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Abstract

In the current review paper, we provide an overview of how mainstream
argumentation semantics can be interpreted in terms of structured discussion.
The idea is that an argument is justified according to a particular argumentation
semantics iff it is possible to win a discussion of a particular type. Hence,
different argumentation semantics correspond to different types of discussion.
Our aim is to provide an overview of what these discussions look like, and their
formal correspondence to argumentation semantics.

1 Introduction
The term “argumentation”, when used in an informal way, calls upon intuitions of
arguments being exchanged in some kind of interactive discussion. Yet, the notion
of discussion plays a relatively limited role in abstract argumentation theory, which
mainly focuses on various principles (called “argumentation semantics”) for selecting
nodes from a graph. As such, there seems to be quite a gap between (abstract)
argumentation theory as described in much of the literature, and as it occurs in
everyday life.

In order to address this gap, attempts have been made to express argumentation
semantics in terms of structured discussion. More precisely, the idea is that an
argument is accepted w.r.t. a particular argumentation semantics iff it is possible
to successfully defend the argument using a particular kind of discussion. In the
current paper we provide an overview of what the different kinds of discussion are,
and how they formally relate to their associated argumentation semantics.

Although the discussion protocols (which we will often refer to as “discussion
games”) can serve as proof procedures of their associated argumentation semantics,
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their potential application is much wider than that. One could for instance use
the discussion games for the purpose of human computer interaction. Suppose a
knowledge-based system has determined that a particular argument (say, about
how to treat a patient) should be accepted, and communicates this to its user (say,
a doctor). When the user asks why this is the case, what should probably be avoided
is a highly technical answer of the form “because the argument is in the minimal
fixpoint of monotonic function F”.1 Instead, one would like the user to critically
question the answer, and be able to utter counter arguments to see whether these
are properly addressed (by the system providing counter counter arguments). As an
example of such a human-computer discussion, consider the following dialogue:
System: The patient is best off with medicine X, because this is the most effective.
User: But the patient is diabetic, for which medicine X could have side effects.
System: Recent studies have shown that these side effects are relatively minor.
So instead of the system immediately providing the full justification for its answer
(say, by providing the entire grounded extension) in engages in a discussion with its
user. Ideally, such a discussion should be “natural” in the sense that the human-
computer interaction looks as much as possible as human-human interaction (say, if
the doctor were to discuss the case with a more senior colleague).

Apart from being natural, the discussion should also be sound and complete.
That is, the ability to win the discussion for a particular argument (that is, to have
a winning strategy for the argument in the discussion game) should coincide with
the argument being justified according to a pre-defined argumentation semantics.
Soundness and completeness imply that if the system provides an answer (“argument
A is (or is not) justified according to a particular argumentation semantics”) the
system can successfully defend itself in the discussion with the user. When this
discussion is also perceived as natural by the user, this will hopefully increase the
user’s confidence in the system’s answer.

Soundness and completeness also imply that what we are looking for are essen-
tially proof procedures for particular argumentation semantics. Several of these have
been stated in the literature. Inclusion in the current review paper is done based on
two criteria:

(1) does the discussion game have any link with natural discussion concepts, like
described in philosophy or linguistics?

(2) is the discussion game such that it guarantees the absence of any exponential
blowups, in either time or space?

1Which basically says the argument is in the grounded extension.
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Criterion (1) is the reason why for instance we have not included any discussion
games for sceptical preferred semantics (like those of Doutre and Mengin [2004] and
Dung and Thang [2007]). Criterion (2) is the reason why we did not include a
detailed treatment of tree-based discussion games (like those of Prakken and Sartor
[1997], Caminada [2004], Modgil and Caminada [2009] and Dung et al. [2007].2

The remaining part of this paper is structured as follows. First, in Section 2
we briefly recall some basic definitions and results from abstract argumentation
theory. Then, in Section 3 we describe a discussion game for (credulous) preferred
semantics [Caminada et al., 2014a], and explain that it contains aspects of Socratic
discussion. Then, in Section 4 we briefly state how this discussion game can be
reapplied in the context of ideal semantics [Caminada et al., 2014a]. In Section 5 we
subsequently describe a discussion game for stable semantics [Caminada and Wu,
2009], basically by making minor modifications to the earlier described discussion
game for (credulous) preferred semantics. In Section 6 we then describe a different
discussion game in the context of grounded semantics [Caminada, 2015a] and explain
its relationship with persuasion dialogue. Then, in Section 7 we briefly examine tree-
based discussion games and explain one of their main disadvantages: the possibility
of an exponential blowup in time or space. We round off with a discussion in Section
8.

2 Formal Preliminaries
In the current section, we briefly recall some basic definitions from abstract argu-
mentation theory. For current purposes, we restrict ourselves to finite argumentation
frameworks.

Definition 1 (argumentation framework). An argumentation framework is a pair
(Ar , att) where Ar is a finite set of entities called arguments and att is a binary
relation on Ar .

Given an argumentation framework (Ar , att), A, A′ ∈ Ar and Args, Args′ ⊆ Ar ,
we say that (1) A attacks A′ iff (A, A′) ∈ att, (2) A attacks Args iff A attacks some
argument in Args, (3) Args attacks A iff some argument in Args attacks A, and (4)
Args attacks Args′ iff some argument in Args attacks some argument in Args′.

Definition 2 (preliminaries, extension-based). Let (Ar , att) be an argumentation
framework. A set Args ⊆ Ar is conflict-free iff Args does not attack itself. A set
Args ⊆ Ar defends A ∈ Ar iff for each B ∈ Ar that attacks A, it holds that Args
attacks B.

2How tree-based discussion games can lead to an exponential blowup is explained in Section 7.
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Figure 1: An argumentation framework to illustrate strong admissibility.

Definition 3 (admissibility, extension-based). Let (Ar , att) be an argumentation
framework. A set Args ⊆ Ar is admissible iff Args is conflict-free and each A ∈ Args
is defended by Args.

Definition 4 (strong admissibility, extension-based). Let (Ar , att) be an argumen-
tation framework. A set Args ⊆ Ar is strongly admissible iff each A ∈ Args is
defended by some Args′ ⊆ Args \ {A} which in its turn is again strongly admissible.

It has been proved that each strongly admissible set is conflict-free as well as
admissible [Baroni and Giacomin, 2007; Caminada, 2014].

As an example, consider the argumentation framework of Figure 1. Here, the set
{A, C} is strongly admissible as A is defended by ∅ ⊆ {A, C}\{A} which is trivially
strongly admissible, and C is defended by {A} ⊆ {A, C} \ {C} which is strongly
admissible (as A is defended by ∅ ⊆ {A}\{A}). The set {G}, however, is admissible
but not strongly admissible as G is not defended by any subset of {G} \ {G}.

Definition 5 (completeness, extension-based). Let (Ar , att) be an argumentation
framework. A set Args ⊆ Ar is a complete extension iff Args is conflict-free and
the set of arguments defended by Args is equal to Args.

Definition 6 (semantics, extension-based). Let (Ar , att) be an argumentation
framework. A set Args ⊆ Ar is called

1. a grounded extension iff Args is the minimal (w.r.t. ⊆) complete extension

2. a preferred extension iff Args is a maximal (w.r.t. ⊆) complete extension

3. a stable extension iff Args is a complete extension that attacks each argument
in Ar \ Args

4. an ideal extension iff Args is the maximal (w.r.t. ⊆) complete extension that
is not attacked by any complete extension
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We recall that each argumentation framework has precisely one grounded ex-
tension, precisely one ideal extension, one or more preferred extensions and zero or
more stable extensions.

The above definition describes grounded, preferred, stable and ideal semantics
uniformly in terms of complete semantics. However, for our purposes it is sometimes
useful to describe these semantics in terms of (strong) admissibility.

Theorem 1 (semantics, extension-based). Let (Ar , att) be an argumentation frame-
work. A set Args ⊆ Ar is

1. a preferred extension iff Args is a maximal (w.r.t. ⊆) admissible set

2. a grounded extension iff Args is the maximal (w.r.t. ⊆) strongly admissible
set

3. a stable extension iff Args is an admissible set that attacks each argument in
Ar \ Args

4. an ideal extension iff Args is the maximal (w.r.t. ⊆) admissible set that is not
attacked by any admissible set

Apart from the extension-based view on argumentation semantics, there is also
the labelling-based view [Caminada, 2006; Caminada and Gabbay, 2009; Caminada,
2011; Baroni et al., 2011] of which we now provide a brief overview.

