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Abstract

In this paper, we prove the correspondence between complete extensions in abstract argumentation and
3-valued stable models in logic programming. This result is in line with earlier work of [8] that identified
the correspondence between the grounded extension in abstract argumentation and the well-founded model
in logic programming, as well as between the stable extensions in abstract argumentation and the stable
models in logic programming. We believe the results of this paper are not only relevant by themselves,
but can also potentially be used for future work on the correspondence between argumentation and logic
programming semantics.

1 Introduction
Formal argumentation has become a popular approach for purposes varying from nonmonotonic reasoning
[2, 3], multi-agent communication [1] and reasoning in the semantic web [19]. Although some research on
formal argumentation can be traced back to the early 1990s (like for instance the work of Vreeswijk [23]
and of Simari and Loui [20]) the topic really started to take off with Dung’s theory of abstract argumentation
[8]. Here, arguments are seen as abstract entities (although they can be instantiated using approaches like [3]
and [16]) among which an attack relationship is defined. The thus formed argumentation framework can be
represented as a directed graph in which the arguments serve as nodes and the attack relation as the arrows.

Given such a graph, an interesting question is which sets of nodes can reasonably be accepted. Several
criteria of acceptance have been stated, including grounded, complete, preferred and stable semantics [8], as
well as more recent approaches like semi-stable semantics [6] and ideal semantics [9].

The diversity of abstract argumentation is to some extent matched by the field of logic programming,
where a wide variety of approaches has been formulated to describe the meaning of a logic program. Exam-
ples of these are the well-founded [21], regular [25] and stable model semantics [12, 13], of which the last
one has currently gained the most popularity.

There exists an interesting overlap between abstract argumentation and logic programming, which is also
reflected in the similarity between argumentation and logic programming semantics. For instance, in [8] it
is observed that the grounded extension in abstract argumentation corresponds to the well-founded model in
logic programming, and that the stable extensions in abstract argumentation correspond to the stable models
in logic programming.

In the current paper, we examine another overlap between abstract argumentation semantics and logic
programming semantics. We show that the complete extensions of abstract argumentation [8] coincide
with the 3-valued stable models of logic programming [17]. This overlap is relevant because both complete
extensions and 3-valued stable models have been used as the basis for describing other semantics for abstract
argumentation and logic programming. Ideally, the correspondence between complete extensions and 3-
valued stable models could therefore serve as a basis for identifying additional correspondences between
abstract argumentation semantics and logic programming semantics, although these are not yet explicitly
identified in the current paper.



The remaining part of this paper is structured as follows. Section 2 and Section 3 state some preliminaries
on argument semantics, argument labellings and logic program. Section 4 demonstrates the equivalence
between complete labellings and 3-valued stable models. Finally in Section 5 we address some future work
and conclude the paper with a discussion.

2 Argument Semantics and Argument Labellings
In this section, we briefly restate some preliminaries regarding argument semantics and argument-labellings.

Definition 1. An argumentation framework is a pair (Ar , att) where Ar is a finite set of arguments and
att ⊆ Ar ×Ar .

We say that argument A attacks argument B iff (A, B) ∈ att . An argumentation framework can be
represented as a directed graph in which the arguments are represented as nodes and the attacks relation is
represented as arrows.

Definition 2 (defense / conflict-free). Let (Ar , att) be an argumentation framework, A ∈ Ar and Args ⊆
Ar . Args is conflict-free iff ¬∃A, B ∈ Args : A attacks B. Args defends argument A iff ∀B ∈ Ar : (B
attacks A ⊃ ∃C ∈ Args : C attacks B). Let F (Args) = {A | A is defended by Args}.

Definition 3 (acceptability semantics). Let (Ar , att) be an argumentation framework. A conflict-free set
Args ⊆ Ar is called a complete extension iff Args = F (Args).

