
Well-Founded semantics for Semi-Normal Extended Logic Programs

Martin Caminada∗

Utrecht University

Abstract

In this paper we present a new approach for apply-
ing well-founded semantics to extended logic programs.
The main idea is not to fundamentally change the def-
inition of well-founded semantics (as others have at-
tempted) but rather to define a few restrictions on the
content of the extended logic program, that make it pos-
sible to apply “traditional” well-founded semantics in a
very straightforward way.

Introduction
Well-founded semantics (van Gelder, Ross, & Schlipf 1991)
has originally been stated as an alternative for stable model
semantics in normal logic programs. Due to its skeptical na-
ture, it has sometimes been regarded as an easily computable
lower bound for the more credulous stable model seman-
tics. At the same time, well-founded semantics avoids some
of the problems of stable model semantics, in which rela-
tively small pieces of information (like a rule a ← not a)
can cause the total absence of stable models.

With the emergence of extended logic programming (Gel-
fond & Lifschitz 1991), several researchers have attempted
to apply well-founded semantics to extended logic pro-
grams (Sakama 1992; Brewka 1996). The introduction of
strong negation, however, introduces additional problems
not present in normal (non-extended) logic programming.
In this paper, we approach the issue of how to apply well-
founded semantics for extended logic programs not by giv-
ing another complex and advanced specification of what
well-founded semantics for extended logic programs should
look like, but instead we state a few restrictions on the con-
tent of the extended logic programs. We then show that un-
der these restrictions, a relatively simple and straightforward
definition of well-founded semantics yields a decent and un-
problematic well-founded model.

Basic Definitions
A program considered in this paper is en extended logic pro-
gram (ELP) (Gelfond & Lifschitz 1991) containing rules
with weak as well as strong negation.

∗This work has been supported by the EU ASPIC project.

definition 1. An extended logic program P is a finite set of
clauses of the form:

c ← a1, . . . , an, not b1, . . . , not bm(n ≥ 0, m ≥ 0)

where each c, ai and bj is a positive/negative literal and
not stands for negation as failure. In the above rule,
bj(1 ≤ j ≤ m) is called a weakly negated literal. The
literal c is called the head of the rule, and the conjunction
a1, . . . , an, not b1, . . . , not bm is called the body of the rule.
A rule is called strict iff it contains no weakly negated liter-
als (that is, if m = 0), otherwise, the rule is defeasible.

Notice that the head of a rule is never empty, although the
body can be empty. If l is a literal, then we identify ¬¬l
with l. If P is an extended logic program, then strict(P )
stands for the set of strict rules in P , and defeasible(P )
stands for the set of defeasible rules in P .

The closure of a set of strict rules consists of all literals
that can be derived with it, as is stated in the following defi-
nition.
definition 2. Let S be a set of strict rules. We define Cl(S)
as the smallest set of literals such that if S contains a rule
c← a1, . . . , an and a1, . . . , an ∈ Cl(S) then c ∈ Cl(S).

If S is a set of strict rules and L a set of literals, then we
write Cl(S ∪ L) as an abbreviation of Cl(S ∪ {l ← | l ∈
L}).
definition 3. We say that a set of literals L is consistent iff L
does not contain a literal l and its negation ¬l. We say that
a set of strict rules S is consistent iff Cl(S) is consistent.

The idea of P L (the Gelfond-Lifschitz reduct of a logic
program P under a set of literals L) is to remove each rule
from P that is “defeated” by L (that is, to remove each
rule containing a weakly negated literal in L) and then from
the remaining rules to remove all remaining occurrences of
weak negation.
definition 4. Let P be an extended logic program and let
L be a set of literals. We define P L as {c← a1, . . . , an |
c← a1, . . . , an, not b1, . . . , not bm ∈ P (n, m ≥ 0) and
¬∃bj(1 ≤ j ≤ m) : bj ∈ L}.

Well-founded semantics (van Gelder, Ross, & Schlipf
1991) is a concept originally proposed for non-extended
logic programs. As its original description is quite com-
plex, we will use the following definition instead (inspired
by (Brewka 1996)).



definition 5. Let P be an extended logic program and L be a
set of literals. We define γ(L) (the standard stable operator)
as Cl(P L). We define Γ(L) as γ(γ(L)). The well-founded
model of P is the smallest fixpoint of Γ.