Definition 7 (preliminaries, labelling-based). Let (Ar , att) be an argumentation
framework. An argument labelling is a function Lab : Ar → {in, out, undec}. We
define in(Lab) as {A ∈ Ar | Lab(A) = in}, out(Lab) as {A ∈ Ar | Lab(A) = out}
and undec(Lab) as {A ∈ Ar | Lab(A) = undec}. We sometimes write a labelling as
a triple (in(Lab), out(Lab), undec(Lab)). If Lab1 and Lab2 are labellings, we write
Lab1 v Lab2 when in(Lab1) ⊆ in(Lab2) and out(Lab1) ⊆ out(Lab2). Moreover, we
write Lab1 ≈ Lab2 when in(Lab1) ∩ out(Lab2) = ∅ and out(Lab1) ∩ in(Lab2) = ∅.

Definition 8 (admissibility, labelling-based). Let Lab be a labelling of argumenta-
tion framework (Ar , att). Lab is called an admissible labelling iff for each A ∈ Ar
it holds that

1. if Lab(A) = in then for each B ∈ Ar that attacks A it holds that Lab(B) = out

2. if Lab(A) = out then there exists a B ∈ Ar that attacks A such that Lab(B) =
in
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In order to define strong admissibility in the context of argument labellings, we
first need to introduce the concept of a min-max numbering.

Definition 9 (min-max numbering). Given an admissible labelling Lab of argumen-
tation framework (Ar , att), a min-max numbering is a functionMMLab : in(Lab)∪
out(Lab)→ N ∪ {∞} such that for each A ∈ in(Lab) ∪ out(Lab) it holds that

• if Lab(A) = in then MMLab(A) = max({MMLab(B) | B attacks A and
Lab(B) = out}) + 1 (with max(∅) defined as 0)

• if Lab(A) = out then MMLab(A) = min({MMLab(B) | B attacks A and
Lab(B) = in}) + 1 (with min(∅) defined as ∞)

It can be proved that each admissible labelling has a unique min-max numbering
[Caminada, 2014].3

Definition 10 (strong admissibility, labelling-based). Let Lab be a labelling of argu-
mentation framework (Ar , att). Lab is called a strongly admissible labelling iff it is
an admissible labelling whose associated min-max numbering yields natural numbers
only (so no argument is numbered ∞).

From Definition 10 it trivially follows that each strongly admissible labelling is
also an admissible labelling.

As an example, consider the argumentation framework shown in Figure 1. Here
Lab1 = ({A, C, E, G}, {B, D, H}, {F}) is an admissible labelling with associated
min-max numbering MMLab1 = {(A: 1), (B : 2), (C : 3), (D : 4), (E : 5), (G:∞), (H :
∞)}, which implies that Lab1 is not strongly admissible. Furthermore, Lab2 =
({A, C, E}, {B, D, F}, {G, H}) is an admissible labelling with associated min-max
numbering MMLab2 = {(A: 1), (B : 2), (C : 3), (D : 4), (E : 5), (F : 2)}, which implies
that Lab2 is indeed a strongly admissible labelling.

Definition 11 (completeness, labelling-based). Let Lab be a labelling of argumen-
tation framework (Ar , att). Lab is called a complete labelling iff for each A ∈ Ar it
holds that

1. if Lab(A) = in then for each B ∈ Ar that attacks A it holds that Lab(B) = out

3The min-max numbering can be constructed in an iterative way, starting from the unnumbered
in-labelled arguments without attackers (these are numbered 1), then the unnumbered out-labelled
arguments that are attacked by these (these are numbered 2), etc. When a particular iteration
provides no new argument numbers, the remaining unnumbered in and out-labelled arguments are
numbered ∞. See the work of Caminada [2014] for details.
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2. if Lab(A) = out then there exists a B ∈ Ar that attacks A such that Lab(B) =
in

3. if Lab(A) = undec then not for each B ∈ Ar that attacks A it holds that
Lab(B) = out and there does not exist a B ∈ Ar that attacks A such that
Lab(B) = in

Definition 12 (semantics, labelling-based). Let (Ar , att) be an argumentation
framework. A labelling Lab is called

1. a grounded labelling iff it is the minimal (w.r.t. v) complete labelling

2. a preferred labelling iff it is a maximal (w.r.t. v) complete labelling

3. a stable labelling iff it is a complete labelling with undec(Lab) = ∅

4. an ideal labelling iff it is the maximal (w.r.t. v) complete labelling that is
compatible (≈) with every complete labelling

We recall that each argumentation framework has precisely one grounded la-
belling, precisely one ideal labelling, one or more preferred labellings and zero or
more stable labellings.

The above definition describes grounded, preferred, stable and ideal semantics in
terms of complete labellings. However, it is sometimes useful to be able to describe
these semantics in terms of (strong) admissibility, similar to what was done earlier
for the extension-based semantics.

Theorem 2 (semantics, labelling-based). Let (Ar , att) be an argumentation frame-
work. A labelling Lab is called

1. a preferred labelling iff it is a maximal (w.r.t. v) admissible labelling

2. a grounded labelling iff it is the maximal (w.r.t. v) strongly admissible la-
belling

3. a stable labelling iff it is an admissible labelling with undec(Lab) = ∅

4. an ideal labelling iff it is the maximal (w.r.t. v) admissible labelling that is
compatible (≈) with every admissible labelling

To be able to easily switch between the labelling-based approach and the
extension-based approach, we introduce two functions Lab2Ext and Ext2Lab, such
that for an admissible labelling Lab, Lab2Ext(Lab) is defined as in(Lab), and for
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an admissible set Args, Ext2Lab(Args) is defined as (Args, {A ∈ Ar | A is at-
tacked by Args}, {A ∈ Ar | A 6∈ Args and A is not attacked by Args}) where Ar
is the set of all arguments in the argumentation framework. It holds that if Lab
is a (strongly) admissible labelling (resp. a complete, grounded, preferred, stable
or ideal labelling) then Lab2Ext(Lab) is a (strongly) admissible set (resp. a com-
plete, grounded, preferred, stable or ideal extension). It also holds that if Args is
a (strongly) admissible set (resp. a complete, grounded, preferred, stable or ideal
extension) then Ext2Lab(Args) is a (strongly) admissible labelling (resp. complete,
grounded, preferred, stable or ideal labelling). Moreover, when restricted to com-
plete (or resp. grounded, preferred, stable or ideal) extensions and labellings, the
functions Lab2Ext and Ext2Lab become bijections that are each other’s inverses
[Caminada, 2006; Caminada and Gabbay, 2009].

The above results imply that:

• in order to determine whether an argument is in a preferred extension, it
suffices to determine whether the argument is labelled in by an admissible
labelling

• in order to determine whether an argument is in the grounded extension, it suf-
fices to determine whether the argument is labelled in by a strongly admissible
labelling

• in order to determine whether an argument is in a stable extension, it suffices
to determine whether the argument is labelled in by an admissible labelling
without undec

• in order to determine whether an argument is in the ideal extension, it suffices
to determine whether the argument is labelled in by an admissible labelling
that is compatible with every admissible labelling

In the sections that follow, we will apply the above observations to provide discussion
games for preferred, grounded, stable and ideal semantics.

3 Preferred Semantics
In the current section, we describe the discussion game for preferred semantics as
stated by Caminada et al. [2014a].4 The idea of the preferred discussion game is to

4The discussion game of Caminada et al. [2014a] consists of a labelling-based reinterpretation
of the work of Vreeswijk and Prakken [2000].
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show membership of a preferred extension by constructing an admissible labelling
where the argument in question is labelled in.

The preferred discussion game has two players which we will refer to as M and S.
Player M starts; his task is to defend the fact that he has a reasonable position (ad-
missible labelling) in which a particular argument is accepted (labelled in). Player
S then tries to confront M with the consequences of M’s own position, and asks for
these consequences to be resolved. Player M is successful if he is able to address all
the issues pointed out by player S, without being led to a contradiction.

As an example of how such a discussion can take place, consider the argumen-
tation framework of Figure 2.

E

A B
C

D

Figure 2: An argumentation framework

Here, the player M can win the discussion game for argument D in the following
way.

Example 1.
M: in(D)

“I have an admissible labelling in which D is labelled in.”
S: out(C)

“But then in your labelling it must also be the case that D’s attacker C
is labelled out. Based on which grounds?”

M: in(B)
“C is labelled out because B is labelled in.”