The concept of complete semantics was originally stated in terms of sets of arguments. It is equally
well possible, however, to express this concept in terms of argument labellings. This approach has been
proposed by Pollock [15] and Jakobovits and Vermeir [14], and has recently been extended by Caminada
[4], Vreeswijk [24] and Verheij [22]. The idea of a labelling is to associate with each argument exactly one
label, which can either be in, out or undec. The label in indicates that the argument is explicitly accepted,
the label out indicates that the argument is explicitly rejected, and the label undec indicates that the status
of the argument is undecided, meaning that one abstains from an explicit judgment whether the argument is
in or out.

Definition 4. A labelling is a function L : Ar −→ {in, out, undec}.

We write in(L) for {A | L(A) = in}, out(L) for {A | L(A) = out} and undec(L) for {A | L(A) =
undec}. We say that an argument A is legally in iff L(A) = in and all the attackers of A are labelled out.
We say that an argument A is legally out iff L(A) = out and there exists an attacker of A which is labelled
in. We say that an argument A is legally undec iff L(A) = undec and there is no attacker of A that is
labelled in and not all the attackers of A are labelled out.

Definition 5. Let L be a labelling of argumentation framework (Ar , att) and A ∈ Ar . We say that:

1. A is legally in iff L(A) = in and ∀B ∈ Ar : (B att A ⊃ L(B) = out)

2. A is legally out iff L(A) = out and ∃B ∈ Ar : (B att A ∧ L(B) = in).

3. A is legally undec iff L(A) = undec
and ¬∀B ∈ Ar : (B att A ⊃ L(B) = out)
and ¬∃B ∈ Ar : (B att A ∧ L(B) = in).

We say that an argument A is illegally in iff L(A) = in but A is not legally in. We say that an argument
A is illegally out iff L(A) = out but A is not legally out. We say that an argument A is illegally undec iff
L(A) = out but A is not legally undec.

Definition 6. An admissible labelling L is a labelling where each argument that is labelled in is legally in
and each argument that is labelled out is legally out.
A complete labelling is an admissible labelling where each argument that is labelled undec is legally undec.

We now define two functions that, given an argumentation framework, allow a set of arguments to be
converted to a labelling and vice versa. The function Ext2Lab(Ar ,att) takes a set of arguments (sometimes
an extension) and converts it to a labelling. The function Lab2Ext(Ar ,att) takes an labelling and converts it
to a set of arguments (sometimes an extension). Since a labelling is a function, it is possible to represent the
labelling as a set of pairs.



Definition 7. Let (Ar , att) be an argumentation framework, Args ⊆ Ar such that Args is conflict-free,
and L : Ar → {in, out, undec} a labelling. We define Ext2Lab(Ar ,att)(Args) as {(A, in) | A ∈ Args}∪
{(A, out) | ∃A′ ∈ Args : A′attA} ∪ {(A, undec) | A /∈ Args ∧ ¬∃A′ ∈ Args : A′attA}. We define
Lab2Ext(Ar ,att)(L) as {A | (A, in) ∈ L)}.

When the associated argumentation framework is clear, we sometimes simply write Ext2Lab and Lab2Ext
instead of Ext2Lab(Ar ,att) and Lab2Ext(Ar ,att).

It can be proved that the various types of labellings correspond to the various kinds of argument seman-
tics [4, 7].

Theorem 8. [4] Let (Ar , att) be an argumentation framework. IfL is a complete labelling then Lab2Ext(L)
is a complete extension. If Args is a complete extension then Ext2Lab(Args) is a complete labelling.

Proof. Please refer to [5].

When the domain and the range of Lab2Ext are restricted to complete labellings and complete exten-
sions, and the domain and the range of Ext2Lab are restricted to complete extensions and complete la-
bellings, then the resulting functions (call them Lab2Extr and Ext2Labr) are bijective and are each other’s
inverse.

