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Abstract. In this paper, we define a labelling-based justification status of the arguments in
an argumentation framework. Our proposal allows for a more fine-grained notion of a justi-
fication status than the traditional extensions-based approaches. In particular, we are able to
distinguish different levels at which an argument can be accepted or rejected. Our approach is
fully compatible with traditional abstract argumentation in the sense that it works on standard
argumentation frameworks and can be implemented using existing argumentation-based proof
procedures.

1. Introduction

The main concept in Dung’s theory ([12]) is that of an argumentation framework,
which is essentially a directed graph in which the nodes represent arguments and the
arrows represent an attack relation.

Given such a graph, different sets of nodes can be accepted according to various
argument based semantics such as grounded, preferred and stable semantics ([12]),
semi-stable semantics ([10, 21]) or ideal semantics ([13]). Many of these semantics
can be seen as restricted cases of complete semantics; an overview is provided in
Figure 1. The facts that every stable extension is also a semi-stable extension and that
every semi-stable extension is also a preferred extension have been proved in [10].
The facts that every preferred extension is also a complete extension and that the
grounded extension is also a complete extension have been stated in [12]. The ideal
extension is also a complete extension.([13]) So complete extensions can be seen as
the base for describing various other semantics in abstract argumentation.

A different way of defining argumentation semantics than the traditional exten-
sions approach is the labellings approach. Where the extensions approach only iden-
tifies the set of arguments that are accepted, the labellings approach also identifies the
set of arguments that are rejected and the set of arguments that are left undecided. The
concept of argument labellings goes back to work of Pollock ([18]) and of Jakobovits
and Vermeir([15]). However, for current purposes we will use the concept of com-
plete labelling as defined by [5, 8].

Essentially, a complete labelling can be seen as a subjective but reasonable posi-
tion that an agent can take with respect to which arguments are accepted, rejected or
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Figure 1: An overview of the different semantics

undecided. In each such position the agent can use its own position to defend itself
if questioned. It is possible to disagree with a position, but at least the position is
internally coherent. The set of all complete labellings thus stands for all possible and
reasonable positions an agent can take.

In [8], it is stated that complete extensions and complete labellings are one-to-
one related. In essence, complete extensions and complete labellings are different
ways to describe the same concept.

In the current paper we will propose justification statuses of arguments based on
the notion of a complete labelling. One of the main advantages of our proposal is that
it allows for a more fine-grained notion of a justification status than is provided by the
traditional extensions-based approaches. In particular, it allows for six distinct justi-
fication statuses (strong accept, weak accept, strong reject, weak reject, undetermined
border line and determined border line) which correspond with different levels of ac-
ceptance and rejection. Furthermore, our proposal is fully compatible with [12] in the
sense that it works on standard argumentation frameworks and can be implemented
using existing argumentation-based proof procedures.([16, 22])

The remaining part of this paper is organized as follows. We first state some
preliminaries on argument semantics and argument labellings (Section 2). Then we
define the justification status of an argument (Section 3). And describe a software
implementation that is able to compute this status, given an argumentation framework
(Section 4). The connection between our approach and the existing argumentation
semantics is discussed in Section 5. We round off with a discussion on justification
statuses of conclusions in Section 6. We then round up with a discussion of how our
notion of a justification state relates to existing well-known approaches.

2. Argument Semantics and Argument Labellings

In this section, we briefly restate some preliminaries regarding argument seman-
tics and argument-labellings. For simplicity, we only consider finite argumentation
frameworks.
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Definition 1 An argumentation framework is a pair (Ar, att) where Ar is a finite set
of arguments and att C Ar x Ar.

We say that argument A attacks argument B iff (A, B) € att. An argumenta-
tion framework can be represented as a directed graph in which the arguments are
represented as nodes and the attack relation is represented as arrows.

Definition 2 (defense / conflict-free) Let (4r, att) be an argumentation framework,
A € Ar and Args C Ar. Args is conflict-free iff -=4A, B € Args : A attacks B.
Args defends argument A iff VB € Ar: (B attacks A D 3C € Args : C attacks B).
Let F'(Args) = {A | Ais defended by Args}.