The Problem
Well-founded semantics (WFS) has been applied success-
fully in non-extended logic programs (Dix 1995a; 1995b).
Applying WFS for extended logic programs, however, intro-
duces the problem that the well-founded model is not guar-
anteed to be consistent. Consider the following example,
taken from (Caminada & Amgoud 2005).
example 1.
“John wears something that looks like a wedding ring.”
“John parties with his friends until late.”
“Someone wearing a wedding ring is usually married.”
“A party-animal is usually a bachelor.”
“A married person, by its definition, has a spouse.”
“A bachelor, by definition, does not have a spouse.”
These sentences are represented by the program P :
r ← p ←
m ← r, not¬ m b ← p, not¬ b
hs ← m ¬hs ← b .

For example 1, applying the unaltered version of WFS
yields a well-founded model of {r, p, m, b, hs,¬hs}, which
is inconsistent.

To cope with this problem, many approaches have been
stated. Brewka, for instance, proposes to define the function
Γ(L) not as γ(γ(L)) but as γ(Cn(γ(L))), where Cn(L) is
L if L is consistent, or Lit if L is not consistent (Brewka
1996). Another approach would be to apply paraconsistent
reasoning, as for instance has been done in (Sakama 1992).

An alternative approach would be not to redefine the se-
mantics of an ELP, but instead to state some additional con-
ditions on the content of the extended logic program. The
above example, for instance, would yield a perfectly ac-
ceptable outcome if the rules ¬m ← ¬hs and ¬b ← hs

were added (which are essentially the contraposed versions
of hs ← m and ¬hs ← b). In that case, the well-founded
model would be {r, p}. This approach would be quite sim-
ilar to the work that Caminada and Amgoud have done in
the field of formal argumentation, where similar difficulties
occur (Caminada & Amgoud 2005).

Logic Programming as Argumentation
In this section, we will state some theory that allows us to
link logic programming to formal argumentation. Using this
theory, we will be able to apply the solution of (Caminada
& Amgoud 2005) in the context of extended logic program-
ming.

The first thing to do is to define the set of arguments and
the defeat relation, given an (extended) logic program P .
We choose a form of arguments that is different from (Dung
1995) and better suited to our purpose.
definition 6. Let P be an extended logic program.

• An argument A based on P is a finite tree of
rules from P such that each node (of the form
c← a1, . . . , an, not b1, . . . , not bm with n ≥ 0 and m ≥
0) has exactly n children, each having a different head
ai ∈ {a1, . . . , an}. The conclusion of A (Conc(A)) is the
head of its root.

• We say that an argument A1 defeats an argument A2 iff
A1 has conclusion c and A2 has a rule containing notc.

We define Arguments
P

as the set of arguments that can be
constructed using P , and DefeatP as the defeat relation un-
der P . Let Args ⊆ ArgumentsP . We define Concs(Args)
as {Conc(A) | A ∈ Args}.

We say that argument A is a subargument of argument B
iff A is a subtree of B. We say that argument A is a direct
subargument of argument B iff A is a subtree of B and there
does not exist an argument C such that C 6= A, C 6= B, C
is a subtree of B, and A is a subtree of C.
definition 7. We say that:

• a set of arguments Args is conflict-free iff Args does not
contain two arguments A and B such that A defeats B

• a set of arguments Args defends an argument A iff for
each argument B that defeats A, Args contains an argu-
ment C that defeats B.

definition 8. Let Args be a set of arguments. We define
f(Args) as {A | Args does not contain an argument that
defeats A} and F (Args) as f(f(Args)).

F (Args) can be seen as the set of arguments that are de-
fended by Args (Dung 1995).
lemma 1. Let P be an extended logic program and let E be
the smallest fixpoint of F under P . E is conflict-free.

Proof. As E is the smallest fixpoint of F under P , it holds
that (Dung 1995) E = ∪∞

i=0F
i(∅). Suppose that E is not

conflict-free. As F is a monotonic function and F 0(∅) = ∅,
there must be some smallest i (i ≥ 0) such that F i(∅) is
conflict-free but F i+1(∅) is not conflict-free. From defini-
tion 7 it then follows that F i+1(∅) contains two arguments A
and B such that A defeats B. The fact that A defeats B and
B ∈ F i+1(∅) means that there is an argument C ∈ F i(∅)
that defeats A. The fact that C defeats A and A ∈ F i+1(∅)
means that there is an argument D ∈ F i(∅) that defeats
C. But then F i(∅) would not be conflict-free. Contradic-
tion.