Theorem 9. [4] Let Lab2Extr
(Ar ,att) : {L | L is a complete labelling of (Ar , att)} → {Args |

Args is a complete extension of (Ar , att)} be a function defined by Lab2Extr
(Ar ,att)(L) = Lab2Ext(Ar ,att)(L).

Let Ext2Labr
(Ar ,att) : {Args | Args is a complete extension of (Ar , att)} → {L | L is a complete labeling

of (Ar , att)} be a function defined by Ext2Labr
(Ar ,att)(Args) = Ext2Lab(Ar ,att)(Args).

The functions Lab2Extr
(Ar ,att) and Ext2Labr

(Ar ,att) are bijective and are each other’s inverse.

Proof. Please refer to [5].

From Theorem 9 it follows that complete labellings and complete extensions stand in a one-to-one
relationship to each other.

3 3-Valued Stable Models in Logic Programming
We will first summarize basic concepts and terminologies of standard logic programming.

Definition 10. A (normal) logic program is a finite set of universally quantified rules of the form,

∀x1, . . . , xn(A← A1, . . . , Am, not B1, . . . , not Bk),

commonly written A ← A1, . . . , Am, not B1, . . . , not Bk, where n, m, k ≥ 0 and A, Ai, Bj are atoms. A
is called the head of the rule, denoted by H(r). A1, . . . , Am, not B1, . . . , not Bk is the body of the rule,
denoted by B(r). A rule (program) is definite or (positive) if it does not contain not.

Given a logic program P , the Herbrand Base BP of P is the set of all ground atoms that are the instances
of the atoms occurring in P . The set of all ground instances of P w.r.t. BP is denoted by ground(P ). A
(Herbrand) interpretation I =< T ; F > for a program P can be viewed as a mapping from BP to the set
of truth values {t, f, u}, denoted by:

I(A) =


t if A ∈ T,
u if A ∈ I
f if A ∈ F

where I = BP − (T ∪ F ). t, f, u denote true, false and undefined respectively, ordered as f < u < t.

Definition 11. [18] Let P be a logic program and 3-valued model M be an interpretation for P . Then
M is a 3-valued model for P if every rule r in ground(P ) is satisfied by M .

Let P be a logic program and I be any 3-valued interpretation . The GL-transformation P
I of P w.r.t.

I is obtained by replacing in the body of every rule of P all negative literals which are true (respectively
undefined, false). by t (respectively u, f ). The resulting program P

I is definite, so it has a least model J . We
define Γ∗(I) = J .

Definition 12. [17] A 3-valued interpretation M of a logic program P is a 3-valued stable model of P if
Γ∗(M) = M .



4 Complete Labellings Coincide with Three-Valued Stable Models
We use the approach in [11] to transform argumentation frameworks into logic programs.
Each argumentation framework can be transformed into a logic program by generating a rule for each argu-
ment in the argumentation framework such that the argument itself is in the head of the rule and the negations
of all its attackers be in the body of the rule.

Definition 13. Let AF = (Ar , att) be an argumentation framework. We define the associated logic pro-
gram PAF as follows,
PAF = {A ← not B1, . . . , not Bn | A, B1, . . . , Bn ∈ Ar (n ≥ 0) and {Bi | (Bi, A) ∈ att} =
{B1, . . . , Bn}}.

We now define two functions that, given an argumentation framework AF , allow a labelling to be con-
verted to a 3-valued interpretation of PAF and vice versa.

Definition 14. Let Labellings be the set of all labellings of AF andModels be all the 3-valued interpre-
tations of PAF . Let L ∈ Labellings. We introduce a function Lab2Mod : Labellings→Models such that
Lab2Mod(L) =< in(L); out(L) > and Lab2Mod(L) = undec(L).

Definition 15. Let Labellings be the set of all labellings of AF andModels be all the 3-valued interpreta-
tions of PAF . Let I ∈Models and I =< T, F >. We define a function Mod2Lab :Models→ Labellings
such that in(Mod2Lab(I)) = T and out(Mod2Lab(I)) = F and undec(Mod2Lab(I)) = I .

