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Abstract

In formal argumentation, grounded semantics is well known for yielding exactly one unique ex-
tension. Since grounded semantics has a very sceptical nature, one can ask the question whether
it is possible to define a unique extension semantics that is more credulous. Recent work of Dung,
Mancarella and Toni proposes what they callideal semantics, which is a unique extension seman-
tics that is more credulous than grounded semantics. In the current paper, we define a unique
extension semantics calledeager semanticsthat is even more credulous than ideal semantics. We
then examine how this semantics relates to the existing argumentation semantics proposed by
Dung and others.

1 Introduction

Formal argumentation has been gaining popularity over the past few years as a human-oriented
formalism for non-monotonic entailment [13, 8, 4] and agent-interaction [1, 14]. One issue that
has received quite some attention is that of argument semantics. The central question here is,
given a set of arguments (some of which defeat others), whichpossible subsets of arguments can
be seen as acceptable.

Traditional approaches to the issue of argument semantics include grounded, stable and pre-
ferred semantics [9]. More novel approaches are, for instance, robust semantics [12] and CF2
semantics [2], both of which can, however, yield sets of arguments that are not admissible in the
sense of [9].1 On the other hand, novel approaches like semi-stable semantics [6] do yield exten-
sions that are under any circumstances admissible. In general, the concept of admissibility is a
relevant one, not only because it is quite reasonable for a set of accepted arguments to be able to
defend itself, but also for technical reasons that are outside of the scope of the current paper.

One of the phenomena in formal argumentation, as well as in nonmonotonic inference in
general, is the possibility of a semantics yielding more than one extension (set of accepted argu-
ments). This is often related to an unresolvable dilemma in the available information. Often, the
existence of more than one possible extension is dealt with by using a sceptical approach, by tak-
ing the intersection of the different extensions. Nevertheless, by taking this intersection, one can
lose some of the properties of the individual extensions. For instance, as is explained in Section
3, one can lose the property of admissibility.

For this reason, it can be advantageous to have a semantics that always yields exactly one
extension, and that this extension is admissible. The most well-known example of such a unique

1Recall that admissibility means that a set of arguments is internally conflict-free and is able to defend itself. That is,
a set of argumentsArgs is admissible iff there exist noA, B ∈ Args such thatA defeatsB, and for everyD that defeats
some argumentC ∈ Args , there exists anE ∈ Args that defeatsD.



extension admissible semantics is grounded semantics [9].A common objection against grounded
semantics, however, is that it is supposed to be too sceptical. In order to address this disadvantage,
Dung, Mancarella and Toni have recently come up with what they call ideal semantics[10],
based on earlier work regarding logic programming and assumption based argumentation [11].
The basic idea of ideal semantics will be briefly discussed inSection 3. Then, in Section 4, we
introduce the notion ofeager semantics. As is shown in Section 5, the eager extension is a superset
of the ideal extension. Also in Section 5 it is examined how the new as well as existing semantics
relate to each other. Some practical considerations regarding the new semantics are then discussed
in Section 6.

2 Preliminaries

In this paper we follow the argumentation approach of Dung [9]. For simplicity, we assume the
argumentation framework to be finite.

Definition 1 (argumentation framework). An argumentation framework is a pair(Ar , def ) where
Ar is a finite set of arguments anddef ⊆ Ar × Ar .

An argumentation framework can be represented as a directedgraph in which the arguments
are represented as nodes and the defeat relation is represented as arrows. In several examples
throughout this paper, we will use this graph representation.

The shorthand notationA+ andA− stands for, respectively, the set of arguments defeated by
A and the set of arguments that defeatA. We say that an argumentA defeats a set of arguments
Args iff it defeats at least one argument inArgs . We say that a set of argumentsArgs defeats an
argumentA iff at least one argument inArgs defeatsA. We say that a set of argumentsArgs1

defeats a set of argumentsArgs2 iff at least one argument inArgs1 defeats at least one argument
in Args2. In the definition below,F (Args) stands for the set of arguments that are acceptable in
the sense of [9].

Definition 2 (defense / conflict-free). LetA ∈ Ar andArgs ⊆ Ar .
We defineA+ as{B | A def B} andArgs+ as{B | A def B for someA ∈ Args}.
We defineA− as{B | B def A} andArgs− as{B | B def A for someA ∈ Args}.
Args is conflict-freeiff Args ∩Args+ = ∅.
Args defendsan argumentA iff A− ⊆ Args+.
We define the functionF : 2Ar → 2Ar as
F (Args) = {A | A is defended byArgs}.

In the definition below, definitions of grounded, preferred and stable semantics are described
in terms of complete semantics, which has the advantage of making the proofs in the remainder of
this paper more straightforward. These descriptions are not literally the same as the ones provided
by Dung [9], but as was first stated in [5] they are in fact equivalent to Dung’s original versions of
grounded, preferred and stable semantics.