S: out(A)
“But then in your labelling it must also be the case that B’s attacker A
is labelled out. Based on which grounds?”

M: in(B)
“A is labelled out because B is labelled in.”

As is shown in the above example, the discussion moves of player M are state-
ments that particular arguments are labelled in in M’s labelling. The moves of
player S, on the other hand, are meant to confront M with the consequences of his
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own position: “if you think that argument X is labelled in then you must also hold
that X’s attacker Y is labelled out in your labelling.” That is, by uttering out(Y ),
player S points out that player M is implicitly committed to the fact that Y should
be rejected. This means that player M has to explain why Y should be rejected.
That is, the moves of player S can be seen as questions about why a particular
argument Y should be labelled out. The moves of player M (except his first move)
can then be interpreted as the answers to the questions of player S. Each answer
follows directly to the question raised by player S. That is:

Each move of M (except the first) contains an attacker of the argument in the di-
rectly preceding move of S. (1)

Every time player M claims that an argument is labelled in, player S should be
given the opportunity to state that as a consequence of this, player M is implicitly
committed that all attackers of the argument are labelled out. The problem, how-
ever, is that each move of player S is a statement about just one argument. In order
to deal with this problem, player S should be given the opportunity to react on
the same in-labelled argument several times, each time confronting player M with
a different out-labelled argument. This means that player S should be allowed to
react not just on the immediately preceding move of player M, but on any previous
move of player M.

Each move of player S contains an attacker of an argument contained in some (not
necessarily the directly preceding) move of player M. (2)

Another issue is whether player S should be allowed to repeat his own moves. Recall
that each move essentially contains a question (“Based on which grounds is argu-
ment Y labelled out?”). At the moment player S repeats one of his moves, this
question has already been answered by player M, so there is no good reason to ask
again. In order to avoid the discussion from going round in circles, it does not make
sense to allow player S to repeat his moves.

Player S is not allowed to repeat his moves. (3)

On the other hand, Example 1 does illustrate the need for player M to be able
to repeat his moves (like in(B)). This is because some of the questions of S (like
“why is argument C out” and “why is argument A out”) can have the same answer
(“because argument B is in”).
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Player M is allowed to repeat his moves. (4)

The argumentation framework of Figure 2 can also be used for an example of a
game won by player S:

Example 2.
M: in(E)

“I have an admissible labelling in which E is labelled in.”
S: out(D)

“But then in your labelling it must be the case that E’s attacker D is
labelled out. Based on which grounds?”

M: in(C)
“D is labelled out because C is labelled in.”

S: out(E)
“But then in your labelling it must be the case that C’s attacker E is
labelled out. This contradicts your earlier claim that E is labelled in.”

The above example illustrates that when player S manages to use an argument
uttered previously by player M, player S has won the game. After all, if player M
claims an argument to be in and player S subsequently manages to confront player
M with the fact that in M’s own position, the same argument should be labelled
out, then player S has successfully pointed out a contradiction in M’s position.

If player S uses an argument previously used by player M, then player S wins the
discussion game. (5)

One can ask a similar question regarding what happens when player M uses one
of the arguments previously used by player S. The fact that player S performed an
out move means that the argument must be labelled out in the labelling of player
M. If player M then subsequently claims that the same argument is labelled in, then
he has directly contradicted himself.

If player M uses an argument previously used by player S, then player S wins the
discussion game. (6)

There also exists a third condition under which player S wins the game. This is
when player M is unable to answer one of the questions of S. This can be the case
when there exists no attacker against an argument uttered by player S. Hence, player
S asks why a particular argument is labelled out but player M is unable to come up
with any attacker to be labelled in. In that case, player M has lost the game, for
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not being able to answer the critical questions of player S.

If player M cannot make a move any more, player S wins the discussion game.
(7)

Similarly, one might examine what happens when it is player S who cannot make a
move any more. This essentially means that player S has run out of questions. All
possible relevant questions have already been asked; all relevant issues have already
been raised. Moreover, player M has managed to answer all questions in a satisfac-
tory way. Therefore, player M has survived the process of critical questioning, hence
winning the discussion.

If player S cannot make a move any more, player M wins the discussion game.
(8)

A

B

C

Figure 3: An argumentation framework with floating attack

As a last illustration of how the discussion game functions, consider the argu-
mentation framework of Figure 3. Argument C is not in any admissible set. It is
illustrative to see what happens if player M tries to defend C.

Example 3.
M: in(C)

“I have an admissible labelling in which C is labelled in.”
S: out(A)

“But then in your labelling C’s attacker A must be labelled out. Based
on which grounds?”

M: in(B)
“A is labelled out because B is labelled in.”

S: out(B)
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“But from the fact that you hold C to be in, it follows that C’s attacker
B must be labelled out. This contradicts with your earlier claim that
B is labelled in.”

The above example illustrates the need for player S to be able to respond not
only to the immediately preceding move, but to any past move of player M; in the
example, out(B) is a response to in(C). This is because, as we have mentioned
before, for an argument to be labelled in, all its attackers have to be out, so player
S may need to respond to a move of player M with more than one countermove.

When putting observations (1) to (8) together, we obtain the following descrip-
tion of the discussion game

Definition 13. Let (Ar , att) be an argumentation framework. A preferred discussion
is a sequence of moves [∆1, ∆2, . . . , ∆n] (n ≥ 0) such that:

• each move ∆i (1 ≤ i ≤ n) where i is odd is called an M-move and is of the
form in(A), where A ∈ Ar

• each move ∆i (1 ≤ i ≤ n) where i is even is called an S-move and is of the
form out(A), where A ∈ Ar

• for each S-move ∆i = out(A) (2 ≤ i ≤ n) there exists an M-move ∆j = in(B)
(j < i) such that A attacks B

• for each M-move ∆i = in(A) (3 ≤ i ≤ n) it holds that ∆i−1 is of the form
out(B), where A attacks B

• there exist no two S-moves ∆i and ∆j with i 6= j and ∆i = ∆j

A preferred discussion [∆1, ∆2, . . . , ∆n] is said to be finished iff (1) there exists
no ∆n+1 such that [∆1, ∆2, . . . , ∆n, ∆n+1] is a preferred discussion, or there exists
an M-move and an S-move containing the same argument, and (2) no subsequence
[∆1, . . . , ∆m] (m < n) is finished. A finished preferred discussion is won by player S
if there exist an M-move and an S-move containing the same argument. Otherwise,
it is won by the player making the last move (∆n).

The soundness and completeness of the game described above is stated in the
following theorem.

Theorem 3 (Caminada and Wu [2009]; Caminada et al. [2014a]). Let (Ar , att) be
an argumentation framework and A ∈ Ar .

1. If there exists a preferred discussion for A that is won by player M, then there
exists a preferred extension that contains A.
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2. If there exists a preferred extension that contains A then player M has a win-
ning strategy5 for the preferred discussion game.

The correctness of Theorem 3 can be seen as follows. As for point 1, it has to
be observed that what the game essentially does is to build an admissible labelling
of which the in-labelled arguments coincide with the M-moves and the out-labelled
arguments coincide with the S-moves (all the other arguments are labelled undec).
The resulting labelling is well-defined in the sense that no argument is labelled
both in and out (otherwise there would be an argument that is subject to both
an M-move and an S-move, in which case player S would have won the discussion).
Moreover, the fact that player M wins the discussion also means that he made the
last move, which implies that (i) each out-labelled argument has an in-labelled
attacker. Also, the fact that player S cannot move anymore implies that (ii) each
in-labelled argument has all its attackers labelled out. From (i) and (ii) it follows
that the labelling yielded by the game is indeed an admissible one, satisfying the
conditions of Definition 8. In this admissible labelling, argument A is labelled in
(since A was the subject of the first M-move). This implies that A is element of an
admissible set, and therefore also element of a preferred extension.

As for point 2, it should be mentioned that the fact that A is in a preferred
extension by definition implies that A is in an admissible set (Args), which then
implies that A is labelled in by an admissible labelling Lab = Ext2Lab(Args). This
makes it possible for player M to win the game simply by staying within the borders
of admissible labelling Lab. That is, as long as player M only plays arguments that
are labelled in by Lab, each move of player S has to be an argument that is labelled
out by Lab, which then implies that player M can always react with an argument
that is labelled in by Lab, etc. If player M follows such a strategy, there will never
be an M-move and an S-move for the same argument (this is because Lab is a well-
defined labelling, meaning that no argument is labelled both in and out). Moreover,
the fact that player S cannot repeat himself means that the game has to finish in a
finite number of moves. As player M can always react on a move of player S, this
means that the last move has to be an M-move. Hence, player M wins the game.