We say that a set of arguments Args attacks an argument B iff there exists an
A € Args that attacks B. We write Args™ for the set of arguments that are attacked
by Args.

Definition 3 (acceptability semantics) Let (A4r, att) be an argumentation framework.
A conflict-free set Args C Ar is called an admissible set iff Args C F(Args), and a
complete extension iff Args = F(Args).

The concept of complete semantics was originally stated in terms of sets of ar-
guments. It is equally well possible, however, to express this concept in terms of
argument labellings. In the current paper, we follow the approach of [5, 9] where a
labelling assigns to each argument exactly one label, which can either be in, out or
undec. The label in indicates that the argument is accepted, the label out indicates
that the argument is rejected, and the label undec indicates that the status of the argu-
ment is undecided, meaning that one abstains from an explicit judgment whether the
argument is in or out.!

Definition 4 ([5]) A labelling is a function Lab : Ar — {in, out, undec}.

We write in(Lab) for {A | Lab(A) = in}, out(Lab) for {A | Lab(A) = out}
and undec(Lab) for { A | Lab(A) = undec}. Since a labelling can be interpreted as a
partition of the set of arguments in the argumentation framework, we will sometimes
write a labelling Lab as a triple (in(Lab), out(Lab), undec(Lab)).

The idea of a complete labelling ([5, 9]) is that for a labelling to be reasonable,
one should be able to give reasons for each argument one accepts (all attackers are
rejected), for each argument one rejects (it has at least one attacker that is accepted)
and for each argument one abstains from expressing an explicit opinion about (there

'For instance, an argument that attacks itself (and is not attacked by any other argument) has to be
labelled undec in our approach. If the argument would be labelled in then all its attackers (itself) would
have to be out, and if the argument would be labelled out then it has to have an attacker (itself) that is
in. Hence, the argument cannot be in and cannot be out. The situation here can be compared to the liar
paradox.
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are insufficient grounds to accept it and insufficient grounds to reject it). This is made
formal in the following definition.

Definition 5 ([5]) Let Lab be a labelling of argumentation framework (Ar, att). We
say that Lab is a complete labelling iff for each A € Ar it holds that:

1. If Lab(A) = in then
VB € Ar: (B att A D Lab(B) = out)
2. If Lab(A) = out then
dB € Ar: (B att AN Lab(B) = in).
3. If Lab(A) = undec then
—VB € Ar: (B att A D Lab(B) = out) and
—3dB € Ar: (B att AN Lab(B) = in).

As stated in [5, 9], complete labellings coincide with complete extensions in the
sense of [12].

Theorem 1 ([5]) Let AF = (Ar, att) be an argumentation framework.

1. If Lab is a complete labelling, then Lab2Ext(Lab) is a complete extension
(where Lab2Ext(Lab) = in(Lab))

2. If Args is a complete extension, then Ext2Lab(.Args) is a complete labelling
(where Ext2Lab(Args) = (Args, Args™, Ar\(Args U Args™)))

Moreover, when restricted to complete labellings and complete extensions, the func-
tions Lab2Ext and Ext2Lab become bijections and each others inverses.

Theorem 1 implies that complete labellings and complete extensions are one-to-
one related. In essence, a complete extension can be seen as the in-labelled part of a
complete labelling. ([5, 9])

Before we proceed, we state two propositions that are used in the remaining parts
of this paper.

Proposition 1 Let AF' = (A4r, att) be an argumentation framework and A € 4r. A
is in at least one complete extension iff it is in at least one admissible set.

The validity of Proposition 1 can be seen as follows. Since every complete ex-
tension is also an admissible set, it follows that if A is in a complete extension, it is
also in an admissible set. Furthermore, if A is in an admissible set, then from [12] it
follows that A is also in a preferred extension, and every preferred extension is also
a complete extension.

Proposition 2 Let AF = (Ar, att) be an argumentation framework and A € 4r. A
is in all complete extensions iff A is in the grounded extension.

The validity of Proposition 2 can be seen as follows. Since the grounded ex-
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tension is a complete extension, it follows that if an argument is in every complete
extension, it is also in the grounded extension. Furthermore, since the grounded ex-
tension is the smallest complete extension, it follows that if an argument is in the
grounded extension, it is also in every complete extension.

