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Abstract. In this paper, we examine an argument-based semantics
called semi-stable semantics. Semi-stable semantics is quite close to tra-
ditional stable semantics in the sense that every stable extension is also
a semi-stable extension. One of the advantages of semi-stable semantics
is that for finite argumentation frameworks there always exists at least
one semi-stable extension. Furthermore, if there also exists at least one
stable extension, then the semi-stable extensions coincide with the sta-
ble extensions. Semi-stable semantics can be seen as a general approach
that can be applied to abstract argumentation, as well as to fields like
default logic and answer set programming, yielding an interpretation
with properties very similar to those of paraconsistent logic, including
the properties of crash resistance and backward compatibility.

1. Introduction

The stable model semantics, a concept that goes back to [52], has been
applied in fields like formal argumentation [27], default reasoning [48], (nor-
mal) logic programming [33] and answer set programming [34]. During the
last two decades, various different semantics have been stated as alternatives
for stable semantics, such as regular or preferred semantics [56, 27] or well-
founded or grounded semantics [50, 27]. Although some of those semantics,
e.g. grounded and preferred, have become popular in the domain of for-
mal argumentation, stable semantics still enjoys strong support in fields like
(normal) logic programming and answer set programming, where various
interpretations of the stable model semantics exist [40, 37].

The varying levels of support for either stable semantics or its alternatives
can to some extent be explained by the nature of the application domain. In
the field of formal argumentation the emphasis is often on how to combine
various principles and rules of thumb, so as to yield an overall coherent out-
come. That is, one would like to have the most reasonable outcome in the
presence of defeasible and possibly conflicting information. In this context
stable semantics, with its fundamental property that relatively small diffi-
culties in the input-data can cause the total absence of stable extensions,
may not be an attractive option. This has led most of the argumentation re-
search to shift its focus on other semantics, of which grounded and preferred
are among the most well-known.

The situation is quite different in, for instance, the field of (normal) logic
programming and answer set programming. Here, the emphasis is often
on computable forms of constraint satisfaction. If one applies answer set
programming to solve a particular constraint satisfaction problem then one
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wishes the models of the answer set program to correspond to the solutions
of the original problem. Consequently, if the original problem does not have
any solutions, then one also wants to obtain no answer sets. The fact that
stable semantics sometimes yields no extensions could in this respect even
be seen as an advantage rather than a weakness.

One of the assumptions underlying the stable model semantics, however,
is that the original problem has been modelled in a way that is fully complete
and correct. For if it is not, then the result can be no outcome instead of a
merely imperfect outcome. In essence, the situation is not that different from
classical logic, where syntactically small imperfections in the consistency of
the input-data can lead to an overall collapse of all entailment.

To deal with the possible collapse of classical logic entailment in the pres-
ence of imperfect information, various forms of paraconsistent logics have
been proposed. The idea here is that relatively small problems in the original
specification should no longer lead to a global “collapse” of all entailment.
That is, the formalism should be what we call “crash resistant”. Further-
more, one would like to have the same outcome as classical logic in situations
where the input-specification is free from flaws that lead to such collapses:
this requirement is referred to as “backward compatibility”.

In this paper, we explore the notion of paraconsistency as a guide in
the context of formalisms that use stable semantics, such as default logic
and answer set programming. We are interested in ways that make them
tolerant for flaws in their respective input-specifications (“crash resistant”),
yet at the same time yield the same outcome as under stable semantics
in cases where stable extensions do exist (“backward compatibility”). We
provide a general solution, called semi-stable semantics, with which one
can obtain these properties. Not only do we specify the abstract solution,
but we also illustrate how it can be applied in the domains of abstract
argumentation, default reasoning and logic programming. Moreover, we
also provide a complexity analysis for our solution.

This paper is structured as follows. First, in Section 2 we provide a formal
account of what we see as a number of desirable properties regarding logical
formalisms. Our treatment builds on [15], where a number of rationality
postulates were given. Our current paper, however, takes a more general
approach and no longer assumes the input specification to be of a particular
form or syntax. Then, in Section 3, we present our approach of semi-stable
semantics and show how it satisfies the requirements outlined in Section 2.
We have chosen initially to specify our approach using the framework of
formal argumentation [27], which has gained popularity as a general way of
describing various forms of nonmonotonic reasoning. In Section 4, we de-
scribe how the approach of semi-stable semantics can be implemented in the
context of logic programming, and that the result satisfies the earlier men-
tioned desirable properties. In Section 5 we do the same for default logic. In
Section 6 we give a complexity analysis of various decision problems related
to our new approach. In Section 7 we discuss how semi-stable semantics
relates to other approaches. In Section 8 we round off the discussion with a
few concluding issues and remarks.
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The concept of semi-stable semantics was first presented at COMMA
2006 [11] and its computational complexity at JELIA 2008 [30]. What is
new within the current paper, however, is that we explain the applicability of
semi-stable semantics by specifying the postulates it satisfies, for abstract
argumentation as well as for logic programming and default logic. Fur-
thermore, we discuss an alternative (stage semantics) for satisfying these
postulates, and examine its relationship to semi-stable semantics.

