . , Dn}
in if x = zi and ai = true
undec if x = zi and ai = false
in if x = ¬zi and ai = false
undec if x = ¬zi and ai = true

It is not hard to see that this labelling satisfies the requirements needed to be an
strongly admissible labelling: each {zi,¬zi} is unattacked and may be labelled as
either undec or in; every Di argument is correctly labelled out since it is attacked
by an argument labelled in (i.e. zi or ¬zi); every Cj argument is, also, correctly
labelled out as, since the labelling of {zi, ¬zi : 1 ≤ i ≤ n} is determined by
α (with ϕ(α) = true) it follows that every Cj is attacked by some argument
labelled in (since, in order for ϕ(α) to be true, every clause Cj must contain a
literal which evaluates to true under α). Finally there are exactly n (the minimum
possible) arguments labelled undec.

We conclude that if ϕ(Z) is satisfiable then < Hϕ, ϕ, 1+m+2n > is accepted
as an instance of bsal.

For the converse argument, suppose < Hϕ, ϕ, 1 + m + 2n > is accepted as
an instance of bsal. Let Lab be the labelling of Arϕ which witnesses this. That
is to say, Lab(ϕ) = in and |{x : Lab(x) 6= undec}| = 1 +m+ 2n.

As we argued previously, from the fact that Lab(ϕ) = in we must have an
additional m+ n arguments whose status is committed to being out: namely the
n + m clause arguments { Cj : 1 ≤ j ≤ m} ∪ { Di : 1 ≤ i ≤ n}. Furthermore
for the labelling correctly to ensure Lab(Di) = out we need either Lab(zi) = in

or Lab(¬zi) = in. Now since we have assumed that Lab commits the status of
at most 1 +m+ 2n arguments and we have already determined how 1 +m+ 2n
must be set it must be the case that exactly one of { zi,¬zi} is set to in and the
other to undec. Consider the setting, αLab of the propositional variables:

αLab(zi) =

{
true if Lab(zi) = in

false if Lab(¬zi) = in

This assignment must satisfy ϕ(Z): every clause argument, Cj , is correctly la-
belled out by Lab and, therefore, must be attacked by some zi or ¬zi labelled
in. In the assignment αLab just described the corresponding setting of zi as true
(Lab(zi) = in) or false (Lab(¬zi) = in) will lead to the clause Cj taking the
value true.

We deduce that if < Hϕ, ϕ, 1 +m+ 2n > is accepted as an instance of bsal
then ϕ(Z) is accepted as an instance of cnf-sat.

The decision problem bsal is in essence an existence question: can we find a
suitable labelling that commits the status of at most some number of arguments?
A related question is that of verifying that a given labelling is indeed minimal.
Formally this is the verification problem, msal:

Minimal strong admissible labelling (msal)
Instance: An af, H = (Ar , att), an argument x ∈ Ar and a strongly admissible
labelling, Lab of Ar with which Lab(x) = in.
Question: Does Lab have a minimal size? i.e. for any strongly admissible labelling,
Lab′, of Ar with Lab′(x) = in, |{y : Lab′(y) 6= undec} ≥ |{y : Lab(y) 6= undec}?

Theorem 2. msal is conp–complete.

Proof. First notice that msal ∈ conp. Simply check every labelling Lab′ of Ar and
for any which describe a strongly admissible labelling with Lab′(x) = in confirm
that |{y : Lab′(y) 6= undec}| ≥ |{y : Lab(y) 6= undec}. This entire computation
may be realized in conp.

For conp–hardness we use a reduction from cnf-unsat.
A key point in this reduction are that the instances of cnf-unsat are re-

stricted to those having n propositional variables and exactly m = 4n−1 clauses.3

Given ϕ(Z) a propositional formula over n variables and 4n − 1 clauses
{C1, . . . , C4n−1} the af, Gϕ consists of two parts:

1. The af, Hϕ from the proof of Theorem 1. Notice that this contains exactly
7n arguments: the literals { zi, ¬zi : 1 ≤ i ≤ n}; 4n−1 clauses {Cj : 1 ≤
j ≤ 4n− 1}; n clauses {Di : 1 ≤ i ≤ n} and ϕ.

2. The second section also uses the literal (zi, ¬zi) arguments from Hϕ and
an additional 4n+ 1 arguments:

{ bi, ¬bi : 1 ≤ i ≤ n} { ci : 1 ≤ i ≤ n}
{ gi : 1 ≤ i ≤ n} π

In order to combine these structures two further arguments are introduced: ψ
whose only attackers are ϕ and π; and θ whose only attacker is ψ.