3. Justification Statuses of Arguments

In this section we first define the justification statuses of arguments. Then we
provide procedures to determine them. Intuitively, the justification status of an argu-
ment consists of the set of labels that could reasonably be assigned to the argument.

Definition 6 Let AF = (Ar,att) be an argumentation framework and A € 4r.
The justification status of A is the outcome yielded by the function JS : Ar —
glimout,undec} gych that 7S(A) = {Lab(A) | Lab is a complete labelling of AF'}.

Given the above definition, one would expect there to be eight (2%) possible jus-
tification statuses, one for each subset of {in, out, undec}. However two of these
subsets turn out not to be possible. First of all, it is not possible for a justifica-
tion status to be (), because there always exists at least one complete labelling (the
grounded labelling ([5])). Furthermore, it is also impossible for a justification status
to be {in, out}, because when in and out are both included in the justification status,
then undec should also be included, as is stated by the following theorem.

Theorem2 Let AF = (Ar, att) be an argumentation framework and A € Ar. If AF
has two complete labellings Lab; and Labs such that Lab;(A) = in and Laba(A) =
out then there exists a complete labelling Labs such that Labs(A) = undec.

Proof Let CE; = Lab2Ext(Laby) and C'Ey = Lab2Ext(Laby). From Theorem
3 of [5] it follows that CFy and C' Es are complete extensions of AF. Let GE be
the grounded extension of AF. From [12] it follows that G E is the intersection of all
complete extensions of AF'. From Labs(A) = out, it follows that A ¢ C'E5 which
implies that A ¢ GE. From Lab;(A) = in, it follows that VB € Ar.(BattA D
Laby(B) = out). Therefore, VB € Ar.(BattA > B ¢ GE). So A ¢ GE™.
Let Labs = Ext2Lab(GE). GE is a complete extension, so Labs is a complete
labelling. Since A ¢ GE and A ¢ GE™, it holds that A € Ar\(GE UGE™). So
Labs(A) = undec. O

Since () and {in, out} are not possible as justification statuses, there are only 6
possible statuses left to be considered: {in}, {out}, {undec}, {in, undec}, {out, undec}
and {in, out, undec}. We now examine under which conditions these justification
statuses occur.

First, we examine the conditions under which the justification status is {in}.
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Theorem 3 Let AF' = (Ar, att) be an argumentation framework and A € Ar. Then
JS(A) = {in} iff A is in the grounded extension.

Proof “=": Suppose JS(A) = {in}. Then A is labelled in by every complete
labelling (Definition 6), so A is an element of each complete extension (Theorem 1)
so A is in the grounded extension (Proposition 2).

“«<": Similar as above, but the other way around. O

Next, we examine the conditions under which the justification status is {out}.

Theorem 4 Let AF = (Ar, att) be an argumentation framework and A € Ar. Then
JS(A) = {out} iff A is attacked by the grounded extension.

Proof “=": Suppose JS(A) = {out}. Then A is labelled out by every complete
labelling (Definition 6). So in every complete labelling, there exists at least one at-
tacker of A that is labelled in by this labelling (Definition 5). So every complete
extension contains at least one attacker of A (Theorem 1). So also the grounded ex-
tension also contains an attacker of A. So A is attacked by the grounded extension.

“«<": Similar as above, but the other way around. g

Next, we examine the conditions under which the justification status is {undec}.

Theorem 5 Let AF = (Ar, att) be an argumentation framework and A € Ar. Then
JS(A) = {undec} iff

1. A is not in any admissible set and
2. A is not attacked by any admissible set

Proof “=": Suppose JS(A) = {undec}. Then it holds that (1) A is not labelled
in by any complete labelling and (2) A is not labelled out by any complete labelling.
From (1) it follows that A is not an element of any complete extension (Theorem 1)
so A is not an element of any admissible set (Proposition 1). From (2) it follows that
no attacker of A is labelled in by any complete labelling (Definition 5) so no attacker
of A is in any complete extension (Theorem 1) so no attacker of A is in any admis-
sible set (Proposition 1) so A is not attacked by any admissible set. Notice that in
this proof, we did not use the fact that A is labelled undec by at least one complete
labelling, which after all is implied by (1) and (2) together with Theorem 2.