The following property follows from definition 6 and 2.
property 1. Let S be a set of strict rules and l be a literal.
It holds that l ∈ Cl(S) iff there exists an argument A, based
on S, such that Conc(A) = l.

The following property follows from definition 4 and 6.
property 2. Let P be an extended logic program and L be
a set of literals. There exists an argument A, based on P L,
with Conc(A) = l iff there exists an argument B, based
on P , with Conc(B) = l, such that B does not contain a
weakly negated literal k ∈ L.

The function γ is actually quite similar to the function f ,
as is stated in the following theorem.



theorem 1. Let L be a set of literals and Args be a
set of arguments. If L = Concs(Args) then γ(L) =
Concs(f(Args)).

Proof. We need to prove two things:

1. γ(L) ⊆ Concs(f(Args))
Let l ∈ γ(L). This, by definition 5, means that l ∈
Cl(P L). From property 1 it follows that there exists an ar-
gument (A), based on P L, with Conc(A) = l. Then, ac-
cording to property 2, there exists an argument (B), based
on P , with Conc(B) = l, such that B does not contain a
weakly negated literal k ∈ L. As L = Concs(Args),
the argument B is not defeated by Args. Therefore,
B ∈ f(Args). As B has conclusion l it holds that
l ∈ Concs(f(Args))

2. Concs(f(Args)) ⊆ γ(L)
Let l ∈ Concs(f(Args)) ⊆ γ(L). This means that
f(Args) contains some argument (say B) with conclusion
l. That is, there exists an argument (B) with conclusion
l that is not defeated by Args . From property 2 it then
follows that there exists an argument A, based on P L (as
L = Concs(Args)), with Conc(A) = l. This, by prop-
erty 1, means that l ∈ Cl(P L), which by definition 5
means that l ∈ γ(L).

The following theorem states that the well-founded
model of a program P coincides with the conclusions
of the grounded extension (Dung 1995) of the argument-
interpretation of P .
theorem 2. Let P be an extended logic program. The
grounded extension GE of 〈ArgumentsP ,DefeatP 〉 coin-
cides with the smallest fixpoint (WFM) of Γ. That is:
concs(GE) = WFM .

Proof. From theorem 1 it follows that, if L = Concs(Args),
then γ(γ(L)) = Concs(f(f(Args))), so Γ(L) =
Concs(F (L)). Therefore, the smallest fixpoint of Γ is equal
to the conclusions of the smallest fixpoint of F , which is the
grounded extension.

Semi-Normal Extended Logic Programs
In this section, we define some restrictions on an extended
logic program. An extended logic program that satisfies
these restrictions is called a semi-normal extended logic pro-
gram (a term inspired by semi-normal default theories). We
then show that a semi-normal extended logic program avoids
problems like illustrated in example 1 by always having a
consistent well-founded model.
definition 9. Let s1 and s2 be strict rules. We say that s2 is
a transposition of s1 iff:
s1 = c← a1, . . . , an and
s2 = ¬ai ← a1, . . . , ai−1,¬c, ai+1, . . . , an for some 1 ≤ i ≤ n.

The intuition behind transposition can be illus-
trated by translating a strict rule c← a1, . . . , an
to a material implication c ⊂ a1 ∧ · · · ∧ an.
This implication is logically equivalent to

¬ai ⊂ a1 ∧ · · · ∧ ai−1 ∧ ¬c ∧ ai+1 ∧ · · · ∧ an, which is
again translated to ¬ai ← a1, . . . , ai−1,¬c, ai+1, . . . , an.
Notice that, when n = 1, transposition coincides with
classical contraposition.
definition 10. A defeasible rule is semi-normal iff it is of the
form
c← a1, . . . , an, not b1, . . . , not bm, not¬c.

definition 11. An extended logic program P is called semi-
normal iff:

1. strict(P ) is consistent,
2. strict(P ) is closed under transposition, and
3. defeasible(P ) consists of semi-normal rules only

If A is an argument, then the depth of A is the number of
nodes on the longest root-originated path in A. If A is an
argument and r is a rule in A then the depth of r in A is the
number of nodes on the shortest path from the root to a node
labeled with r.
lemma 2. Let P be a semi-normal extended logic program,
Ass (the assumptions) be a nonempty set of strict rules
with empty antecedents {a1 ←, . . . , an ←} and A an ar-
gument with conclusion c based on strict(P ) ∪ Ass, such
that A contains an assumption ai ← (1 ≤ i ≤ n) that
does not occur in P . There exists an argument B, based on
strict(P ) ∪ Ass ∪ {¬c ←} such that B has a conclusion
¬ai.