The af is completed by adding to those already in Hϕ and the three attacks

3A standard “padding” argument such as that from [15, Thm. 2] easily shows this variant

remains conp–complete.

{< ϕ,ψ >,< π, ψ >,< ψ, θ >}

the new attacks:

{< zi, bi > : 1 ≤ i ≤ n} {< ¬zi,¬bi > : 1 ≤ i ≤ n}
{< bi, ci > : 1 ≤ i ≤ n} {< ¬bi, ci > : 1 ≤ i ≤ n}
{< ci, gi > : 1 ≤ i ≤ n} {< gi, π > : 1 ≤ i ≤ n}

Gϕ is illustrated in Figure 2. As Gϕ is acyclic, it suffices to prove admissibility
in order to show strong admissibility [9].

The labelling, Lab, of which the minimal size is to be checked uses

Lab(x) =

in if x ∈ {zi, ¬zi : 1 ≤ i ≤ n}
out if x ∈ {bi, ¬bi : 1 ≤ i ≤ n}
in if x ∈ {ci : 1 ≤ i ≤ n}
out if x ∈ {gi : 1 ≤ i ≤ n}
in if x = π
out if x = ψ
in if x = θ
undec otherwise

We claim that < Gϕ, θ,Lab > is accepted as an instance of msal if and only if
ϕ(Zn) is unsatisfiable.

Suppose that ϕ(Z) is in fact satisfiable using an assignment of propositional
values (a1, . . . , an). Notice that Lab has exactly m + n + 1 arguments labelled
undec which given the conditions on m evaluates to 5n. Consider the alternative
labelling, Lab′, in which

Lab′(x) =

in if x = zi and ai = true
in if x = ¬zi and ai = false
undec if x = zi and ai = false
undec if x = ¬zi and ai = true
undec if x ∈ {bi, ¬bi : 1 ≤ i ≤ n}
undec if x ∈ {ci : 1 ≤ i ≤ n}
undec if x ∈ {gi : 1 ≤ i ≤ n}
undec if x = π
out if x ∈ {Di : 1 ≤ i ≤ n}
out if x ∈ {Cj : 1 ≤ j ≤ 4n− 1}
in if x = ϕ
out if x = ψ
in if x = θ

The labelling, Lab′ is easily checked to be a valid admissible labelling by
virtue of the fact that (a1, . . . , an) satisfies ϕ(Zn) every clause argument, Cj , can
be labelled out since it is attacked by (at least one) zi or ¬zi labelled in. Similarly
each Di is attacked by zi labelled in or ¬zi labelled in. Finally since ϕ is attacked
only by arguments labelled out it may be labelled in leading to Lab′(ψ) = out

(the other attacker of ψ being undec) and Lab′(θ) = in. The number of undec

z ¬z z ¬z

H

b ¬b b ¬b

c c

g g

Φ

Φ

π

ψ

θ

Figure 2. Construction of af used to show msal is conp–hard.

arguments is, however, more than those in Lab since Lab′ labels n arguments
(from {zi, ¬zi}) as undec, the 2n arguments in { bi,¬bi}, the n arguments in
{ci : 1 ≤ i ≤ n} and the n arguments in {gi : 1 ≤ i ≤ n}. Finally π is also labelled
undec. In total this gives n+ 2n+ n+ n+ 1 = 5n+ 1 so that,

|{ y : Lab′(y) = undec}| = 5n+ 1 > 5n = |{ y : Lab(y) = undec}|

and the conclusion that if ϕ(Zn) is not accepted as an instance of cnf–unsat
then < Gϕ, θ,Lab > is not accepted as an instance of msal.

For the converse implication, suppose that < Gϕ, θ,Lab > is rejected as an
instance of msal.

In order for this to be the case we must have some admissible labelling, Lab′, of
Gϕ in which Lab′(θ) = in and |{y : Lab′(y) = undec}| > |{y : Lab(y) = undec}

It is not hard to see that any such labelling must use Lab′(π) = undec and
Lab′(ϕ) = in: in Lab every Cj and Di argument together with ϕ are already
undec; in order to ensure ψ can properly be labelled out at least one of π or ϕ
must be labelled in. In order, however, properly to label π as in the status of
every {zi, ¬zi} has to be fixed.

Now in order for Lab′ properly to label ϕ as in there are are two possibilities
arising from the way in which {Di : 1 ≤ i ≤ n} may properly be labelled out.

Case 1: Lab′ properly labels all Cj arguments as out through a labelling of
{zi,¬zi} in which (at least) one zi has Lab′(zi) = Lab′(¬zi) = in.