“«<=": Suppose that (1) A is not in any admissible set and (2) A is not attacked by any
admissible set. From (1) it follows that A is not in any complete extension (Propo-
sition 1) so A is not labelled in by any complete labelling (Theorem 1). From (2) it
follows that no attacker of A is in any admissible set, so no attacker of A is in any
complete extension (Proposition 1) so no attacker of A is labelled in by any complete
labelling (Theorem 1) so A is not labelled out by any complete labelling (Definition
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5). This, together with the earlier observed fact that A is not labelled in by any com-
plete labelling implies that A is labelled undec by every complete labelling. Due to
the fact that there always exists at least one complete labelling (since there always
exists at least one complete extension), this implies that 7S = {undec}. U

Next, we examine the conditions under which the justification status is {in, undec}.

Theorem 6 Let AF = (Ar, att) be an argumentation framework and A € Ar. Then
JS(A) = {in, undec} iff

1. Ais not in the grounded extension,
2. Ais in an admissible set, and
3. A is not attacked by any admissible set.

Proof “=": Suppose JS(A) = {in, undec}. Then A is labelled in by at least one
complete labelling, A is labelled undec by at least one complete labelling and there
exists no complete labelling that labels A out.

From the fact that A is labelled undec in at least one complete labelling it follows
that there exists at least one complete extension that does not contain A (Theorem 1).
So A is not in the grounded extension (Proposition 2).

From the fact that A is labelled in by at least one complete labelling it follows that A
is contained in at least one complete extension (Theorem 1) and that therefore A is in
at least one admissible set (Proposition 1).

From the fact that there exists no complete labelling that labels A out it follows (Def-
inition 5) that for all arguments B that attack A, B is not labelled in by any complete
labelling. Therefore, no argument B that attacks A is contained in any complete ex-
tension (Theorem 1). Therefore, no argument B that attacks A is in any admissible
set (Proposition 1). That is, A is not attacked by any admissible set.

“«<": Suppose that (1) A is not in the grounded extension, (2) A is in an admissible
set and (3) A is not attacked by any admissible set.

From (2) it follows that A is in a complete extension (Proposition 1) so A is labelled
in by a complete labelling (Theorem 1).

From (3) it follows that no admissible set contains an attacker of A so also no com-
plete extension contains any attacker of A (Proposition 1). So no complete labelling
labels any attacker of A in (Theorem 1), so A is not labelled out by any complete
labelling (Definition 5).

From (1) it follows that there exists a complete labelling where A is not labelled in
(Proposition 2 and Theorem 1). This, together with the earlier observed fact that A
is not labelled out by any complete labelling, implies that A is labelled undec by at
least one complete labelling. O

Next, we examine the conditions under which the justification status is {out, undec}.
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Theorem 7 Let AF' = (Ar, att) be an argumentation framework and A € Ar. Then
JS(A) = {out, undec} iff

1. Aisnot in any admissible set,
2. A is attacked by an admissible set, and
3. A is not attacked by the grounded extension.

Proof “=": Suppose JS(A) = {out,undec}. Then (1) there exists no complete
labelling that labels A in, (2) there exists a complete labelling that labels A out and
(3) there exists a complete labelling that labels A undec.

From (1) it follows that A is not an element of any complete extension (Theorem 1)
so A is not an element of any admissible set (Proposition 1).

From (2) it follows that A is attacked by at least one complete extension (Theorem 1)
so A is attacked by at least one admissible set (Proposition 1).

From (3) it follows that there exists a complete labelling where A is not labelled out,
so where none of the attackers of A are labelled in (Definition 5). Tt then follows that
there exists a complete extension that contains none of the attackers of A (Theorem
1). So none of the attackers of A are contained in the grounded extension (Proposition
2) so A is not attacked by the grounded extension.

“«<": Suppose that (1) there exists no admissible set that contains A, (2) there is an
admissible set that attacks A, and (3) A is not attacked by the grounded extension.
From (1) it follows that A is not an element of any complete extension (Proposition
1), so A is not labelled in by any complete labelling (Theorem 1).