2. On Logics, Crashes and Contamination

In this section we describe a number of desirable properties, inspired by
the field of paraconsistent reasoning, that can be defined for any logical
formalism. We define the notion of a logical formalism in a very broad way;
in particular, we do not specify any properties that define the consequence
relationship Cn. Furthermore, in contrast to [15], we make no assumptions
regarding the particular syntax of the logical formalism under review.

Definition 1. A logical formalism is a triple (Atoms,Formulas,Cn) where
Atoms is a countably (finite or infinite) set of atoms, Formulas is the
set of all well-formed formulas that can be constructed using Atoms, and

Cn : 2Formulas → 22
Formulas

is the consequence function.

Notice that the consequence function takes as input a set of formulas and
has as output a set of sets of formulas. This is to accommodate formalisms
like default logic (or answer set programming) where a single default theory
(answer set program) can generate several extensions (answer sets). For
formalisms that generate only one set of formulas (like for instance classi-
cal logic) we sometimes abuse notation and write Cn(Ψ) = Φ instead of
Cn(Ψ) = {Φ} (where Ψ and Φ are sets of formulas).

In the following definitions, we write atoms(F) for the atoms that occur
in a set of formulas F . For instance: atoms({p ∧ q; r ∨ p}) = {p, q, r}
and atoms({p ← q; r ← s, t}) = {p, q, r, s, t}. Furthermore, if A is a set of
atoms and F a set of formulas then we write F|A for those formulas in F that
contain only atoms from A. For instance: {p ∧ q; q ⊃ r; s ∨ t; q}|{p,q} =
{p ∧ q; q}. Likewise, if E is a set of sets of formulas, we define E|A as
{F|A | F ∈ E}. We say that two sets of formulas F1 and F2 are syntactically
disjoint iff atoms(F1) ∩ atoms(F2) = ∅.

The first property to be stated is that of non-interference. Non-interference
roughly means that, for two completely independent knowledge bases F1 and
F2, F1 does not influence the outcome with respect to the language of F2.

Definition 2 (non-interference). We say that a logical formalism (Atoms,
Formulas,Cn) satisfies non-interference iff for every F1,F2 ⊆ Formulas
such that F1 and F2 are syntactically disjoint it holds that Cn(F1)|atoms(F1) =
Cn(F1 ∪ F2)|atoms(F1) and Cn(F2)|atoms(F2) = Cn(F1 ∪ F2)|atoms(F2).

A property closely related to non-interference is that of contamination.
Informally, a set of formulas is said to be contaminating iff it yields the same
outcome when merged with a totally unrelated set of formulas. That is, a
contaminating set of formulas makes all other unrelated sets of formulas
irrelevant when being merged with it.
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Definition 3 (contamination). Let (Atoms,Formulas,Cn) be a logical for-
malism. A set F1 ⊆ Formulas, with atoms(F1) $ Atoms, is called contam-
inating iff for every F2 ⊆ Formulas such that F1 and F2 are syntactically
disjoint it holds that Cn(F1) = Cn(F1 ∪ F2).

Based on the concept of contamination, it is then possible to define the
property of crash resistance.

Definition 4 (crash resistance). We say that a logical formalism satisfies
crash resistance iff there does not exist a set of formulas F that is contami-
nating.

The property of crash resistance is perhaps best understood by making an
analogy. As any experienced computer user knows, it sometimes can occur
that a program misbehaves. Under some operating systems, however, the
fact that one program misbehaves (like executing illegal instructions) causes
the entire operating system to collapse, which then also has consequences
for all other programs that were running, even if they are totally unrelated
to the program that caused the original problem. The main point here is
that one wants to avoid local problems having global effects, and rendering
all other things irrelevant. It is this property that is expressed in the above
definition of crash resistance.