Definition 3 (acceptability semantics). LetArgs be a conflict-free set of arguments.

- Args is admissibleiff Args ⊆ F (Args).

- Args is acompleteextension iffArgs = F (Args).

- Args is a groundedextension iffArgs is the minimal (w.r.t. set-inclusion) complete exten-
sion.

- Args is apreferredextension iffArgs is a maximal (w.r.t. set-inclusion) complete extension.

- Args is a semi-stableextension iffArgs is a complete extension whereArgs ∪ Args+ is
maximal (w.r.t. set-inclusion).

- Args is a stableextension iffArgs is a complete extension that defeats every argument in
Ar\Args.



The following lemma is used in the proofs of the next section.

Lemma 1. LetArgs1 andArgs2 be two admissible sets of argumentation framework(Ar , def ).
If Args1 andArgs2 do not defeat each other thenArgs1 ∪ Args2 is again an admissible set.

Proof. We need to prove two things:

1. Args1 ∪ Args2 is conflict-free. This follows from the fact thatArgs1 andArgs2 are indi-
vidually conflict-free and do not defeat each other.

2. Args1 ∪ Args2 defends all its elements. This follows from the fact thatArgs1 andArgs2

respectively defend all its elements.

3 Ideal Semantics

Ideal semantics was proposed by Dung, Mancarella and Toni [10] based on earlier work regarding
logic programming and assumption based argumentation [11].2 The idea of ideal semantics is to
be slightly more sceptical than just taking the intersection of all preferred extensions (sceptical
preferred). The point is that this intersection might not bean admissible set itself. Consider the
example of Figure 1.

C D

A

B

Figure 1: Sceptical preferred yields{D}, which is not admissible.

In Figure 1, there are two preferred extensions:{A, D} and{B, D}. Their intersection (scep-
tical preferred) is{D}, which is itself not admissible. However, it turns out that there always exists
a unique largest admissible subset of this intersection, asis shown in the following theorem.

Theorem 1. Let (Ar , def ) be an argumentation framework. There exists exactly one maximal
(w.r.t. set-inclusion) admissible setArgs that is a subset of each preferred extension.

Proof. As the existence of a maximal setArgs is guaranteed, we only need to prove uniqueness.
Suppose there are two different maximal admissible setsArgs1 andArgs2 that both subsets of
each preferred extension. The fact thatArgs1 andArgs2 are in each preferred extension (and the
fact that there exists at least one preferred extension) means thatArgs1 andArgs2 do not defeat
each other. Since the union of two admissible sets that do notdefeat each other is itself again an
admissible set (Lemma 1) it holds thatArgs3 = Args2∪Args1 is an admissible set that is a subset
of each preferred extension. But asArgs1 6= ∅ andArgs2 6= ∅ it follows thatArgs3 $ Args1

andArgs3 $ Args2. Therefore,Args1 andArgs2 are not maximal. Contradiction.

2The technical report of Dung, Mancarella and Toni [10] became available during the preparation of the current paper.
We have, however, to some extent stuck to our own definitions and proofs in this section, since this makes it easier to
compare, for instance, ideal semantics to eager semantics,to be defined in the next section. It should be mentioned,
however, that the notion of ideal semantics discussed in thecurrent paper is the same as that in [10]. One small difference is
that what we call anideal extensionis called amaximal ideal setin [10], where a set of arguments is ideal iff it is admissible
and a subset of each preferred extension.



The fact that the maximal admissible set that is a subset of each preferred extension is unique,
allows one to refer to it, like is done in the following definition.

Definition 4. The ideal extensionis the greatest (w.r.t. set-inclusion) admissible set thatis a
subset of each preferred extension.

To see how ideal semantics works, consider figure 2. Here, thegrounded extension is empty,
and there exists just one preferred extension:{A}. The ideal extension is therefore{A}.
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Figure 2: Grounded extension:∅; ideal extension:{A}; eager extension:{A}.

It can be observed that the ideal extension is itself a complete extension.

Theorem 2. Let (Ar , def ) be an argumentation framework andArgs be its ideal extension. It
holds thatArgs is a complete extension.

Proof. We have to prove thatArgs = F (Args).
Args ⊆ F (Args): This follows directly from the fact that the ideal extension is an admissible set.
F (Args) ⊆ Args : SupposeA ∈ F (Args). ThenA is defended by every preferred extension (this
follows from the monotonity ofF ). As every preferred extension is a complete extension, this
means thatA is an element of every preferred extension. From this, it follows thatArgs ∪ {A}
is an admissible set, one that is a subset of each preferred extension. ThereforeA must be an
element of the ideal extensionArgs .