Proof. We prove this by induction on the depth of A.
basis Let’s assume that the depth of A is 1. In that case, A

consists of a single rule, which must then have an empty
antecedent. Therefore, the root of A must be c←. It then
follows that c = ai. Therefore, there exists an argument
(A itself) based on strict(P ) ∪ Ass ∪ {¬c ←} that has
conclusion ¬ai.

step Suppose the above lemma holds for all strict arguments
of depth≤ j. We now prove that it also holds for all strict
arguments of depth j + 1. Let A be an argument of depth
j + 1, based on strict(P ) ∪ Ass, with conclusion c. Let
c ← Conc(A1), . . . , Conc(Am) be the root of A. Let Ai

be a direct subargument of A that contains the assump-
tion ai ←. Because the set of strict rules in P is closed
under transposition, there exists a rule ¬Conc(Ai) ←
Conc(A1), . . . , Conc(Ai−1),¬c, Conc(Ai+1), . . . , Conc(Am).
The fact that Ai has a depth ≤ j means that
we can apply the induction hypothesis. That
is, there exists an argument (say B′), based on
strict(P ) ∪ Ass ∪ {¬Conc(Ai) ←}, with conclusion
¬ai. Now, in B′, substitute ¬Conc(Ai) ← by the subar-
gument ¬Conc(Ai) ← A1, . . . , Ai−1,¬c, Ai+1, . . . Am.
The resulting argument (call it B) is a strict argument,
based on strict(P ) ∪ Ass ∪ {¬c ←}, with conclusion
¬ai.

theorem 3. Let 〈ArgumentsP ,DefeatP 〉 be an argumen-
tation framework built from a semi-normal extended logic
program P , and let E be the smallest fixpoint of F . It holds
that Concs(E) is consistent.



B

strict
rules

AiA1 An
d

A

BAnA1

D’

c −c

strict rules

trans−
posed

d

Ai

D

... ... ... ...

−e e

THEOREM

Figure 1: The working of theorem 3

Proof. Let E be the grounded extension of
〈ArgumentsP ,DefeatP 〉. Suppose the conclusions of
E are not consistent. Then E contains an argument (say A)
with conclusion c and an argument (say B) with conclusion
¬c. As strict(P ) is consistent, at least one of these two
arguments must contain a defeasible rule. Let us, without
loss of generality, assume that A contains at least one
defeasible rule. Let d be a defeasible rule in A that has
minimal depth. Notice that the depth of d must be at
least 1, for if d were the top-rule of A, then B would
defeat A and E would not be conflict-free (which conflicts
with lemma 1). It now holds that every rule in A with
a smaller depth than d is a strict rule (see also figure 1).
Let Ai be a subargument of A that has d as its top-rule.
We will now prove that there exists an argument (D′) in
E that defeats Ai. Let A1, . . . , An be the subarguments
of A that are at the same level as Ai in A. Lemma 2
tells us that with the conclusions of A1, . . . , An, B it is
possible to construct an argument with a conclusion that is
the opposite of the conclusion of Ai. Call this argument
D. Now, let D′ be equal to D, but with the assumptions
Conc(A1) ←, . . . , Conc(An) ←, Conc(B) ← substituted
by the underlying arguments A1, . . . , An, B. It holds that
D′ ∈ E (this is because each defeater of D′ is also a
defeater of A1, . . . , An, B ∈ E, and the fact that E is a
fixpoint of F means it defends itself against this defeater,
which means that D′ ∈ E). D′, however, defeats Ai on d,
so the fact that D′, Ai ∈ E means that E is not conflict-free,
and (lemma 1) also no fixpoint of F . Contradiction.

theorem 4. Let P be a semi-normal extended logic pro-
gram. The smallest fixpoint WFM (the well-founded model)
of Γ is consistent.