From (2) it follows that A is attacked by a complete extension (Proposition 1) so A is
labelled out by at least one complete labelling (Theorem 1).

From (3) it follows that no attacker of A is in the grounded extension. This implies
that there exists a complete extension that does not contain any attacker of A (Propo-
sition 2). So there exists a complete labelling where no attacker of A is labelled in
(Theorem 1), so where A is not labelled out (Definition 5). This, together with the
earlier observed fact that A is not labelled in by any complete labelling, implies that
A is labelled undec by at least one complete labelling. U

Next, we examine the conditions under which the justification status is {in, out, undec}.

Theorem 8 Let AF = (Ar, att) be an argumentation framework and A € Ar. Then
JS(A) = {in, out, undec} iff

1. Ais in an admissible set

2. A is attacked by an admissible set

Proof “=": Suppose JS(A) = {in,out,undec}. Then (1) A is labelled in by
at least one complete labelling and (2) A is labelled out by at least one complete
labelling.
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From (1) it follows that A is an element of at least one complete extension (Theorem
1) so A is an element of at least one admissible set (Proposition 1).

From (2) it follows that there is a complete labelling that labels an attacker of A in
(Definition 5). Therefore there exists a complete extension that contains an attacker
of A (Theorem 1), so there exists an admissible set that contains an attacker of A
(Proposition 1). That is, A is attacked by an admissible set.

“«<": Suppose (1) there exists an admissible set that contains A and (2) there exists
an admissible set that contains an attacker of A.

From (1) it follows that there exists a complete extension that contains A (Proposition
1). so there exists a complete labelling that labels A in (Theorem 1).

From (2) it follows that there exists a complete extension that contains an attacker of
A (Proposition 1), so there exists a complete labelling that labels an attacker of A in
(Theorem 1), so there exists a complete labelling where A is labelled out.

From the fact that there exists a complete labelling that labels A in and there exists
a complete labelling that labels A out it follows that there also exists a complete
labelling that labels A undec (Theorem 2). (|

From the above theorems, it follows that membership of an admissible set and
membership of the grounded extension, of the argument itself and of its attackers, is
sufficient to determine the argument’s justification status. The overall procedure of
doing so is shown in Figure 2.

in grounded?
wo|  ve—{in}
attacked by grounded?
Nol e {ou}
in admissible?
No Yes

attacked by admissible? attacked by admissible?

No Yes No Yes
{undec} {out,ﬁec} {in, undec} {in, out, undec}

Figure 2: determining the justification status of an argument

4. An Implementation

We now demonstrate the applicability of the theory developed in the previous
sections by describing our software implementation of it.?

2 Authored by Mikolaj Podlaszewski. And available online at http://argulab.uni.lu/.
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In order to determine the justification status of an argument, our implementa-
tion follows the procedure of Figure 2. To determine whether an argument is in the
grounded extension, the algorithm described in [16] is used. This algorithm is subse-
quently run for the argument’s attackers in oder to determine whether the argument
is attacked by the grounded extension. To determine whether an argument is in an
admissible set, the algorithm described in [6, 22] is used. This algorithm is subse-
quently run for the argument’s attackers in order to determine whether the argument
is attacked by an admissible set.

The software can determine the justification statuses, and is able to defend them
by entering the applicable discussion game with the user. Since the software can be
expected to compute the correct justification status, the game is such that in the end
the software always wins from the user. Hence, the software is able to explain why
its answer is correct, by entering a discussion with the user. Again, to the best of
our knowledge, the current simulator is the first implementation of labelling-based
justification statuses.

Our software has an easy to use graphical interface. Argumentation frameworks
are displayed as graphs and arguments are labelled according to the labelling cho-
sen by users, or according to the output of the software (given a particular seman-
tics). The software consists of several components which (under GPL) could be
re-applied in other argumentation software. Hence, someone implementing, say, an
argumentation-based on-line discussion forum could apply some of our components
to provide a snapshot of, for instance, the justification status of a set of arguments
given a particular state of the discussion.

5. Labelling-Based Justification Statuses vs. Existing Argumentation
Semantics

In this paper, we have presented the justification statuses of arguments which
indicate whether an argument has to be accepted, can be accepted, has to be rejected,
can be rejected, etc. We then provided some concrete guidelines for determining these
justification statuses, as well as for defending them using discussion games.