We say that a logical formalism is non-trivial if, first of all, the entailment
is never fully determined by the atoms alone. That is, it should be possible
for two sets of formulas, with the same atoms, to have different entailment.
This is satisfied by most formalisms we know of. For instance, in classical
logic we have that Cn({a∧ b}) 6= Cn({a∨ b}) and in logic programming we
have that Cn({a ←}) 6= Cn({a ← a}). Furthermore, for each set of atoms
A, there should be a set of formulas whose atoms are exactly A. Formally,
this can be expressed as follows.

Definition 5. We say that a logical formalism (Atoms,Formulas,Cn) is
non-trivial iff for each A ⊆ Atoms such that A 6= ∅ there exist F1,F2 ⊆
Formulas such that atoms(F1) = atoms(F2) = A and Cn(F1)|A 6= Cn(F2)|A.

For any non-trivial formalism, non-interference implies crash resistance.

Theorem 1. Each non-trivial logical formalism (Atoms, Formulas, Cn)
that satisfies non-interference also satisfies crash resistance.

Proof. We prove this by modus tollens. Suppose the logical formalism does
not satisfy crash resistance. Then there exists a set of formulas (say, F1)
that is contaminating. That is, it holds that atoms(F1) $ Atoms and
for every F2 ⊆ Formulas with atoms(F1) ∩ atoms(F2) = ∅ it holds that
Cn(F1) = Cn(F1 ∪ F2). Let A be Atoms\atoms(F1). From the fact
that atoms(F1) $ Atoms it follows that A 6= ∅. The fact that the for-
malism is non-trivial implies that there exist F3,F4 ⊆ Formulas such
that atoms(F3) = atoms(F4) = A and Cn(F3)|A 6= Cn(F4)|A. From the
fact that F1 is contaminating, it follows that Cn(F1) = Cn(F1 ∪ F3) and
Cn(F1) = Cn(F1∪F4). It then follows that Cn(F1∪F3)|A = Cn(F1∪F4)|A.
This, together with the fact that Cn(F3)|A 6= Cn(F4)|A then implies that
Cn(F3)|A 6= Cn(F1 ∪ F3)|A or Cn(F4)|A 6= Cn(F1 ∪ F4)|A. From the
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fact that atoms(F3) = atoms(F4) = A it then immediately follows that
Cn(F3)|atoms(F3) 6= Cn(F1 ∪ F3)|atoms(F3) or Cn(F4)|atoms(F4) 6= Cn(F1 ∪
F4)|atoms(F4). In either case, non-interference is violated. �

The converse of Theorem 1 does not hold. That is, it is not the case
that each non-trivial logical formalism that satisfies crash resistance also
satisfies non-interference. As an example, Pollock’s oscar [43] satisfies crash
resistance but for reasons explained in [9] does not satisfy non-interference.

The last property to be discussed is that of backward compatibility. The
idea is, roughly, that if a formalism (like paraconsistent logic) is to improve
on an existing, possibly non crash resisting formalism (like propositional
logic) it should yield the same outcome for all non-contaminating input in
the latter formalism.

Definition 6 (backward compatibility). Let (Atoms,Formulas,Cn1) and
(Atoms,Formulas,Cn2) be two logical formalisms. We say that (Atoms,
Formulas,Cn2) is backward compatible with (Atoms,Formulas,Cn1) iff
for each set of formulas F that is not contaminating under Cn1, it holds
that Cn2(F) = Cn1(F).

As an example of how the above postulates can be applied, consider the
case of classical logic. Classical logic does not satisfy non-interference (Def-
inition 2) since an inconsistent set of formulas (say, {p,¬p}) interferes with
any consistent set of formulas (say, {q}). Also, any set of inconsistent for-
mulas is contaminating in the sense of Definition 3. Hence, classical logic
is not crash resistant (Definition 4). The issue of how to define an alterna-
tive form of entailment that satisfies non-interference and crash resistance
has been studied in the field of paraconsistent logic. The first generation
of paraconsistent logics, such as [22], did satisfy non-interference and crash
resistance, but was not backward compatible with respect to classical logic.
That is, even in situations that were classically consistent, the new paracon-
sistent formalism could yield different outcomes than classical logic. Other
formalisms, such as those of Arieli and Avron [1] and of Carnielli et al [18],
do satisfy non-interference and crash resistance but also remain backward
compatible with classical logic.