Proof. This follows directly from theorem 2 and theorem
3.

Discussion
Many scholars in the field of defeasible reasoning distin-
guish two types of abstract rules: strict rules and defeasi-
ble rules (Pollock 1992; Nute 1994; Prakken & Sartor 1997;
Garcı́a & Simari 2004). A strict rule a1, . . . , an → b ba-
sically means that if a1, . . . , an hold, then it is without any
possible exception also the case that b holds. A defeasible
rule a1, . . . , an ⇒ b basically means that if a1, . . . , an hold,
then it is usually (or normally) the case that b holds.

One possible application of strict rules is to describe
things that hold by definition (like ontologies). For instance,
a cow is by definition a mammal and someone who is mar-
ried by definition has a spouse. For this kind of rules, it ap-
pears that transposition is quite naturally applicable. If from

a1, . . . , an it follows without any possible exception that b,
then it also holds that from a1, . . . , ai−1,¬b, ai+1, . . . , an it
follows without any possible exception that ¬ai.

In essence, one could say that the problems of example
1 are caused by the fact that two conclusions (m and b) are
conflicting (as m implies hs, and b implies ¬hs) but the stan-
dard entailment of ELP is too weak to discover this conflict.
Transposition (for strict rules) can thus be seen as a way
of strengthening the entailment, so that this kinds of hidden
conflicts become explicit, and therefore manageable.

Some formalisms for defeasible reasoning, like (Pollock
1992; 1995), have strict rules that coincide with classical
(propositional or first order) reasoning. That is, there ex-
ists a strict rule a1, . . . , an → b iff a1, . . . , an ` b. In
such a formalism, example 1 could be represented by the
defeasible rules r ⇒ m and p ⇒ b and by the proposi-
tions r, p, m ⊃ hs and b ⊃ ¬hs. Using these propositions
one can then construct the strict rules m, (m ⊃ hs) → hs

and b, (b ⊃ ¬hs) → ¬hs, as well as the strict rules
¬hs, (m ⊃ hs) → ¬m and hs, (b ⊃ ¬hs) → ¬b. These
rules can be used not only to construct arguments for m and
b but also to construct the much needed counterarguments
deriving ¬m and ¬b. By basing strict rules on classical en-
tailment, Pollock is able to specify a formalism that avoids
many of the difficult issues that have been plaguing the field
of extended logic programming.

It is not difficult to see that transposition is a valid prin-
ciple in classical logic (from a1, . . . , an ` b it follows that
a1, . . . , ai−1,¬b, ai+1, . . . , an ` ¬ai). In general, the set of
strict rules generated by classical entailment satisfies many
interesting properties. With transposition we have isolated
the specific property of classical logic that is actually needed
to avoid problems like illustrated by example 1. We simply
apply the part of classical logic that we actually need, with-
out having to go through the complexities of having to im-
plement a full-blown classical logic theorem prover to gen-
erate the set of strict rules, as is for instance done in (Pol-
lock 1995). The main cost of our approach is in generating
the transpositions of the strict rules. For each strict rule, n
transpositions are generated, where n is the number of liter-
als in the body of the rule.

As for the defeasible rules, Pollock distinguishes two
ways in which these can be argued against: rebutting and
undercutting (Pollock 1992; 1995). Rebutting essentially
means deriving the opposite consequent (head) of the rule,
whereas undercutting basically means that there is some ad-
ditional information under which the antecedent (body) of
the rule is no longer a reason for the consequent (head) of
the rule. For instance, suppose that we have the defeasible
rule that an object that looks red usually is red. A rebutter
would be that the object is not red, because it is known to be
blue. An undercutter would be that the object is illuminated
by a red light. This is not a reason for it not being red, but
merely means that the fact that it looks red can no longer be
regarded as a valid reason for it actually being red. Thus,
rebutting attacks the consequent (head) of a rule, whereas
undercutting attacks merely the connection between the an-
tecedent (body) and the consequent (head) of a rule. Pollock
claims, based on his philosophical work regarding episte-



mology, all forms of defeat can be reduced to rebutting and
undercutting (Pollock 1992). This observation is important,
as both of these forms of defeat can be modeled using semi-
normal defeasible rules in extended logic programs.