Since at least one argument from each pair {zi,¬zi} must be committed to be
in (in order properly to label Di as out) a labelling, Lab′ meeting the criteria in
Case 1 contributes n − 1 undec (from {zi, ¬zi}); 2n (from { bi,¬bi}); a further
n ({ci : 1 ≤ i ≤ n}); n more (from {gi : 1 ≤ i ≤ n}) and the argument π. In total

(n− 1) + 2n + n + n + 1 = 5n

Thus Case 1 (effectively using an invalid assignment to satisfy ϕ as a variable
needs to be both true and false) leads to a labelling which is exactly the same

size as Lab: both have exacly 5n undec arguments.

Case 2: Lab′ properly labels all Cj arguments as out through a labelling of
{zi,¬zi} in which exactly one of Lab′(zi) = in or Lab′(¬zi) = in holds.

Now this case has n (z arguments) together with 4n + 1 other arguments
({bi,¬bi}, {ci}, {gi}, π) whose status is undec, leading to n+2n+n+n+1 = 5n+1
undecided arguments and a smaller number of committed arguments than Lab.
Consider, however, the assignment of propositional (a1, a2, . . . , an) values to Z
formed through

ai =

{
true if Lab′(zi) = in and Lab′(¬zi) = undec

false if Lab′(zi) = undec and Lab′(¬zi) = in

This assignment guarantees that every clause Cj of ϕ(Z) will have at least one
literal which evaluates to true (since the corresponding Cj argument is correctly
labelledl out by virtue of being attacked by a literal labelled in).

In total (a1, a2, . . . , an) is a setting of Z in which every clause of ϕ contains
a true literal, i.e. (a1, a2, . . . , an) witnesses that ϕ(Z) would be rejected as an
instance of cnf–unsat.

We deduce that if < Gϕ, θ,Lab > is rejected as an instance of msal then
ϕ(Z) is rejected as an instance of cnf–unsat.

In total, < Gϕ, θ,Lab > describes an admissible labelling with minimal size
of θ as in if and only if ϕ is unsatisfiable.

4. Discussion

The concept of a strong admissibility is related to grounded semantics in a similar
way as the concept of admissibility is related to preferred semantics. In order to
prove that an argument is in the grounded extension, we do not have to construct
the entire grounded extension. Instead, it is sufficient to construct a strongly
admissible set containing it. Similarly, in order to prove that an argument is in a
preferred extension, we do not have to construct the entire preferred extension.
Instead, it is sufficient to construct an admissible set containing it.

In essence, constructing an admissible set is what is being done by the Pre-
ferred Discussion Game [10]. The rules of this game are such that an argument is
in an admissible set (and therefore in a preferred extension) if the proponent has
a winning strategy for this game. Such a winning strategy can be derived using an
admissible set Args that contains the argument A in question. When doing so, the
resulting game will have a number of moves that is no greater than 2 · |Args−|+1.
It has been shown [10] that in order to minimize the number of moves required
in the Preferred Discussion Game, one needs to obtain an admissible set Args
that contains A and where |Args−| is minimal among all the admissible sets that
contain A.

The desire to minimize |Args−| leads to two relevant decision problems: that
of verification where given an af (Ar , att) and a set Args that contains argument
A it is asked if Args is an admissible set where |Args−| is minimal among all

admissible sets containing A; and the existence where given an af (Ar , att), an
argument A and an integer k it is asked if there is an admissible set Args that
contains A with |Args−| ≤ k.

It was found that the verification problem is conp–complete, and the existence
problem is np–complete [10].

Table 1 provides an overview of how the main results of the current paper
(Theorem 1, Theorem 2) compare with the status of similar problems with respect
to standard Dung-style admissibility.

Table 1. Admissibility vs. Strong Admissibility

Problem Complexity (adm) Complexity (Strong adm)

Verification Polynomial Polynomial

Acceptability np–complete Polynomial

Minimal Labelling (existence) np–complete np–complete

Minimal Labelling (verification) conp–complete conp–complete

With the exception of (credulous) acceptability these have similar complexity.
The discrepancy that acceptability is np–complete (standard Dung admissibility)
whereas the analogous decision problem for strong admissibility is polynomial
time decidable, arises from the fact that there is a unique maximal (w.r.t ⊆)
strongly admissible set, namely the grounded extension. Thus a simple test as to
whether x is contained in a strongly admissible set is just to check if x is in the
grounded extension.

It is also worth noting the differences between the reductions to establish
intractability as given for admissibility (from [10]) and the constructions in The-
orem 1, Theorem 2 for the analogous strong admissibility problems. All four
proofs turn on variations of the standard translation of cnf-sat, see e.g [16,
Defn. 5.1, p. 91]. In both [10, Theorem 6.6] (verification of labelling minimality)
and [10, Theorem 6.7] (existence of labelling with given size) the constructions
used cyclic afs whose grounded extension is empty. For the cases considered in
Theorems 1, 2 we need to have afs with a non-empty grounded extension. The
constructions used, however, go one step further as summarized in the following.

