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Abstract

In formal argumentation, grounded semantics is well knommyfelding exactly one unique ex-
tension. Since grounded semantics has a very scepticaknatne can ask the question whether
it is possible to define a unique extension semantics thadie eredulous. Recent work of Dung,
Mancarella and Toni proposes what they @ddlal semanticawhich is a unique extension seman-
tics that is more credulous than grounded semantics. Induhermt paper, we define a unique
extension semantics calleadger semanticthat is even more credulous than ideal semantics. We
then examine how this semantics relates to the existingnaegtation semantics proposed by
Dung and others.

1 Introduction

Formal argumentation has been gaining popularity over &t few years as a human-oriented
formalism for non-monotonic entailment [13, 8, 4] and agi@t¢raction [1, 14]. One issue that

has received quite some attention is that of argument sérsarithe central question here is,

given a set of arguments (some of which defeat others), wioskible subsets of arguments can
be seen as acceptable.

Traditional approaches to the issue of argument semamithsde grounded, stable and pre-
ferred semantics [9]. More novel approaches are, for imgtarobust semantics [12] and CF2
semantics [2], both of which can, however, yield sets of arguts that are not admissible in the
sense of [91 On the other hand, novel approaches like semi-stable sars6it do yield exten-
sions that are under any circumstances admissible. In gletlee concept of admissibility is a
relevant one, not only because it is quite reasonable for ef s&cepted arguments to be able to
defend itself, but also for technical reasons that are detsf the scope of the current paper.

One of the phenomena in formal argumentation, as well as mmemotonic inference in
general, is the possibility of a semantics yielding morentbae extension (set of accepted argu-
ments). This is often related to an unresolvable dilemmaératvailable information. Often, the
existence of more than one possible extension is dealt witkslmng a sceptical approach, by tak-
ing the intersection of the different extensions. Nevdets® by taking this intersection, one can
lose some of the properties of the individual extensions.ifi&tance, as is explained in Section
3, one can lose the property of admissibility.

For this reason, it can be advantageous to have a semardicaltays yields exactly one
extension, and that this extension is admissible. The meltkmown example of such a unique

!Recall that admissibility means that a set of argumentstéstially conflict-free and is able to defend itself. That is,
a set of argumentglrgs is admissible iff there exist nd, B € Args such thatd defeatsB, and for everyD that defeats
some argument’ € Arygs, there exists ailv € .Args that defeatd.



extension admissible semantics is grounded semantica [8jmmon objection against grounded
semantics, however, is that it is supposed to be too scégticarder to address this disadvantage,
Dung, Mancarella and Toni have recently come up with whay ttedl ideal semanticg10],
based on earlier work regarding logic programming and aptombased argumentation [11].
The basic idea of ideal semantics will be briefly discusse8iantion 3. Then, in Section 4, we
introduce the notion afager semanticsAs is shown in Section 5, the eager extension is a superset
of the ideal extension. Also in Section 5 it is examined hogvribw as well as existing semantics
relate to each other. Some practical considerations raggttte new semantics are then discussed
in Section 6.

2 Preliminaries

In this paper we follow the argumentation approach of Durig [®r simplicity, we assume the
argumentation framework to be finite.

Definition 1 (argumentation framework)An argumentation framework is a pdifr, def ) where
Aris afinite set of arguments anttf C Ar x Ar.

An argumentation framework can be represented as a dirgcagth in which the arguments
are represented as nodes and the defeat relation is ref@senarrows. In several examples
throughout this paper, we will use this graph representatio

The shorthand notatioA™ and A~ stands for, respectively, the set of arguments defeated by
A and the set of arguments that defdatWe say that an argumentdefeats a set of arguments
Arygs iff it defeats at least one argumenti#tvgs. We say that a set of argumemisgs defeats an
argumentd iff at least one argument iglrgs defeatsA. We say that a set of argumemsys,
defeats a set of argumentsys, iff at least one argument irlrgs, defeats at least one argument
in Args,. In the definition belowF'(Args) stands for the set of arguments that are acceptable in
the sense of [9].

Definition 2 (defense / conflict-free)Let A € Ar and Args C Ar.

We definedt as{B | A def B} and Args* as{B | A def B for someA € Args}.
We defined™ as{B | B def A} andArgs~ as{B | B def A forsomeA € Args}.
Args is conflict-freeiff Args N Args™ = 0.

Args defendsan argumentd iff A~ C Args™.

We define the functiof : 247 — 247 as

F(Args) = {A | Ais defended bylrgs}.

In the definition below, definitions of grounded, preferred atable semantics are described
in terms of complete semantics, which has the advantagekifiéhe proofs in the remainder of
this paper more straightforward. These descriptions arktecally the same as the ones provided
by Dung [9], but as was first stated in [5] they are in fact egl@at to Dung’s original versions of
grounded, preferred and stable semantics.