From points 1 and 2 together, it follows that if there is at least one preferred
discussion that is won by player M, then M has a winning strategy for the preferred
discussion game. This is not the case in alternative discussion games for preferred
semantics, like the one described by Modgil and Caminada [2009]. In their approach,
a single discussion game does not prove membership (for this, the presence of a

5Winning strategy in the sense of [Caminada et al., 2014a, Definition 5.6]. Informally this means
that player M has a way of winning the discussion, regardless of what moves player S decides to
play.
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winning strategy is really necessary). From informal perspective, this is rather odd,
as in everyday life the aim of a (persuasion) discussion is to convince the other party
in a single discussion. This means that at the end of the discussion, the other party
has to have heard sufficient evidence to accept the main claim. This is the case in
the above described preferred discussion game, but not in the alternative discussion
game of Modgil and Caminada [2009].

As we have observed, an admissible labelling can serve as a “roadmap” for win-
ning the preferred discussion game.6 However, an argument can be labelled in
by more than one admissible labelling, which raises the question of which admissi-
ble labelling to choose as a basis to play the game. It can be verified that given
an admissible labelling Lab (with Lab(A) = in and out(Lab) being minimal w.r.t.
set inclusion) the number of moves required in the game for main argument A is
2 · |out(Lab)| + 1 (see [Caminada et al., 2014a] for details). Hence, in order to be
able to finish the game in as few moves as possible (which could be desirable from
the perspective of human-computer interaction if the aim of the game is to convince
a human user) one should try to find an admissible labelling Lab where |out(Lab)|
is minimal. This is a computationally hard problem, as even verifying whether a
particular admissible labelling has this property is coNP complete [Caminada et al.,
2014a].

The essential nature of the preferred discussion game is that of critically question-
ing a particular position, and to see whether the proponent of this position (player
M) can avoid being led to a contradiction (by player S). As such, the preferred dis-
cussion game bears a close resemblance to the concept of Socratic discussion, as well
as to its modern variants like critical interviews or cross-examinations in court.7 The
general idea is to have somebody take a position and then iteratively confront him
(through questioning) with what appears to be the consequences of this position,
in the hope of ultimately leading him to a contradiction. We refer to the work of
Caminada et al. [2014a] for a details.

4 Ideal Semantics
An ideal set of arguments, as was originally defined by Dung et al. [2007], is an
admissible set that is a subset of each preferred extension. It can be proved that
the maximal ideal set (commonly known as the ideal extension) is unique and is a
complete extension as well.

6For details, we refer to the work of Caminada et al. [2014a].
7In fact, in the work of Caminada et al. [2014a] player S stands for Socrates and player M stands

for Menexenus, which is one of Socrates’s historic discussion partners.
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An alternative but equivalent way of characterising the ideal extension is as the
maximal admissible set that is not attacked by any admissible set (like is done in
Theorem 1) or as the maximal complete extension that is not attacked by any com-
plete extension (like is done in Definition 6). It can be proved that for each admissible
sets Args1 and Args2 it holds that Args1 attacks Args2 iff Args2 attacks Args1. This
gives rise to the labelling-based descriptions of ideal semantics of Theorem 2 and
Definition 12.8

For current purposes, our characterisation of the ideal extension is as the maximal
admissible set that is not attacked by any admissible set. To determine membership
of the ideal extension, one then needs to find an admissible set (although not neces-
sarily the maximal one) that contains the argument in question and is not attacked
by any admissible set. This makes it possible to express ideal semantics using the
preferred discussion game. Basically, the discussion whether an argument is in an
ideal extension consists of two phases. In the first phase, one runs the preferred dis-
cussion game, as is described in the previous section. This is to determine whether
the argument is in an admissible set. Then, in the second phase of the discussion,
one needs to determine whether this set is attacked by another admissible set. This
is done by again running the preferred discussion game for each of the arguments
that were rejected (labelled out) during the first phase of the discussion, this time
trying to defend (label in) the argument.

As an example, consider again the argumentation framework of Figure 2. Now
consider the question of whether argument D is in an ideal set. The first phase of
the discussion would be like Example 1 (page 9). Then, in the second phase of the
discussion, one has to try to find an argument that was labelled out during the first
phase9 (say A) and can be defended in a new preferred discussion game. Such a
game would be as follows.
M: in(A)

“I have a reasonable position (admissible labelling) in which A is accepted
(labelled in).”

S: out(B)
“Then in your position, argument B must be rejected (labelled out).
Based on which grounds?”

M: in(A)
“B is rejected (labelled out) because A is accepted (labelled in).”

Hence, we have an admissible set {A} that attacks the admissible set {B, D}
found during the first phase, so the admissible set {B, D} of the first phase is not

8Recall that each complete extension (labelling) is also an admissible set (labelling).
9Recall that the preferred game is such that the out-labelled arguments are the attackers of the

in-labelled arguments (which is not necessarily the case for admissible labellings in general).
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an ideal set.10

The overall procedure for ideal semantics puts an extra burden on the proponent
of the argument. Not only does he have to win the preferred discussion game in the
first phase, but he has to win it in such a way11 that the resulting position (labelling)
cannot be argued against in the second phase.

5 Stable Semantics
In the current section, we describe a discussion game for credulous stable semantics
based on the work of Caminada and Wu [2009]. Before doing so, it may be illustra-
tive to see why the preferred discussion game does not work for stable semantics.
Consider again the argumentation framework of Figure 2. Even though A is in an
admissible set and in a preferred extension ({A}), A is not in a stable extension. To
see why A is in an admissible set, consider the following discussion:
M: in(A) “I have an admissible labelling where A is labelled in.”
S: out(B) “Then in your labelling, argument B must be labelled out. Based on
which grounds?”
M: in(A) “B is labelled out because A is labelled in.”
The point is, however, that once it has been decided that A is labelled in and B
is labelled out, it is not possible anymore to label the remaining arguments such
that final result will be a stable labelling. This can be seen as follows. Suppose
C is labelled in. Then E must be labelled out, so D should be labelled in, which
means that C would be labelled out. Contradiction. Similarly, suppose that C is
labelled out. Then E must be labelled in, so D should be labelled out, so C should
be labelled in. Again, contradiction.

There exist many ways to characterize a stable extension [Caminada and Gabbay,
2009]. For our purposes, the most useful characterization is that of an admissible set
which attacks every argument that is not in it (Theorem 1). When one translates
this to labellings, one obtains an admissible labelling where each argument is labelled
either in or out (that is, no argument is labelled undec, Theorem 2).

It appears that a discussion game for stable semantics requires an additional type
of move: question. To illustrate the role of this new move, imagine a politician
being interviewed for TV. At first the discussion may be about financial matters (say,
whether the banking system should be nationalized). Then, the discussion may be
about the consequences of the politician’s opinion (“If you accept to nationalize the

10In fact, for the argumentation framework of Figure 2, the only ideal set is the empty set.
11Since an argument can be element of more than one admissible set, there can be different ways

to win the preferred discussion game.
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banks, then you must reject the possibility to improve healthcare, because there will
not be enough money left to do so.”). However, at some moment, the interviewer
could choose to totally change topic (“By the way, what are your opinions about
abortion?”). It is this change of topic that is enabled by the question move.12

For the discussion game for stable semantics, we use the question move to
involve those arguments that have never been uttered before so that we are able to
label all the arguments in Ar . By questioning an argument (question(A)), player S
(the opponent) asks player M (the proponent) to give an explicit opinion on whether
A should be labelled in or out. If player M thinks that A should be labelled in
then he should respond with in(A). If, on the other hand, player M thinks that A
should be labelled out then he should respond with in(B) where B is a attacker of
A. The discussion game for stable semantics can thus be described as follows:

• Player M (the proponent) and player S (the opponent) take turns. Player M
starts.

• Each move of player S is either of the form out(A), where A is a attacker
of some (not necessarily the directly preceding) move of player M, or of the
form question(A), where A is an argument that has not been uttered in the
discussion before (by either player M or player S).

• The first move of player M is of the form in(A), where A is the main argument
of the discussion. The following moves of player M are also of the form in(A)
although A no longer needs to be the main claim. If the directly preceding
move of player S is of the form out(B) then A is a attacker of B. If the directly
preceding move of player S is of the form question(B) then A is either equal
to B or a attacker of B.

• Player S is not allowed to repeat any of his out moves.