When L is a complete labelling of an argumentation framework, then Lab2Mod(L) is a 3-valued stable
model of the associated logic program, as is stated by the following theorem.

Theorem 16. Let AF = (Ar , att) be an argumentation framework and L be a complete labelling of AF .
Then Lab2Mod(L) is a 3-valued stable model of PAF .

Proof. In order to prove Lab2Mod(L) is a 3-valued stable model of PAF we have to verify that Lab2Mod(L)
is a fixed point of Γ∗. We first examine PAF

Lab2Mod(L) (the reduct of PAF under Lab2Mod(L)).
Let A ← not B1, . . . , not Bn be a rule of PAF (corresponding with an argument A that has attackers

B1, . . . , Bn). We distinguish three cases.

1. All B1, . . . , Bn are labelled out by L. Then A is labelled in by L. The reduct of the rule is the
A← t, so in the smallest model of PAF

Lab2Mod(L) , A will be true in Γ∗(Lab2Mod(L)).

2. There is a Bi (1 ≤ i ≤ n) that is labelled in. Then A is labelled out by L. The reduct of the
rule is that A ← v1, . . . , f, . . . , vn (vi ∈ {t, f, u}) which is equivalent to A ← f . Since there is no
other rule with A in the head, this means that in the smallest model of PAF

Lab2Mod(L) , A will be false in
Γ∗(Lab2Mod(L)).

3. Not each B1, . . . , Bn is labelled out by L and there is no Bi (i ≤ i ≤ n) that is labelled in by L.
Then A is labelled undec by L. It also implies that there is at least one Bi labelled undec. Thus the
reduct of the rule is A←, v1, . . . , u, . . . , vn (vi ∈ {t, u}). Since this is the only rule that has A in the
head, A will be undefined in Γ∗(Lab2Mod(L)).

Since for any arbitrary argument A, it holds that Lab2Mod(L)(A) = Γ∗(Lab2Mod(L))(A), it follows that
Lab2Mod(L) = Γ∗(Lab2Mod(L)). Hence Lab2Mod(L) is a fixed point of Γ∗, so Lab2Mod(L) is a 3-valued
stable model of PAF .

When an argumentation framework is transformed into a logic program, and M is a 3-valued stable
model of this logic program, then Mod2Lab(M) is a complete labelling of the original argumentation frame-
work.

Theorem 17. Let AF = (Ar , att) be an argumentation framework andM be a 3-valued stable model of
PAF . Then Mod2Lab(M) is a complete labelling of AF .

Proof. M is a 3-valued stable model of PAF . ThenM is a fixed point of Γ∗, that is Γ∗(M) =M. We now
prove that Mod2Lab(M) is a complete labelling of AF .
Let A be an arbitrary argument in Ar . We distinguish three cases.



1. M(A) = t.
From the fact that Γ∗(M) = M it follows that the reduct of the rule A ← not B1, . . . , not Bn is
equivalent to A← t. This means that each Bi (1 ≤ i ≤ n) is labelled out in Mod2Lab(M). So A is
legally in in Mod2Lab(M).

2. M(A) = f .
From the fact that Γ∗(M) = M it follows that the reduct of the rule A ← not B1, . . . , not Bn

is equivalent to A ← f . This implies that there exists a Bi (1 ≤ i ≤ n) that is labelled in in
Mod2Lab(M). So A is legally out in Mod2Lab(M).

3. M(A) = u.
From the fact that Γ∗(M) = M it follows that the reduct of the rule A ← not B1, . . . , not Bn is
equivalent to A← u. This implies that there exists a Bi (1 ≤ i ≤ n) that is undefined in M and that
each of the Bj (1 ≤ j ≤ n, j 6= i) is either false or undefined in M . Hence, A has no attackers that
is labelled in by Mod2Lab(M) and not all its attackers are labelled out by Mod2Lab(M). Thus A is
legally undec in Mod2Lab(M).