4 Eager Semantics

Semi-stable semantics [6] is a recently developed semantics that could be placed between pre-
ferred and stable semantics in the sense that every stable extension is also a semi-stable extension,
and every semi-stable extension is also a preferred extension. Moreover, it has been proved that if
there exists at least one stable extension, then the semi-stable extensions are the same as the stable
extensions. The advantage of semi-stable semantics above stable semantics is that, for any finite
argumentation framework, a semi-stable extension always exists.

Like the ideal extension is the greatest admissible set thatis a subset of each extension, one
can define the eager extension as the greatest admissible setthat is a subset of each semi-stable
extension.

Theorem 3. Let (Ar , def ) be an argumentation framework. There exists exactly one maximal
(w.r.t. set-inclusion) admissible setArgs that is a subset of each semi-stable extension.

Proof. Similar to the proof of Theorem 1.

Definition 5. Theeager extensionis the greatest (w.r.t. set-inclusion) admissible set thatis a
subset of each semi-stable extension.

To see how eager semantics works, consider figure 3. Here, thegrounded extension is empty.
There exist two preferred extensions:{A} and{B, D}. The intersection of the preferred exten-
sions is empty, from which it follows that the ideal extension is the empty set. There exists just
one semi-stable extension:{B, D}, which implies that the eager extension is{B, D}.

Theorem 4. Let (Ar , def ) be an argumentation framework andArgs be its eager extension. It
holds thatArgs is a complete extension.

Proof. Similar to the proof of Theorem 1.
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Figure 3: Grounded extension:∅; ideal extension:∅; eager extension:{B,D}.

5 Comparing Grounded, Ideal and Eager Semantics

It is interesting to examine how grounded, ideal and eager semantics relate to each other. It turns
out that the grounded extension is a subset of the ideal extension, and the ideal extension is itself
a subset of the eager extension.

Theorem 5. Let (Ar , def ) be an argumentation framework. LetArgsGR be the grounded exten-
sion,Argsideal the ideal-extension andArgseager the eager extension. It holds thatArgsGR ⊆
Argsideal ⊆ Argseager .

Proof. We need to prove two things:

1. ArgsGR ⊆ Argsideal. In [9] it is proved that the grounded extension is a subset ofevery
complete extension. From the fact thatArgsideal is a complete extension (Theorem 2) it
then follows thatArgsGR ⊆ Argsideal.

2. Argsideal ⊆ Argseager . In [5] it is proved that each semi-stable extension is also apre-
ferred extension. This implies that the intersection of allsemi-stable extensions (sceptical
semi-stable) is a superset of the intersection of all preferred extensions (sceptical preferred).
From this, it follows that the biggest admissible subset of the intersection of all semi-stable
extensions (the eager extension) is a superset of the intersection of all preferred extensions
(the ideal extension).

As is stated in Theorem 5, (i) the grounded extension is a subset of the ideal extension, and
(ii) the ideal extension is a subset of the eager extension. Moreover, by Definition 4, we also have
that (iii) the ideal extension is a subset of each preferred extension. Definition 5 then states that
(iv) the eager extension is a subset of each semi-stable extension. From the fact that each stable
extension is also a semi-stable extension, it then follows that (v) the eager extension is a subset
of every stable extension. From [9] it also follows that (vi)the grounded extension is a subset of
every complete extension. This yields the overall picture of Figure 4.

It can also be observed that [7, 6, 9] (1) every stable extension is a semi-stable extension, (2)
every semi-stable extension is a preferred extension, (3) every preferred extension is a complete
extension and (4) the grounded extension is a complete extension. Moreover, we also have that (5)
the ideal extension is a complete extension and (6) the eagerextension is a complete extension.
This yields the overall picture of Figure 5.

6 Discussion

In this paper, we have introduced the concept of eager semantics, and shown how it relates to
various existing argumentation semantics. In this way, we aim to contribute to the task of mapping
out the space of possible admissibility based semantics, asis done in Figure 4 and 5.
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Figure 4: Overview of admissibility based semantics (subset)
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Figure 5: Overview of admissibility based semantics (specialization)

One important issue regarding argumentation semantics is that of proof procedures and com-
putational complexity. As for ideal semantics, proof procedures are given in [10]. Basically, the
idea is to determine whether an argument is in the ideal extension by trying to construct an ad-
missible set that contains this argument and is not defeatedby another admissible set. For eager
semantics, the situation is slightly more difficult. Although proof procedures have been stated
for semi-stable semantics [3], these are yet to be adjusted to apply to eager semantics. Since
semi-stable semantics coincides with stable semantics forcases where stable extensions exist, the
complexity of semi-stable semantics is equal to the complexity of stable semantics for argumen-
tation frameworks that have stable extensions. Although a full complexity study is still to be done
for eager as well as for ideal semantics, it is unlikely for the complexity of eager semantics to be
anywhere below the complexity of ideal semantics.
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