• Player M is allowed to repeat his own in moves.

Player S wins if there is an argument A that has been subject to both an in move
(by player M) and an out move (by player S). Otherwise, the discussion continues
until one of the players cannot move anymore, in which case the discussion is won
by the player making the last move.

12One of the reasons the question move is needed is because stable semantics does not satisfy
the property of directionality [Baroni and Giacomin, 2007]. This means that for determining the
status of an argument, not just the “ancestors” (the attackers, the attackers of these attackers, etc)
are relevant but also the “offspring” (the attacked, the attacked of the attacked, etc) as well as
arguments from unconnected parts of the graph.
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To illustrate the use of the discussion game, consider the argumentation frame-
work depicted in Figure 4.

A B C D

Figure 4: Another argumentation framework

Suppose player M would like to start a discussion about A.
M: in(A) “I have a stable labelling in which A is labelled in.”
S: out(B) “Then in your labelling, A’s attacker B must be labelled out. Based on
which grounds?”
M: in(A) “B is labelled out because A is labelled in.”
S: question(C) “What about C?”
M: in(C) “C is labelled in.”
S: out(D) “Then C’s attacker D must be labelled out. Based on which grounds?”
M: in(C) “D is labelled out because C is labelled in.”
Player M wins the discussion, since player S cannot move anymore.

The above example also shows that the outcome of a discussion may depend on
player M’s response to a question move. For instance, if player M would have replied
to question(C) with in(D), then he would have lost the discussion, since player S
would then move out(D).

As an example of a discussion that cannot be won by player M, consider the
discussion for argument B. This discussion has to be lost by player M since the
argumentation framework of Figure 4 has only one stable extension: {A, C}, which
does not include B.
M: in(B) “I have a stable labelling in which B is labelled in.”
S: out(A) “Then in your labelling, B’s attacker A must be labelled out. Based on
which grounds?”
M: in(B) “A is labelled out because B is labelled in.”
S: question(C) “What about C?”
M: in(D) “C is labelled out because its attacker D is labelled in.”
S: out(D) “Then D’s attacker D (itself) must be labelled out. Contradiction.”
Player M would still have lost the discussion if he had responded to question(C)
with in(C) instead of with in(D). This is because then player S would have reacted
with out(B) and would therefore still have won the discussion.

Formally, the stable discussion game can be described as follows.
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Definition 14. Let (Ar , att) be an argumentation framework. A stable discussion
is a sequence of moves [∆1, ∆2, . . . , ∆n] (n ≥ 0) such that:

• each ∆i (1 ≤ i ≤ n) where i is odd (which is called an M-move) is of the form
in(A), where A ∈ Ar .

• each ∆i (1 ≤ i ≤ n) where i is even (which is called an S-move) is of the form
out(A) where A ∈ Ar , or of the form question(A) where A ∈ Ar .

• For each S-move ∆i = out(A) (2 ≤ i ≤ n) there exists an M-move ∆j = in(B)
(j < i) where A attacks B.

• For each M-move ∆i = in(A) (3 ≤ i ≤ n) it either holds that (1) ∆i−1 =
out(B) where A attacks B, or (2) ∆i−1 = question(B) where either A = B
or A attacks B.

• For each S-move ∆i = out(A) (1 ≤ i ≤ n) there does not exist an S-move
∆j = out(A) with j < i.

• For each S-move ∆i = question(A) (1 ≤ i ≤ n) there does not exist any move
∆j (j < i) of the form in(A), out(A) or question(A).

• For each M-move ∆i = in(A) (1 ≤ i ≤ n) there does not exist an S-move
∆j = out(A) with j < i.

A stable discussion [∆1, ∆2, . . . , ∆n] is said to be finished iff (1) there exists no ∆n+1
such that [∆1, ∆2, . . . , ∆n, Mn+1] is a stable discussion, or there exists an M-move
in(A) and an S-move out(A) for the same argument A, and (2) no subsequence
[∆1, . . . , ∆m] (m < n) is finished. A finished stable discussion is won by player S
if there exists an M-move in(A) and an S-move out(A) for the same argument A.
Otherwise it is won by the payer making the last move ∆n.

It turns out that an argument is in at least one stable extension iff the proponent
can win the stable discussion game for it.

Theorem 4. Let (Ar , att) be an argumentation framework and A ∈ Ar .

1. If there exists a stable discussion for A that is won by player M, then A is in
a stable extension.

2. If A is in a stable extension, then player M has a winning strategy for the
stable discussion game.

2476



Argumentation Semantics as Formal Discussion

As for point 1, it can be observed that what the discussion game essentially
does is to build a stable labelling Lab with in(Lab) = {A | there exists an M-move
in(A)} and out(Lab) = {A | there exists an S-move out(A)} ∪ {A | there exists
an S-move question(A) that was responded to with in(B) where B attacks A}.
It can be verified that Lab is an admissible labelling without any argument being
labelled undec. Hence, Lab is a stable labelling in the sense of Theorem 2. As A is
labelled in by Lab (since A is the subject of the first M-move) it holds that A is in
Lab2Ext(Lab). Hence, A is in a stable extension.

As for point 2, it should be mentioned that player M can win the game simply by
staying within the borders of the stable labelling Lab = Ext2Lab(Args) (with Args
being the stable extension that contains A, the argument that the discussion will
start with). That is, as long as player M only plays arguments that are labelled in
by Lab, each out move of player S will be labelled out by Lab, which then implies
that player M can always react with an argument that is labelled in by Lab, etc.
Moreover, when player S does a question(A) move, either A itself or an attacker
of A is labelled in by Lab, which again means that player M can always respond
with an argument that is labelled in by Lab. As the argumentation framework is
finite and player S cannot repeat himself, it follows that the game will finish in a
finite number of moves. As player M can always react to the moves of player S, this
means that the last move has to be an M-move. Hence, player M wins the game.13

Definition 14 describes the discussion game for credulous stable semantics (that
is, it can used to determine whether an argument is in at least one stable extension).
It is, however, relatively straightforward to re-apply this game in the context of
sceptical stable semantics (that is, to determine whether an argument is in every
stable extension). The idea is that an argument A is in each stable extension iff
no attacker of A is in any stable extension. So in order to determine whether A
is in every stable extension, one could try to play the stable discussion game for
each attacker of A. If for none of these attackers the discussion game can be won,
argument A is in each stable extension.

6 Grounded Semantics
So far, we have mainly focussed on the preferred discussion game and its slightly
modified variants for ideal and stable semantics. In the current section we will focus
on a fundamentally different type of discussion game, in the context of grounded
semantics.

One of the main differences between the preferred discussion game and the

13A more elaborate proof can be found in [Caminada and Wu, 2009].
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grounded discussion game to be introduced in the current section is a conceptual
one. To properly understand this difference, it is useful to take the perspective of
complete labellings. We recall that a complete labelling (Definition 11) is a labelling
where one has reasons for each argument one accepts (because all its attackers are
rejected), reasons for each argument one rejects (because it has an attacker that
is accepted), and reasons for each argument one abstains from having an explicit
opinion about (because there are insufficient grounds to accept it and insufficient
grounds to reject it). As such, a complete labelling can be seen as a reasonable
position on how to evaluate the conflicting information represented in the argumen-
tation framework. The preferred discussion game determines whether an argument
is accepted (labelled in) by at least one such reasonable position.14 The grounded
discussion game, to be introduced in the current section, determines whether an
argument is accepted (labelled in) by every such reasonable position.15 That is,
from the perspective of complete labellings, the preferred discussion game is about
whether an argument can be accepted, whereas the grounded discussion game is
about whether an argument has to be accepted.

The difference between determining whether an argument can be accepted and
whether an argument has to be accepted is reflected in the nature of the associated
discussion game. If the discussion is merely about whether an argument can be
accepted (that is, about whether there exists a reasonable position in which the
argument is accepted) then arguing against this means pointing out that any position
in which the argument is accepted is somehow not reasonable. That is, the opponent
tries to lead the proponent of such a position towards a contradiction.16 Hence,
the admissible discussion game has at least some properties of Socratic discussion
[Caminada, 2008; Caminada et al., 2014a]. If, on the other hand, the discussion is
about whether an argument has to be accepted (that is, about whether the argument
is accepted in each reasonable position) then the discussion gets a totally different
nature. If an argument is accepted in each reasonable position, then in particular
one’s discussion partner, by being reasonable, should accept the argument. So the
discussion becomes one of trying to convince the discussion partner that he has to
accept a particular argument. That is, the discussion partner should be shown that
by being reasonable, he cannot avoid having to accept the argument in question. As
such, the nature of the discussion becomes that of persuasion dialogue [Walton and

14This is because an argument is labelled in by some admissible labelling iff it is labelled in by
some complete labelling.