We use this labelling-based approach for computing the justification statuses of
arguments because it tends to yield more informative answers than the traditional
extension-based approaches.

Consider the example in Figure 3. A possible interpretation would be as follows:

A: Carole hates David according to Alice.

B: Carole does not know David according to Bob.

C: Carole says that David is not reliable.

D: David is trustworthy, since he has a general reputation of being so.
Grounded semantics treats all arguments (A, B, C and D) the same (they are not
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[ ] :
{in, out, undec} A % {in, out, undec}

C {out, undec}

S

{iin, undec}

Figure 3: An example

labelled in in the grounded labelling). Credulous preferred semantics treats A, B
and D the same (they are labelled in in at least one preferred labelling). Sceptical
preferred semantics treats A, B and C the same (they are not labelled in in some
preferred labellings). Also ideal semantics treats all arguments the same (they are not
in the ideal extension).

However, our labelling-based approach for computing the justification status of
an argument allows for a more fine grained distinction between arguments. According
to the hierarchy of the justification statuses in Figure 4, argument D is the strongest,
argument C' is the weakest, A and B are in between. Unlike sceptical preferred se-
mantics, our labelling approach does not make D completely justified although it does
give it a relatively strong status.

{in}

{in, undec}

7N

{iin, out, undec} {undec}

N

{out, undec}

{out}

acceptance

rejection

Figure 4: The hierarchy of justification statuses

We will refer to the justification status {in} as strong accept, to {in, undec} as
weak accept, to {in, out, undec} as undetermined borderline, to {undec} as deter-
mined borderline, to {out, undec} as weak reject and to {out} as strong reject.

We now study some of the connections between our notion of justification status
and a number of existing approaches. In particular, we examine the connection with
grounded semantics ([12]), credulous preferred semantics ([22]), sceptical preferred



Yining Wu, Martin Caminada / A Labelling-Based Justification Status of Arguments 23

semantics ([11]), semi-stable semantics ([10]) and ideal semantics ([13]).

Proposition 3 Let (Ar, att) be an argumentation framework and A € Ar.

1. A is in the grounded extension iff it is strongly accepted

2. A is in at least one preferred extension iff A is strongly accepted, weakly ac-
cepted, or undetermined borderline.

3. if A is in every preferred extension then A is strongly or weakly accepted

4. if A is strongly accepted then A is in every semi-stable extension
if A is weakly accepted then A is in at least one semi-stable extension

5. A is in an ideal set iff A is member of an admissible set consisting only of
strongly or weakly accepted arguments.

The validity of point 1 follows directly from Theorem 3. The validity of point 2
follows from the fact that an argument is in a preferred extension iff it is in a complete
extension, and therefore labelled in by a complete labelling. The validity of point 3
follows from the fact that sceptical preferred rules out all justification statuses con-
taining out (strong reject, weak reject and undetermined borderline) as well as the
justification status {undec} (determined borderline), which means only {in} (strong
accept) and {in, out} (weak accept) remain. The validity of point 4 follows from
Theorem 5 of [10]. The validity of point 5 requires some more explanation, which
will be provided in the appendix.

The labelling-based approach for determining justification statuses is somewhat
similar to the approach described in [3]. However, in [3] the authors do not specify a
concrete semantics with which to apply their approach to, and as a result of this, they
do not provide any procedures regarding how to determine the justification status of
an argument.

In our current implementation, we have used the discussion game of [6, 22] to
determine membership of an admissible set, and the discussion game of [7, 16, 20] to
determine membership of the grounded extension. An alternative would be to use the
algorithm of [23], which determines both of these memberships in a single pass. Since
our notion of justification status depends only on membership of an admissible set and
membership of the grounded extension, one is free to apply any kind of algorithm that
can determine these.

6. A Labelling-Based Justification Statuses of Conclusions

So far we only talked about justification statuses of arguments. However, what
matters often are the conclusions of these arguments. In this section we will treat
a possible approach for defining justification statuses of conclusions. If A is an ar-
gument then following the ASPIC formalism([1, 4, 17]) we write Conc(A) for the
conclusion of A. Every argument is assumed to have exactly one conclusion which is
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essentially a formula in some logical language.([1, 4, 17]) It is possible for different
arguments to have the same conclusion.
We first define the notion of a conclusion labelling.