Since this holds for any arbitrary argument A, it follows that each argument that is in is legally in, each
argument that is out is legally out, and each argument that is undec is legally undec. Hence, Mod2Lab(M)
is a complete labelling of AF .

When Lab2Mod and Mod2Lab are restricted to work only on complete labellings and 3-valued stable
models, they turn out to be bijective and each other’s inverse.

Theorem 18. Let AF = (Ar , att) be an argumentation framework.
Let Lab2Modr : {L | L is a complete labelling of AF} → {M | M is a 3-valued stable model of PAF } be
a function defined by Lab2Modr(L) = Lab2Mod(L).
Let Mod2Labr : {M | M is a 3-valued stable of model of PAF } → {L | L is a complete labelling of AF}
be a function defined by Mod2Labr(M) = Mod2Lab(M).
Lab2Modr and Mod2Labr are bijective and are each other’s inverse.

Proof. As every function that has an inverse is bijective, we only need to prove that Lab2Modr and Mod2Labr

are each other’s inverse, meaning that (Lab2Modr)−1 = Mod2Labr and (Mod2Labr)−1 = Lab2Modr. Let
AF = (Ar , att) be an argumentation framework, we prove the following two things:

1. For every complete labelling L of AF it holds that Mod2Labr(Lab2Modr(L)) = L.
Let L be a complete labelling of AF and A ∈ Ar .
If L(A) = in then A is t in Lab2Modr(L), so Mod2Labr(Lab2Modr(L))(A) = in.
If L(A) = out then A is f in Lab2Modr(L), so Mod2Labr(Lab2Modr(L))(A) = out.
If L(A) = undec then A is u in Lab2Modr(L), so Mod2Labr(Lab2Modr(L))(A) = undec.

2. For every 3-valued stable modelM of PAF it holds that Lab2Modr(Mod2Labr(M)) =M.
LetM be a 3-valued stable modelM of PAF .
IfM(A) = t then Mod2Labr(A) = in, so A is t in Lab2Modr(Mod2Labr(M)).
IfM(A) = f then Mod2Labr(A) = out, so A is f in Lab2Modr(Mod2Labr(M)).
IfM(A) = u then Mod2Labr(A) = undec, so A is u in Lab2Modr(Mod2Labr(M)).

From Theorem 18, it follows that complete labellings and 3-valued stable models are one-to-one related.
Since Theorem 9 states that complete extensions and complete labellings are one-to-one related, it follows
that complete extensions, complete labellings and 3-valued stable models are different ways of describing
essentially the same concept.

5 Discussion
In this paper we have shown that complete labellings have a one-to-one correspondence with 3-valued stable
models (Theorem 18). As it was shown earlier that complete extensions have a one-to-one correspondence
with complete labellings (Theorem 9), it directly follows that complete extensions have a one-to-one re-
lationship with 3-valued stable models. The existence of the associated translation functions (Lab2Ext,



Ext2Lab, Lab2Mod and Mod2Lab) implies that complete extensions and 3-valued stable models are differ-
ent ways of expressing essentially the same concept.

Both complete extensions and 3-valued stable models have been used as a basis for describing various
other semantics in abstract argumentation and logic programming. As a result of this, we expect to obtain
a number of established results almost immediately using the results of this paper, like the correspondence
between the grounded extension in abstract argumentation (which is the smallest complete extension) and
the well-founded model in logic programming (which is the smallest 3-valued stable model), as well as
the correspondence between the stable extensions in abstract argumentation and the stable models in logic
programming.

However, the results in this paper also allow for new correspondences to be identified. A topic for further
study would for instance be the possible correspondence between the semi-stable extensions in abstract
argumentation [6] and the L-stable models [10] in logic programming, which once established would allow
for algorithms and complexity results that were found for argumentation under semi-stable semantics to be
applied to logic programming under the L-stable model approach.
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