Definition 3 (acceptability semantics) et.Args be a conflict-free set of arguments.
- Args is admissiblaff Args C F'(Args).
- Arygs is acompleteextension iffArgs = F(Args).

- Args is agroundecdextension ift4rgs is the minimal (w.r.t. set-inclusion) complete exten-
sion.

- Args is apreferrecextension iffArgs is a maximal (w.r.t. set-inclusion) complete extension.

- Arygs is a semi-stableextension ifidrgs is a complete extension wherergs U Args™ is
maximal (w.r.t. set-inclusion).

- Args is a stableextension iftdrgs is a complete extension that defeats every argument in
Ar\ Args.



The following lemma is used in the proofs of the next section.

Lemma 1. Let. Args, and.Args, be two admissible sets of argumentation framewotk, def ).
If Args, and.Args, do not defeat each other thetrgs, U Args, is again an admissible set.

Proof. We need to prove two things:

1. Args, U Args, is conflict-free. This follows from the fact thadrgs, and.Args, are indi-
vidually conflict-free and do not defeat each other.

2. Args; U Args, defends all its elements. This follows from the fact thays, and.Args,
respectively defend all its elements.

O

3 Ideal Semantics

Ideal semantics was proposed by Dung, Mancarella and TOhbfsed on earlier work regarding
logic programming and assumption based argumentatior?[Thk idea of ideal semantics is to
be slightly more sceptical than just taking the intersectd all preferred extensions (sceptical
preferred). The point is that this intersection might noebeadmissible set itself. Consider the
example of Figure 1.
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Figure 1: Sceptical preferred yield® }, which is not admissible.

In Figure 1, there are two preferred extensiohd; D} and{ B, D}. Their intersection (scep-
tical preferred) i D}, which is itself not admissible. However, it turns out thHeere always exists
a unique largest admissible subset of this intersectiois, stsown in the following theorem.

Theorem 1. Let (Ar, def ) be an argumentation framework. There exists exactly onemadx
(w.r.t. set-inclusion) admissible sdtrgs that is a subset of each preferred extension.

Proof. As the existence of a maximal sdtgs is guaranteed, we only need to prove uniqueness.
Suppose there are two different maximal admissible gets, and.Args, that both subsets of
each preferred extension. The fact thays, and.Args, are in each preferred extension (and the
fact that there exists at least one preferred extensionhs@atArgs, and.Args, do not defeat
each other. Since the union of two admissible sets that ddefeat each other is itself again an
admissible set (Lemma 1) it holds thatys, = Args,U.Args, is an admissible set thatis a subset
of each preferred extension. But dsygs, # () andArgs, # 0 it follows that Args; & Args,
and.Args; & Args,. Therefore,Args, and.Args, are not maximal. Contradiction. O

2The technical report of Dung, Mancarella and Toni [10] beeawailable during the preparation of the current paper.
We have, however, to some extent stuck to our own definitiomspoofs in this section, since this makes it easier to
compare, for instance, ideal semantics to eager sematnidse defined in the next section. It should be mentioned,
however, that the notion of ideal semantics discussed indhent paper is the same as that in [10]. One small differénc
that what we call aideal extensioris called anaximal ideal sein [10], where a set of arguments is ideal iff it is admissible
and a subset of each preferred extension.



The fact that the maximal admissible set that is a subsetatf geeferred extension is unique,
allows one to refer to it, like is done in the following defipit.

Definition 4. Theideal extensions the greatest (w.r.t. set-inclusion) admissible set fbad
subset of each preferred extension.

To see how ideal semantics works, consider figure 2. Heregrihhended extension is empty,
and there exists just one preferred extensioh}. The ideal extension is therefofel }.
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Figure 2: Grounded extensiofi; ideal extension{ A}; eager extensionf A}.

It can be observed that the ideal extension is itself a cotmpbeension.

Theorem 2. Let (Ar, def) be an argumentation framework aotlgs be its ideal extension. It
holds thatArgs is a complete extension.

Proof. We have to prove thatlrgs = F'(Args).

Args C F(Args): This follows directly from the fact that the ideal extensie an admissible set.
F(Args) C Args: Supposed € F(Args). ThenA is defended by every preferred extension (this
follows from the monotonity off"). As every preferred extension is a complete extensios, thi
means thatd is an element of every preferred extension. From this, iofed thatArgs U { A}

is an admissible set, one that is a subset of each prefertedstan. Thereforel must be an
element of the ideal extensiofirys. O

4 Eager Semantics

Semi-stable semantics [6] is a recently developed sensatitét could be placed between pre-
ferred and stable semantics in the sense that every stableseon is also a semi-stable extension,
and every semi-stable extension is also a preferred ertengioreover, it has been proved that if
there exists at least one stable extension, then the sabiesxtensions are the same as the stable
extensions. The advantage of semi-stable semantics atadle semantics is that, for any finite
argumentation framework, a semi-stable extension alwgigsse

Like the ideal extension is the greatest admissible setishmsubset of each extension, one
can define the eager extension as the greatest admissiltleatét a subset of each semi-stable
extension.