Definition 7 Let £ be a logical language. A conclusion labelling is a function
ConcLab : L — {in, out, undec}

The next step is to define how to convert an argument labelling (ArgLab) into a
conclusion labelling (ConcLab). For this we use a function ArgLab2ConcLab. Ba-
sically, the idea is to associate each conclusion with the label of the best possible
argument that is able to produce this conclusion.> So if there are three arguments
A1, Az and A3 with conclusion ¢, where ArgLab(A;) = in, ArglLab(A3) = out
and ArgLab(As) = undec, then ConcLab(c) = in, since the best argument with
conclusion ¢ (A1) is labelled in. Similarly, if there are three arguments By, Bo
and Bs with conclusion d, where ArgLab(B;) = out, ArgLab(B2) = undec and
ArgLab(Bs) = out. Then ConcLab(d) = undec, since the best argument with con-
clusion d (Bs) is labelled undec. If for a particular conclusion, there is no argument
at all that produces it, then the conclusion is given the lowest possible label (out).
Formally, the translation from an argument labelling to a conclusion labelling can be
defined as follows.

Definition 8 Let AF' = (Ar,att) be an argumentation framework whose conclu-
sions belong to logical language L. Let ArgLabs be the set of all argument labellings
of AF and ConcLabs be the set of all conclusion labellings of £. We define a function
ArgLab2ConcLab : ArgLabs — ConcLabs such that, given a labelling ArgLab of
AF, the associated conclusion labelling ConcLab = ArgLab2ConcLab(ArgLab) is
such that for every ¢ € L itholds that ConcLab(c) = max({ArgLab(A) | Conc(A) =

c} U {out}).

We say that a conclusion labelling ConcLab is a complete conclusion labelling of
AF iffthere exists a complete argument labelling ArgLab of AF such that ConcLab =
ArgLab2ConcLab(ArgLab). This then allows us to define the justification status of
a conclusion as the set of labels that can reasonably be assigned to it.

Definition 9 Let AF' = (Ar,att) be an argumentation framework whose conclu-
sions belong to logical language £ and ¢ € L. The justification status of c is the out-
come yielded by the function ConcJ S : £ — 2tinoutundect gych that Cone 7 S(c) =
{ConcLab(c) | ConcLab is a complete conclusion labelling of AF'}.

To illustrate the usefulness of justification statuses of conclusions, consider the
following two examples. *

3We assume the labels to be ordered such that in > undec > out.
“Example 1 and Example 2 are taken from [19].
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Example 1

A: Brygt Rykkje is Dutch since he was born in Holland.

B: Brygt Rykkje is Norwegian since he has a Norwegian name.
C: Brygt Rykkje likes ice skating since he is Norwegian.

D: Brygt Rykkje likes ice skating since he is Dutch.

Example 2

A: John says that the suspect stabbed the victim.

B: Bob says that the suspect shot the victim.

C: The suspect killed the victim since Bob says that the suspect shot the victim.

D: The suspect killed the victim since John says that the suspect stabbed the victim.

In Example 1, if we assume that a person cannot be Dutch and Norwegian at
the same time, then arguments A and B attack each other. Furthermore, argument A
attacks argument C' and argument B attacks argument D). Similarly, in Example 2, if
we assume that a person can only be killed once, then arguments A and B attack each
other. Furthermore, also in Example 2, argument A attacks argument C' and argument
B attacks argument D. In essence, the two examples share the same argumentation
framework illustrated in Figure 5. °

ce® D
e "o
A B

Figure 5: Floating Conclusion

Despite the fact that the two examples share the same formalization (the argu-
mentation framework of Figure 5), in Example 1 it seems that the fact that Brygt
Rykkje likes ice skating is a reasonable conclusion, whereas in Example 2 the fact
that the suspect is guilty seems to be lacking sufficient support, at least from the per-
spective of a judge having to reach a verdict on the case. °

Let us now consider how this situation is handled by our approach of conclusion-
based justification statuses. We first observe that in each of the examples argument C'
and D have the same conclusion (say conclusion c). For the argumentation framework
of Figure 5, one can distinguish three different complete argument labellings:

Arglaby = ({4, D},{B,C},0),

ArgLaby = ({B,C},{A, D},0),

°In essence, the two examples can be seen as instances of floating conclusions in the sense of [14, 19].
®The situation where the same formalization has two different interpretations with opposite desirable
outcomes called a mirror example in [7].
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ArgLabs = (0,0,{A, B,C, D}).