Many problems in logic programming are caused by spe-
cific logic programs containing anomalous information (a
rule like a ← not a could for instance cause the absence of
stable models). If one wants to apply standard and relatively
straightforward semantics then one needs to make sure that
a logic program does not contain such anomalies. If one
provides anomalous input (like stating that a married per-
son always has a spouse, without stating that someone who
does not have a spouse is not married, using a formalism
(ELP) that is not powerful enough to make this inference it-
self) then one should not be surprised that the outcome (the
well-founded model) is anomalous as well. For reasons de-
scribed above, we think that that the concept of semi-normal
extended logic programs can serve as a quite natural and rea-
sonable restriction of which programs can be regarded to be
free of anomalies.

Quality Postulates
One way to evaluate the different approaches for providing a
suitable semantics for ELP is by providing quality postulates
(Caminada & Amgoud 2005). The idea is to state a number
of general properties that should be satisfied by any formal-
ism for defeasible reasoning, including ELP. In (Caminada
& Amgoud 2005; ASPIC-consortium 2005) the following
quality postulates have been stated:
• direct consistency. Let P be an extended logic program

such that strict(P ) is consistent, and let M be a model of
P (under some specified semantics). It must hold that M
is consistent.

• closedness. Let P be an extended logic program and let
M be a model under P (under some specified semantics).
It must hold that Cl(strict(P ) ∪M) = M .

• indirect consistency. Let P be an extended logic program
such that strict(P ) is consistent, and let M be a model
of P (under some specified semantics). It must hold that
Cl(strict(P ) ∪M) is consistent.
The quality postulate of direct consistency is quite

straightforward and is satisfied by most formalisms that we
know of. The quality postulate of closedness basically states
that, as far as the strict rules are concerned, the model is
“complete”. The quality postulate of indirect consistency
does by itself not require that the model is closed under the
strict rules, but instead requires the more modest property
that if one would compute the closure of the model under
the strict rules, the result would at least not contain any in-
consistencies.

The above three quality postulates are not completely in-
dependent. Indirect consistency, for instance, implies direct
consistency. Similarly, closedness and direct consistency
imply indirect consistency.

To illustrate the value of the above three quality postu-
lates, consider a person who knows a set of strict and defea-
sible rules, encodes these as a semi-normal extended logic

program and then examines a model generated by an ELP
inference engine. If the ELP inference engine would (in ex-
ample 1) provide a model containing m but not containing hs
(thus violating closedness) then the user may conclude that
the ELP inference engine apparently “forgot” something.
Worse yet, if the ELP inference engine provides a model
containing m and b (thus violating indirect consistency) then
the user may reason like: “My inference engine says that
m, and I know that from m it always follows that hs, there-
fore hs. My inference engine also says that b and I know
that from b it always follows that ¬hs, therefore ¬hs.” It is
our view that, from an agent perspective, a formalism that
does not satisfy indirect consistency cannot be used to gen-
erate the beliefs of an agent, as we think that an agent should
never run into inconsistencies once it starts to do additional
reasoning on its own beliefs.

Although ELP-models should ideally be closed under the
strict rules of P , they should not necessarily be closed under
the defeasible rules of P . If a is given and there exists a
rule “if a then normally b”, then one cannot simply derive b
since the situation may not be normal. The quality postulate
of closedness is thus only relevant with respect to strict rules.

A fourth quality postulate that has, as far as we know, not
been published earlier is that of crash-resistancy:
• crash-resistancy. There should not exist an extended logic

program P , with strict(P ) consistent, such that for any
extended logic program P ′, with strict(P ′) consistent,
that does not share any atoms with P , it holds that P has
the same models (under some specific semantics) as P ∪
P ′.
Crash-resistancy basically states that it should not be pos-

sible for an extended logic program to contain some pieces
of information (P ) that makes other totally unrelated pieces
of information (P ′) totally irrelevant when added.

The above four quality postulates are violated by vari-
ous approaches that aim to provide extended logic programs
with a suitable semantics. Indirect consistency, for instance,
is problematic in approaches that are based on paraconsis-
tent reasoning. When the approach of, for instance, (Sakama
1992) is applied to example 1, it produces a well-founded
model 〈{r, p, m, b, hs,¬hs}, {¬r,¬p,¬m,¬b}〉. Using
Ginsberg’s 7-valued default bilattice, this means that only
r, p, m and b (but not hs or ¬hs) are considered true, thus
violating closedness and indirect consistency.