Theorem 3.

a. bsal is np–complete if instances are restricted to acyclic frameworks.
b. msal is conp–complete if instances are restricted to acyclic frameworks.

Proof. Immediate from the proofs of Theorem 1 and Theorem 2.

It is worth noting that while there are a very small number of intractability
results involving acyclic afs (e.g. [14, Theorem 23] with binary tree forms) typ-
ically these rely on developments of standard Dung frameworks, e.g. the result
from [14] exploits properties of value–based argumentation from [2]).

The research of the current paper fits into our long-term research agenda
of using argumentation theory to provide explainable formal inference. In our
view, it is not enough for a knowledge-based system to simply provide an answer
regarding what to do or what to believe. There should also be a way for this answer
to be explained. One way of doing so is by means of (formal) discussion [8]. Here,

the idea is that the knowledge-based system should provide the argument that is
at the basis of its advice. The user is then allowed to raise objections (counter-
arguments) which the system then replies to (using counter-counter-arguments),
etc. In general, we would like such a discussion to be (1) sound and complete
for the underlying argumentation semantics, (2) not be unnecessarily long, and
(3) be close enough to human discussion in order to be perceived as natural and
convincing.

As for point (1), sound and complete discussion games have been identified
for grounded, preferred, stable and ideal semantics [8]. As for point (2), this is
what we studied in the current paper, as well as in [10]. As for point (3), this is
something that we are aiming to report on in future work.

References

[1] P. Baroni and M. Giacomin. On principle-based evaluation of extension-based argumen-

tation semantics. Artificial Intelligence, 171(10-15):675–700, 2007.

[2] T. J. M. Bench-Capon. Persuasion in Practical Argument Using Value-based Argumen-
tation Frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

[3] R. Booth, M.W.A. Caminada, and B. Marshall. disco: A web-based implementation of

discussion games for grounded and preferred semantics. In Proceedings of COMMA 2018,
pages 453–454, 2018.

[4] M. W. A. Caminada and P. E. Dunne. Strong admissibility revised: theory and applica-
tions. Argument & Computation, 10:277–300, 2019.

[5] M.W.A. Caminada. On the issue of reinstatement in argumentation. In M. Fischer,

W. van der Hoek, B. Konev, and A. Lisitsa, editors, Logics in Artificial Intelligence; 10th
European Conference, JELIA 2006, pages 111–123. Springer, 2006. LNAI 4160.

[6] M.W.A. Caminada. Strong admissibility revisited. In S. Parsons, N. Oren, C. Reed, and

F. Cerutti, editors, Computational Models of Argument; Proceedings of COMMA 2014,
pages 197–208. IOS Press, 2014.

[7] M.W.A. Caminada. A discussion game for grounded semantics. In E. Black, S. Modgil,

and N. Oren, editors, Theory and Applications of Formal Argumentation (proceedings
TAFA 2015), pages 59–73. Springer, 2015.

[8] M.W.A. Caminada. Argumentation semantics as formal discussion. In Handbook of Formal

Argumentation, volume 1, pages 487–518. College Publications, 2018.
[9] M.W.A. Caminada. Strong admissibility in acyclic argumentation frameworks. Technical

report, Cardiff University, 2020.
[10] M.W.A. Caminada, W. Dvořák, and S. Vesic. Preferred semantics as socratic discussion.

Journal of Logic and Computation, 26:1257–1292, 2014.

[11] M.W.A. Caminada and D.M. Gabbay. A logical account of formal argumentation. Studia
Logica, 93(2-3):109–145, 2009. Special issue: new ideas in argumentation theory.

[12] M.W.A. Caminada and G. Pigozzi. On judgment aggregation in abstract argumentation.

Autonomous Agents and Multi-Agent Systems, 22(1):64–102, 2011.
[13] P.M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357,
1995.

[14] P. E. Dunne. Computational properties of argument systems satisfying graph-theoretic

constraints. Artificial Intelligence, 171(10):701 – 729, 2007.

[15] P. E. Dunne, A. Gibbons, and M. Zito. Complexity-theoretic models of phase transitions
in search problems. Theoretical Computer Science, 249(2):243 – 263, 2000.

[16] P. E. Dunne and M. J. Wooldridge. Complexity of abstract argumentation. In G. Simari
and I. Rahwan, editors, Argumentation in Artificial Intelligence, pages 85–104. Springer

US, Boston, MA, 2009.