15This is because an argument is labelled in by the grounded labelling iff it is labelled in by
every complete labelling.

16like saying, “if you think that argument X is labelled in, then it follows that X’s attacker Y
should be labelled out, but previously you claimed that Y should be labelled in.”
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Krabbe, 1995].
Now that the conceptual difference between the preferred discussion game and

the grounded discussion game has been explained, we will take a closer look at
the technical differences. Although the preferred discussion game is used to deter-
mine membership of a preferred extension, it does so by determining membership
of an admissible set (labelling).17 This has the advantage of not having to con-
struct the entire preferred extension (labelling), as constructing an admissible set
(labelling) will be sufficient. Similarly, although the grounded discussion game is
used to determine membership of the grounded extension, it does so by determining
membership of a strongly admissible set (labelling) [Baroni and Giacomin, 2007;
Caminada, 2014].18 This has the advantage of not having to construct the entire
grounded extension (labelling) as constructing a strongly admissible set (labelling)
will be sufficient.

The grounded discussion game [Caminada, 2015a,b] that we will described in
the current section has two players (proponent and opponent) and is based on four
different moves, each of which has an argument as a parameter.

HTB(A) (“A has to be the case”)
With this move, the proponent claims that A has to be labelled in by every
complete labelling, and hence also has to be labelled in by the grounded
labelling.

CB(B) (“B can be the case, or at least cannot be ruled out”)
With this move, the opponent claims that B does not have to be labelled
out by every complete labelling. That is, the opponent claims there exists a
complete labelling where B is labelled in or undec, and that B is therefore
not labelled out by the grounded labelling.

CONCEDE(A) (“I agree that A has to be the case”)
With this move, the opponent indicates that he now agrees with the proponent
(who previously did an HTB(A) move) that A has to be the case (labelled in
by every complete labelling, including the grounded).

RETRACT (B) (“I give up that B can be the case”)
With this move, the opponent indicates that he no longer believes that B can

17Recall that an admissible set (labelling) can always be extended to a preferred extension
(labelling), as a preferred extension (labelling) is a maximal admissible set (labelling).

18Recall that a strongly admissible set (labelling) can always be extended to the grounded ex-
tension (labelling), as the grounded extension (labelling) is the maximal strongly admissible set
(labelling) (see Theorem 2 and the work of Baroni and Giacomin [2007] and Caminada [2014].
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be in or undec. That is, the opponent acknowledges that B has to be labelled
out by every complete labelling, including the grounded.

One of the key ideas of the discussion game is that the proponent has burden of
proof. He has to establish the acceptance of the main argument and make sure the
discussion does not go around in circles. The opponent merely has to cast sufficient
doubts.

The game starts with the proponent uttering an HTB statement. After each
HTB statement (either the first one or a subsequent one) the opponent utters a
sequence of one or more CB, CONCEDE and RETRACT statements, after which
the proponent again utters an HTB statement, etc. In the argumentation framework
of Figure 1 the discussion could go as follows.

(1) P: HTB(C) (4) O: CONCEDE(A)
(2) O: CB(B) (5) O: RETRACT (B)
(3) P: HTB(A) (6) O: CONCEDE(C)

In the above discussion, C is called the main argument (the argument the discussion
starts with). The discussion above ends with the main argument being conceded by
the opponent, so we say that the proponent wins the discussion.

As an example of a discussion that is lost by the proponent, it can be illustrative
to examine what happens if the proponent claims that B has to be the case.

(1) P: HTB(B) (2) O: CB(A)

After the second move, the discussion is terminated, as the proponent cannot make
any further move, since A does not have any attackers. This brings us to the precise
preconditions of the discussion moves.

HTB(A) Either this is the first move, or the previous move was CB(B), where A
attacks B, and no CONCEDE or RETRACT move is applicable.

CB(A) A is an attacker of the last HTB(B) statement that is not yet conceded,
the directly preceding move was not a CB statement, argument A has not yet
been retracted, and no CONCEDE or RETRACT move is applicable.

CONCEDE(A) There has been an HTB(A) statement in the past, of which every
attacker has been retracted, and CONCEDE(A) has not yet been moved.

RETRACT (A) There has been a CB(A) statement in the past, of which there
exists an attacker that has been conceded, and RETRACT (A) has not yet
been moved.
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Apart from the preconditions mentioned above, all four statements also have the
additional precondition that no HTB-CB repeats have occurred. That is, there
should be no argument for which HTB has been uttered more than once, CB has
been uttered more than once, or both HTB and CB have been uttered. In the first
and second case, the discussion is going around in circles, which the proponent has
to prevent as he has burden of proof. In the third case, the proponent has been
contradicting himself, as his statements are not conflict-free. In each of these three
cases, the discussion comes to an end with no move being applicable anymore. The
above conditions are made formal as follows.
Definition 15. Let AF = (Ar , att) be an argumentation framework. A grounded
discussion is a sequence of discussion moves constructed by applying the following
principles.
BASIS (HTB) If A ∈ Ar then [HTB(A)] is a grounded discussion.

STEP (HTB) If [M1, . . . , Mn] (n ≥ 1) is a grounded discussion without HTB-
CB repeats,19 and no CONCEDE or RETRACT move is applicable,20 and
Mn = CB(A) and B is an attacker of A then [M1, . . . , Mn, HTB(B)] is also a
grounded discussion.

STEP (CB) If [M1, . . . , Mn] (n ≥ 1) is a grounded discussion without HTB-CB
repeats, and no CONCEDE or RETRACT move is applicable, and Mn is not
a CB move, and there is a move Mi = HTB(A) (i ∈ {1 . . . n}) such that the
discussion does not contain CONCEDE(A), and for each move Mj = HTB(A′)
(j > i) the discussion contains a move CONCEDE(A′), and B is an attacker
of A such that the discussion does not contain a move RETRACT (B), then
[M1, . . . , Mn, CB(B)] is a grounded discussion.

STEP (CONCEDE) If [M1, . . . , Mn] (n ≥ 1) is a grounded discussion without
HTB-CB repeats, and CONCEDE(B) is applicable then
[M1, . . . , Mn, CONCEDE(B)] is a grounded discussion.

STEP (RETRACT) If [M1, . . . , Mn] (n ≥ 1) is a grounded discussion without
HTB-CB repeats, and RETRACT (B) is applicable then
[M1, . . . , Mn, RETRACT (B)] is a grounded discussion.

19We say that there is a HTB-CB repeat iff ∃i, j ∈ {1 . . . n}∃A ∈ Ar : (Mi = HTB(A) ∨ Mi =
CB(A)) ∧ (Mj = HTB(A) ∨ Mj = CB(A)) ∧ i 6= j.

20A move CONCEDE(B) is applicable iff the discussion contains a move HTB(A) and for ev-
ery attacker A of B the discussion contains a move RETRACT(B), and the discussion does not
already contain a move CONCEDE(B). A move RETRACT(B) is applicable iff the discussion
contains a move CB(B) and there is an attacker A of B such that the discussion contains a move
CONCEDE(A), and the discussion does not already contain a move RETRACT(B).
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It can be observed that the preconditions of the moves are such that a proponent
move (HTB) can never be applicable at the same moment as an opponent move
(CB, CONCEDE or RETRACT ). That is, proponent and opponent essentially
take turns in which each proponent turn consists of a single HTB statement, and
every opponent turn consists of a sequence of CONCEDE , RETRACT and CB
moves.

Definition 16. A grounded discussion [M1, . . . , Mn] is called terminated iff there
exists no move Mn+1 such that [M1, . . . , Mn, Mn+1] is a grounded discussion. A
terminated grounded discussion (with A being the main argument) is won by the
proponent iff the discussion contains CONCEDE(A), otherwise it is won by the
opponent.

To illustrate why the discussion has to be terminated after the occurrence of an
HTB-CB repeat, consider the following discussion in the argumentation framework
of Figure 1.

(1) P: HTB(G) (3) P: HTB(G)
(2) O: CB(H)

At the third move, an HTB-CB repeat occurs and the discussion is terminated (op-
ponent wins). Hence, termination after an HTB-CB repeat is necessary to prevent
the discussion from going on perpetually.

Theorem 5. Every discussion will terminate after a finite number of steps.