Theorem 3. Let (Ar, def) be an argumentation framework. There exists exactly onemagx
(w.r.t. set-inclusion) admissible sdtrgs that is a subset of each semi-stable extension.
Proof. Similar to the proof of Theorem 1. O
Definition 5. The eager extensiors the greatest (w.r.t. set-inclusion) admissible set iba
subset of each semi-stable extension.

To see how eager semantics works, consider figure 3. Hergrolwaded extension is empty.
There exist two preferred extensiofsd} and{B, D}. The intersection of the preferred exten-
sions is empty, from which it follows that the ideal extemsis the empty set. There exists just
one semi-stable extensiofB, D}, which implies that the eager extensioq B, D}.

Theorem 4. Let (Ar, def ) be an argumentation framework atdlgs be its eager extension. It
holds thatArgs is a complete extension.

Proof. Similar to the proof of Theorem 1. O



—

[ e — o

s T
L
E

Figure 3: Grounded extensiof); ideal extensionf); eager extension{ B, D}.

5 Comparing Grounded, Ideal and Eager Semantics

It is interesting to examine how grounded, ideal and eageasécs relate to each other. It turns
out that the grounded extension is a subset of the ideal gigterand the ideal extension is itself
a subset of the eager extension.

Theorem 5. Let (Ar, def) be an argumentation framework. Ldtrgs . be the grounded exten-
sion, Args, 4., the ideal-extension andrys.,,., the eager extension. It holds thdtrgsr C
Argsideal < Argseager'

Proof. We need to prove two things:

1. Argsqr € Ar19s;q.4;- IN [9] it is proved that the grounded extension is a subsetvefy
complete extension. From the fact thétys,,.,; is @ complete extension (Theorem 2) it
then follows thatdrgs;p C A71¢S;4001-

2. A198,40a1 © ATGgScqger- 1N [O] it is proved that each semi-stable extension is algoea
ferred extension. This implies that the intersection ofalhi-stable extensions (sceptical
semi-stable) is a superset of the intersection of all preteextensions (sceptical preferred).
From this, it follows that the biggest admissible subsehefihtersection of all semi-stable
extensions (the eager extension) is a superset of theaatars of all preferred extensions
(the ideal extension).

O

As is stated in Theorem 5, (i) the grounded extension is aedudighe ideal extension, and
(ii) the ideal extension is a subset of the eager extensiarebVer, by Definition 4, we also have
that (iii) the ideal extension is a subset of each preferreension. Definition 5 then states that
(iv) the eager extension is a subset of each semi-stablaggte From the fact that each stable
extension is also a semi-stable extension, it then folldwas ¢v) the eager extension is a subset
of every stable extension. From [9] it also follows that ¢¥i¢ grounded extension is a subset of
every complete extension. This yields the overall pictdrgigure 4.

It can also be observed that [7, 6, 9] (1) every stable extarisia semi-stable extension, (2)
every semi-stable extension is a preferred extension v@yereferred extension is a complete
extension and (4) the grounded extension is a completesgterMoreover, we also have that (5)
the ideal extension is a complete extension and (6) the eagension is a complete extension.
This yields the overall picture of Figure 5.

6 Discussion

In this paper, we have introduced the concept of eager sé&saand shown how it relates to
various existing argumentation semantics. In this way, weta contribute to the task of mapping
out the space of possible admissibility based semantigs,dame in Figure 4 and 5.
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One important issue regarding argumentation semantibgiof proof procedures and com-
putational complexity. As for ideal semantics, proof prhaees are given in [10]. Basically, the
idea is to determine whether an argument is in the ideal sidrrby trying to construct an ad-
missible set that contains this argument and is not defdateshother admissible set. For eager
semantics, the situation is slightly more difficult. Altlghuproof procedures have been stated
for semi-stable semantics [3], these are yet to be adjustegply to eager semantics. Since
semi-stable semantics coincides with stable semanticaf®s where stable extensions exist, the
complexity of semi-stable semantics is equal to the conifylef stable semantics for argumen-
tation frameworks that have stable extensions. Althoughlaémplexity study is still to be done
for eager as well as for ideal semantics, it is unlikely fa domplexity of eager semantics to be
anywhere below the complexity of ideal semantics.
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