Using the function ArgLab2ConcLab, one can then identify three different complete
conclusion labellings (where a is the conclusion of A and b is the conclusion of B).

ConcLaby = ({a,c}, {b},0),

ConcLaby = ({b,c},{a},0),

ConcLabs = (0,0,{a,b, c}).

Hence, the justification status of conclusion ¢ is {in, undec} (weak accept), even
though the two arguments that produce conclusion ¢ (C and D) each have a justi-
fication status {in, out, undec} (undetermined borderline). Thus, our approach of
justification statuses makes floating conclusion weakly accepted but not strongly ac-
cepted.

Whether or not weak accept is sufficient to endorse a conclusion depends on
the particular domain of reasoning. In criminal law, for instance, what matters is
the suspect should be guilty beyond reasonable doubt. This can be interpreted as
requiring that in every reasonable position that one can take given the information
that is available (that is, in every complete labelling of the argumentation framework)
the fact that the suspect is guilty is a valid conclusion (that is, there exists an accepted
argument (labelled in) for the conclusion that the suspect is guilty). This condition is
not fulfilled in the above example. Therefore the conclusion that the suspect is guilty
should not be endured, at least not from legal perspective.

Whether or not a conclusion is endorsed depends to a great extent on the proof
standard ([2]) being applied. When deciding whether to take a friend to the ice rink or
the cinema (Example 1), weak accept might be sufficient. However, when deciding
whether or not to put someone in jail (Example 2), one may really require strong
accept before doing so. In our approach, the system simply states how strongly each
statement is accepted (or rejected). And it is up to the user to decide whether this
level is sufficient to act upon. The general attitude of the labellings approach is: “we
report, you decide”.

Appendix

An ideal set in the sense of [13] is an admissible set that is a subset of each
preferred extension. It has been obtained that one can also describe an ideal set as
an admissible set that is not attacked by any admissible set (Theorem 3.2 of [13]).
This clears the way for proving the following lemma (which is in essence point 5 of
Proposition 3).

Lemma 1 Let (47, att) be an argumentation framework and Args C Ar. Args is
an admissible set that is not attacked by any admissible set iff Args is an admissible
subset of {A | TS(A) = {in}} U{A | JS(A) = {in, undec}}
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Proof “=": Let Args be an admissible set that is not attacked by any admissible
set. Let A € Args. From the fact that A is in an admissible set (and therefore also on a
complete extension) it follows that A is labelled in in at least one complete labelling.
From the fact that Args is not attacked by any admissible set, it follows that A is
not attacked by any preferred extension and therefore not attacked by any complete
extension. Hence, A is not labelled out by any complete labelling. This, together
with the earlier observed fact that A is labelled in by at least one complete labelling
implies that A € {A | JS(A) = {in}} U{A | TS(A) = {in, undec}}.

“«<": Let Args be an admissible subset of {4 | JS(A) = {in}} U{A | TS(4) =
{in, undec}}. Suppose that Args is attacked by an admissible set. That is, there is an
argument A € Args that is attacked by an admissible set. Then A is also attacked by a
complete extension (since every admissible set is contained in a preferred extension,
which is also a complete extension). This means that A is labelled out in at least one
complete labelling. So A & {A | JS(A) = {in}} U{A | TS(A) = {in, undec}}.
Contradiction. O

So our labelling-based approach for defining justification statuses not only al-
lows us to identify whether an argument is accepted according to grounded or cred-
ulous preferred semantics, it also helps to identify whether an argument is accepted
according to ideal semantics. It is in an ideal set iff one can build an admissible set
around it that consists only of strongly or weakly accepted arguments.
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