From the fact that a discussion terminates after an HTB-CB repeat, the following
result follows.

Lemma 1. No discussion can contain a CONCEDE and RETRACT move for the
same argument.

The soundness and completeness of the game described above is stated in the
following theorem.

Theorem 6 (Caminada [2015a]). Let (Ar , att) be an argumentation framework and
let A ∈ Ar .

1. If there exists a grounded discussion for A that is won by player P, then A is
labelled in by the grounded labelling.

2. If A is labelled in by the grounded labelling, then player P has a winning
strategy for A in the grounded discussion game.
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The correctness of Theorem 6 can be seen as follows. As for point 1, it can be
observed that what the discussion game actually does is to construct a strongly ad-
missible labelling of which the in-labelled arguments coincide with the CONCEDE
moves, and the out-labelled arguments coincide with the RETRACT moves. In
fact, it can be proved by induction that at each state of the discussion, the labelling
where each CONCEDE move is labelled in and each retract move is labelled out
is strongly admissible [Caminada, 2015b]. The fact that the discussion is won by
player P implies that the main argument (A) has been conceded. So at the end of
the discussion, we have a strongly admissible labelling where argument A is labelled
in. Hence, by Theorem 2, A is labelled in by the grounded labelling.

As for point 2, it should be mentioned that a strongly admissible labelling (for
instance the grounded labelling) with its associated min-max numbering can serve
as a roadmap for winning the discussion. The proponent will be able to win if,
whenever he has to do an HTB move, he prefers to use an in argument with the
lowest min-max number that attacks the directly preceding CB move. We refer to
this as a lowest number strategy.21

It turns out that when applying such a strategy, the game stays within the
boundaries of the strongly admissible labelling (that is, within its in and out la-
belled part). As long as each HTB move of the proponent is related to an in-labelled
argument, it follows that all the attackers are labelled out (Definition 8, first bullet)
so each CB move the opponent utters in response will be related to an out-labelled
argument. This out-labelled argument will then have at least one in-labelled at-
tacker (Definition 8, second bullet) as a candidate for the proponent’s subsequent
HTB move.

The next thing to be observed is that when the proponent applies a lowest
number strategy, the game will not terminate due to any HTB-CB repeats. This is
due to the facts that (1) after a move HTB(A) is played (for some argument A) all
subsequent CB and HTB moves will be related to arguments with lower min-max
numbers than A until a move CONCEDE(A) is played, and (2) after a move CB(A)
is played (for some argument A), all subsequent HTB and CB moves will be related
to arguments with lower min-max numbers than A, until a move RETRACT (A) is
played. We refer to [Caminada, 2015b] for details.

21We write “a lowest number strategy” instead of “the lowest number strategy” as a lowest
number strategy might not be unique due to different lowest numbered in-labelled arguments being
applicable at a specific point. In that case it is sufficient to pick an arbitrary one.
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7 Tree-Based Discussion Games
The discussion games that were described in the previous sections are not the only
ones that have been stated for preferred, stable, ideal and grounded semantics. In
fact, various alternative dialectical proof procedures can be found in the literature,
many of them are based on the concept of dialectical trees [Dung et al., 2007; Modgil
and Caminada, 2009; Thang et al., 2009]. In the current section, we aim to pro-
vide an impression of these tree-based discussion games, and explain some of their
disadvantages compared to the discussion games described in the previous sections.
Rather than giving an overview of all tree-based discussion games that have been
stated in the literature, we will focus our attention on one of them: the Standard
Grounded Game [Prakken and Sartor, 1997; Caminada, 2004; Modgil and Caminada,
2009].

The Standard Grounded Game (SGG) [Prakken and Sartor, 1997; Caminada,
2004; Modgil and Caminada, 2009] is one of the earliest dialectical proof procedures
for grounded semantics. Each game22 consists of a sequence [A1, . . . , An] (n ≥ 1) of
arguments, moved by the proponent and opponent taking turns, with the proponent
starting. That is, a move Ai (i ∈ {1 . . . n}) is a proponent move iff i is odd, and an
opponent move iff i is even. Each move, except the first one, is an attacker of the
previous move. In order to ensure termination even in the presence of cycles, the
proponent is not allowed to repeat any of his moves. A game is terminated iff no
next move is possible; the player making the last move wins. Formally, the Standard
Grounded Game can be defined as follows.

Definition 17. A discussion in the Standard Grounded Game is a finite sequence
[A1, . . . , An] (n ≥ 1) of arguments (sometimes called moves), of which the odd moves
are called P-moves (Proponent moves) and the even moves are called O-moves (Op-
ponent moves), such that:

1. every O-move is an attacker of the preceding P-move (that is, every Ai where
i is even and 2 ≤ i ≤ n attacks Ai−1)

2. every P-move except the first one is an attacker of the preceding O-move (that
is, every Ai where i is odd and 3 ≤ i ≤ n attacks Ai−1)

3. P-moves are not repeated (that is, for every odd i, j ∈ {1, . . . , n} it holds that
if i 6= j then Ai 6= Aj)

22What we call an SGG game is called a “line of dispute” in [Modgil and Caminada, 2009].
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A discussion is called terminated iff there is no An+1 such that [A1, . . . , An, An+1]
is a discussion. A terminated discussion is said to be won by the player making the
last move.

As an example, in the argumentation framework of Figure 1 [C, B, A] is ter-
minated and won by the proponent (as A has no attackers, the opponent cannot
move anymore) whereas [G, H] is terminated and won by the opponent (as the only
attacker of H is G, which the proponent is not allowed to repeat). It is sometimes
possible for the proponent to win a game even if the main argument is not in the
grounded extension. An example would be [F, B, A]. This illustrates that in order
to show that an argument is in the grounded extension, a single game won by the
proponent is not sufficient. Instead, what is needed is a winning strategy. This is
essentially a tree in which each node is associated with an argument such that (1)
each path from the root to a leaf constitutes a terminated discussion won by the
proponent, (2) the children of each proponent node (a node corresponding with a
proponent move) coincide with all attackers of the associated argument, and (3)
each opponent node (a node corresponding with an opponent move) has precisely
one child, whose argument attacks the argument of the opponent node.

Formally, argument tree is a tree of which each node (n) is labelled with an
argument (Arg(n)). The level of a node is the number of nodes in the path to
the root. This leads to the following formal definition of a winning strategy in the
context of the Standard Grounded Game.

Definition 18. A winning strategy of the Standard Grounded Game for argument
A is an argument tree, where the root is labelled with A, such that

1. for each path from the root (nroot) to a leaf node (nleaf ) it holds that the argu-
ments on this path form a terminated discussion won by P

2. for each node at odd level nP it holds that {Arg(nchild) | nchild is a child of nP }
= {B | B attacks Arg(nP )} and the number of children of nP is equal to the
number of attackers of Arg(nP )

3. each node of even level nO has precisely one child nchild , and Arg(nchild) attacks
Arg(nO)

It has been proved that an argument is in the grounded extension iff the propo-
nent has a winning strategy for it in the SGG [Prakken and Sartor, 1997; Caminada,
2004]. Moreover, it has also been shown that an SGG winning strategy defines a
strongly admissible labelling, when each argument of a proponent node is labelled
in, each argument of an opponent node is labelled out and all remaining arguments
are labelled undec [Caminada, 2014].
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As an example, in the argumentation framework of Figure 1 the winning strategy
for argument E would be the tree consisting of the two branches E − B − A and
E − D − C − B − A, thus proving its membership of the grounded extension by
yielding the strongly admissible labelling ({A, C, E}, {B, D}, {F, G, H}).