Brewka’s approach to well-founded semantics (Brewka
1996), on the other hand, violates direct consistency as well
as crash-resistancy. In example 1, strict(P ) is consistent,
but Brewka’s approach nevertheless yields the inconsistent
set Lit, which violates direct consistency. As the outcome
of Lit is obtained even when one adds syntactically totally
unrelated rules to P , crash-resistancy is violated as well.

The quality postulate of crash-resistancy is violated by the
stable model semantics of answer set programming, where
a simple rule like a ← not a yields no stable models at
all, regardless of what additional (unrelated) information is
contained in the logic program. A common opinion in the
ELP-research community is that programs that have no sta-
ble models are by definition anomalous and unnatural. We



hereby would like to argue against this view. Consider a sit-
uation in where persons are usually believed in what they
say, unless information of the contrary is available (rebut) or
the person is known to be unreliable (undercut). Now con-
sider the following three persons, who give the following
statements:
• Bert: “Ernie is unreliable.”
• Ernie: “Elmo is unreliable.”
• Elmo: “Bert is unreliable.”
This would correspond with the following extended logic
program:
• bert says u ernie←

• u ernie← bert says u ernie, not¬u ernie, not u bert

• ernie says u elmo←

• u elmo← ernie says u elmo, not¬u elmo, not u ernie

• elmo says u bert←

• u bert← elmo says u bert, not¬u bert, not u elmo

It is perfectly possible for a situation to occur in which
three persons, sitting in a circle, claim their direct neighbour
is unreliable. How this conflict should be dealt with is an
issue open for discussion, but it should at least not cause the
hearer to enter a state of total ignorence in which also all
other entailment is completely blocked. It is our opinion,
also for reasons described in (Dung 1995) that the problems
of stable model semantics are very often caused by the na-
ture of the semantics itself, and not by an “anomalous” ex-
tended logic program.

Summary and Conclusions
One of the advantages of the approach as sketched in the cur-
rent paper is that it satisfies each of the quality postulates di-
rect consistency, indirect consistency, closedness and crash-
resistancy. Furthermore, it does so without the need of an
advanced semantics that is complex and potentially difficult
to understand. Although the approach only works for the
somewhat restricted notion of semi-normal extended logic
programs, we believe that these restrictions are in essence
quite natural and can be given a decent philosophical justifi-
cation.

References
ASPIC-consortium. 2005. Deliverable D2.5: Draft formal
semantics for ASPIC system.
Brewka, G. 1996. Well-founded semantics for extended
logic programs with dynamic preferences. J. Artif. Intell.
Res. (JAIR) 4:19–36.
Caminada, M., and Amgoud, L. 2005. An axiomatic
account of formal argumentation. In Proceedings of the
AAAI-2005, 608–613.
Dix, J. 1995a. A classification theory of semantics of nor-
mal logic programs: I. strong properties. Fundam. Inform.
22(3):227–255.

Dix, J. 1995b. A classification theory of semantics of nor-
mal logic programs: Ii. weak properties. Fundam. Inform.
22(3):257–288.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
77:321–357.
Garcı́a, A., and Simari, G. 2004. Defeasible logic program-
ming: an argumentative approach. Theory and Practice of
Logic Programming 4(1):95–138.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3/4):365–385.
Nute, D. 1994. Defeasible logic. In Gabbay, D.; Hog-
ger, C. J.; and Robinson, J. A., eds., Handbook of Logic
in Artificial Intelligence and Logic Programming. Oxford:
Clarendon Press. 253–395.
Pollock, J. L. 1992. How to reason defeasibly. Artificial
Intelligence 57:1–42.
Pollock, J. L. 1995. Cognitive Carpentry. A Blueprint for
How to Build a Person. Cambridge, MA: MIT Press.
Prakken, H., and Sartor, G. 1997. Argument-based ex-
tended logic programming with defeasible priorities. Jour-
nal of Applied Non-Classical Logics 7:25–75.
Sakama, C. 1992. Extended well-founded semantics for
paraconsistent logic programs. In FGCS, 592–599.
van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991.
The well-founded semantics for general logic programs. J.
ACM 38(3):620–650.