As can be observed from this example, a winning strategy of the SGG can contain
some redundancy when it comes to multiple occurrences of the same arguments
in different branches. In the current example, the redundancy is relatively mild
(consisting of just the two arguments A and B) but other cases exist where the
SGG requires a number of moves in the winning strategy that is exponential w.r.t.
the size of the strongly admissible labelling the winning strategy is defining. As an
example, consider the argumentation framework of Figure 5 (top left). The winning
strategy of the SGG is in the same figure (top right). Now consider what would
happen if one would start to extend the argumentation framework by duplicating
the middle part. That is, suppose we have arguments B1, . . . , Bn and C1, . . . , Cn

(with n being an odd number), as well as arguments A and D. Suppose that for
every i ∈ {1, . . . , n−1} Bi+1 attacks Bi, and Ci+1 attacks Ci, and that for each even
i ∈ {2, . . . n− 1} Bi+1 attacks Ci, and Ci+1 attacks Bi, and that B1 and C1 attack
A, and that D attacks Bn and Cn. In that case, the branches in the SGG winning
strategy would split at every O-move. So for n = 3 (as is the case in Figure 5) the
number of branches is four, for n = 5 it is eight, etc. In general, the number of
branches in the SGG winning strategy is 2(n+1)/2, with the number of nodes in the
SGG winning strategy being 1 + 2Σ(n+1)/2

i=1 2i. Hence, the number of steps needed in
a winning strategy of the SGG can be exponential in relation to the size (number of
in and out labelled arguments) of the strongly admissible labelling that the SGG
winning strategy is constructing.23

As for the Grounded Discussion Game (GDG) as described in Section 6, the
situation is different. As was mentioned in Section 6, what the GDG essentially does
is to construct a strongly admissible labelling of which the in labelled arguments
coincide with the CONCEDE moves and the out labelled arguments coincide with
the RETRACT moves. It can be observed that no argument occurs in both a
CONCEDE and RETRACT move (otherwise the argument would also have occurred
in both an HTB and CB move, and the discussion would have terminated before
reaching the CONCEDE and RETRACT moves) and that for each argument there
exists at most one CONCEDE move and at most one RETRACT move. As we
assume the game is won by the proponent, who is playing a lowest number strategy,
there will be no HTB-CB repeats. This implies that for each CONCEDE move,
there exists precisely one HTB move, and for each RETRACT move, there exists

23We thank Mikołaj Podlaszewski for this example.
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(3) P: HTB(B2) (7) O: RETRACT(B3) (11) O: RETRACT(B1) (15) O: RETRACT(C1)
(4) O: CB(B3) (8) O: CB(C3) (12) O: CB(C1) (16) O: CONCEDE(A)

Figure 5: The Standard Grounded Game (SGG) versus the Grounded Discussion
Game (GDG).

precisely one CB move. This means that the total number of moves (in a game
won by the proponent, who is applying a lowest number strategy) is two times the
number of in labelled arguments (which accounts for the HTB and CONCEDE
moves) plus two times the number of out labelled arguments (which accounts for
the CB and RETRACT moves). Hence, the number of moves in the game is linear
in relation to the size (number of in and out labelled arguments) of the strongly
admissible labelling the GDG is constructing.24

Hence, whereas for the Grounded Discussion Game, constructing a strongly ad-
missible labelling (which is needed to show membership of the grounded extension)
requires a linear number of moves, for the Standard Grounded Game this requires
a potentially exponential number of moves. This makes the GDG a better choice
for purposes of human-computer interaction, assuming that the human user’s time
is precious.

It should be mentioned that the possibility of an exponential blowup in the num-
ber of moves is not restricted to the SGG, but is a feature of tree-based discussion
games in general. For instance, the above sketched example also leads to an expo-
nential number of moves in the preferred semantics game of Modgil and Caminada
[2009] and in the ideal semantics game of Dung et al. [2007]. The key feature of
these approaches is that they require a winning strategy to show membership of a
(grounded, preferred or ideal) extension. It is this winning strategy that is respon-
sible for the exponential blowup. In the discussion games described in sections 3,
5 and 6, however, no winning strategy is required, as just a single game won by
the proponent is sufficient to prove membership of a (preferred, stable or grounded)

24See [Caminada, 2015a] for details.
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extension.25

8 Discussion
What the above described discussion games for preferred semantics (Section 3),
stable semantics (Section 5) and grounded semantics (Section 6) have in common
is that (1) a single game won by the proponent is sufficient to prove membership
of a (preferred, stable or grounded) extension, and (2) if an argument is member
of a (preferred, stable or grounded) extension then the proponent has a winning
strategy for it. This is evidenced by theorems 3, 4 and 6. In tree-based discussion
games, like those of Dung et al. [2007], Modgil and Caminada [2009] and Thang et
al. [2009] point (1) is altered such that a single game won by the proponent is not
sufficient to prove membership of an extension; for this a winning strategy is needed.
Having to provide such a winning strategy in a dialectical way can be troublesome
for two reasons. First of all, the tree of the winning strategy would need to be
“linearized” as discussions take place not in branching time but in linear time. But
even if linearization takes place, one still has to deal with the fact that the original
(tree-based) winning strategy could have a size that is exponentially related to the
(strongly) admissible labelling it is based on. The discussion games presented in
sections 3, 5 and 6 have the advantage that they are not tree-based and hence do
not have these problems.

One can ask the question whether it is always possible (for any argumentation
semantics) to define a discussion game that satisfies the points (1) and (2) mentioned
above. For instance, the procedure sketched in Section 4 (ideal semantics) does not
satisfy point (1). This is because in the second phase of the discussion, when trying
to find an admissible set that attacks the admissible set obtained in the first phase
of the discussion, not finding such a set could be due to the proponent making the
“wrong” choices during the second phase, rather than due to the actual absence of
such a set. It would be a challenge to change the discussion procedure for ideal
semantics such that both points (1) and (2) are satisfied. An even greater challenge
would be to formulate discussion games (still satisfying points (1) and (2)) for semi-
stable, stage or even CF2 semantics.

As the tree-based discussion games of Dung et al. [2007], Modgil and Caminada
[2009] and Thang et al. [2009] violate point (1) but satisfies point (2), one can ask
the question of whether there also exists a discussion game that satisfies point (1)

25It can be proved that the preferred discussion game (Section 3) is linear in the number of moves
required. See [Caminada et al., 2014a] for details. Using similar techniques one can also prove that
the stable discussion game (Section 5) requires only a linear number of moves.
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but violates point (2). The answer is affirmative, as is evidenced by the work of
Caminada and Podlaszewski [2012]. Here, the ability to win the discussion game
might depend on cooperation of the opponent. So even though an argument being
in the grounded extension implies the existence of a discussion for it that is won by
the proponent, it does not imply that the proponent also has a winning strategy.26

For the purpose of human-computer interaction, this property is undesirable, as the
computer should be able to win the discussion (for an argument that is actually
in the grounded extension) regardless of how the human user choses to utter the
possible counterarguments.

The discussion games presented in the current paper have been stated in the
context of abstract argumentation theory. This raises the question of whether these
discussion games are also suitable in the context of instantiated argumentation, like
aspic+ [Modgil and Prakken, 2014] aba [Toni, 2014] or logic-based argumentation
[Gorogiannis and Hunter, 2011] Technically, this should not be a problem, as each of
these formalisms provides an instantiation of Dung’s abstract argumentation theory.
That is, each of these formalisms specifies what arguments can be constructed and
how these attack each other, starting from a particular knowledge base. Although
applying the discussion games in the context of instantiated argumentation is techni-
cally straightforward, there is a catch. The question is whether the notion of attack
of the instantiated argumentation formalism is defined in such a way that it allows
for moves that can be considered as intuitive during the course of the discussion. For
instance, in aspic+ it can be the case that a discussion partner utters an argument
with conclusion c, which cannot be replied to with an argument for conclusion ¬c
(even though such an argument is well-formed and perhaps even justified) because
the definition of attack is such that it does not attack the argument with conclusion
c. This is like having your discussion partner uttering an argument for a claim (c)
which you know is not the case, but you’re not allowed to reply with an argument
that directly rebuts this claim. We refer to the work of Caminada et al. [2014b] for
details.

As mentioned in the introduction, one of the possible applications of the discus-
sion games is for the purpose of human-computer interaction. The context here is
that of a shared knowledge base27 (say, of medical research and clinical evidence) that
allows for the construction of arguments (say, regarding to how to treat a particular

26We refer to [Caminada, 2015a] for a specific example.
27A particularly interesting situation is where such a shared knowledge base is absent, that

is, where proponent and opponent each have their own private knowledge base and associated
argumentation framework. In that case, both proponent and opponent learn new information from
each other during the course of the discussion. This puts additional constraints on the discussion
protocol. We refer to [Caminada and Sakama, 2015] for details.
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patient). As the knowledge base can be complex and huge, it is not always directly
obvious what the justified arguments are. Although a software implementation of
(instantiated) argumentation theory can help to provide an answer, the correctness
of this answer might need to be explained to a human user. Our hypothesis is that
human-computer discussion can contribute to acceptance of argument-based entail-
ment. In order to test this hypothesis, one would need to perform experiments in
which the user’s confidence in the argument-based entailment is tested, before and
after performing the discussion game. Experiments like these is what we would like
to perform in the near future.
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