One can apply the same postulates to nonmonotonic formalisms like de-
fault logic and answer set programming. These formalisms do not satisfy
non-interference (Definition 2) since a default like true : ¬p/p or a rule like
p← not p can easily cause the absence of any default extensions or answer
sets. This default (and rule) is also contaminating in the sense of Definition
3. Hence, default logic and answer set programming are not crash resistant
(Definition 4). It can be mentioned that several alternative semantics for
default logic and logic programming have been specified, such as [50, 56, 8].
None of these alternatives, however, is backward compatible with the origi-
nal formalisms of default logic and answer set programming.1 That is, even
in situations where default extensions or answer sets do exist, the alter-
native formalisms can yield different outcomes. The interesting question,
therefore, is whether one can find a general principle that can be used to

1As with abstract argumentation, the approaches of preferred, grounded and complete
semantics are not backward compatible with stable semantics.
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modify a wide range of formalisms, including abstract argumentation under
stable semantics, default logic and answer set programming, such that the
result satisfies non-interference and crash resistance and at the same time
backward compatibility with respect to the original formalism. Hence, the
general idea of the current paper is to examine some of the properties that
the field of paraconsistent reasoning has been trying to achieve (the postu-
lates provided earlier in this section) and implement these in a wide range
of logical formalisms where traditionally the concept of paraconsistency has
not played a major role. The first example of such a formalism will be
treated in Section 3.

To understand the value of the postulates of non-interference and crash
resistance, imagine that one is to apply a knowledge-based system in a safety-
critical situation, e.g for the purpose of medical diagnosis. If one then has
two completely different patients who have nothing in common, then one
does not want the reasoning process regarding the first patient somehow to
influence the reasoning process regarding the second patient. In fact, these
reasoning processes should have no influence on each other at all. This
is the intuition formalised by the postulates of non-interference and crash
resistance.

The postulate of backward compatibility is based on a different idea. In
various domains of formal reasoning, approaches have emerged that became
the “gold standard” for their particular domain. Examples of these are clas-
sical logic, as well as logic programming under stable model semantics. Both
approaches enjoy a strong commitment, for reasons outside the scope of this
paper, and any violations regarding non-interference and crash resistance
are therefore to be dealt with in a way that makes minimal changes to the
original approach. That is, ideally one should only alter the part where
the approach “fails” (violates crash resistance) while keeping its outcome
unaltered in all situations where such a failure does not occur. This is the
intuition formalised by the postulate of backward compatibility.

3. An Abstract Account of Semi-Stable Semantics

In this section we introduce the notion of semi-stable semantics. We
choose to introduce it using the formalism of abstract argumentation, and
later show how it can be applied to logic programming in Section 4 and to
default logic in Section 5.

3.1. Preliminaries. We first start with some basic definitions regarding
abstract argumentation based on [27]. In line with [6, 5] we restrict ourselves
to argumentation frameworks with a finite set of arguments.

Definition 7 (argumentation framework). An argumentation framework is
a pair (Ar , att) where Ar is a finite set of abstract entities called arguments
and att ⊆ Ar × Ar is called the attack relation.

An argumentation framework can be represented as a directed graph in
which the arguments are represented as nodes and the attack relation is
represented as arrows. In several examples throughout this paper, we will
use this graph representation.
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IfArgs ⊆ Ar then we write (Ar , att)|Args as a shorthand for (Args , {〈A,B〉 |
〈A,B〉 ∈ att and A,B ∈ Args}). In the definition below, F (Args) stands
for the set of arguments that are acceptable in the sense of [27].
Definition 8 (defence / conflict-free).
Let (Ar , att) be an argumentation framework, A ∈ Ar and Args ⊆ Ar.
We define A+ as {B ∈ Ar | A att B}
and Args+ as {B ∈ Ar | A att B for some A ∈ Args}.
We define A− as {B ∈ Ar | B att A}
and Args− as {B ∈ Ar | B att A for some A ∈ Args}.
Args is conflict-free iff Args ∩ Args+ = ∅.
Args defends an argument A iff A− ⊆ Args+.
We define the function F : 2Ar → 2Ar as
F (Args) = {A ∈ Ar | A is defended by Args}.

In the definition below, definitions of grounded, preferred and stable se-
mantics are described in terms of complete semantics, which has the advan-
tage of making the proofs in the remainder of this paper more straightfor-
ward. These descriptions are not literally the same as the ones provided by
Dung [27], so it will be proved that they are in fact equivalent to Dung’s
original versions of grounded, preferred and stable semantics.

Definition 9 (acceptability semantics). Let (Ar , att) be an argumentation
framework and Args ⊆ Ar be a conflict-free set of arguments.

- Args is admissible iff Args ⊆ F (Args).
- Args is a complete extension iff Args = F (Args).
- Args is a grounded extension iff Args is the minimal (w.r.t. set-
inclusion) complete extension.

- Args is a preferred extension iff Args is a maximal (w.r.t. set-
inclusion) complete extension.

- Args is a stable extension iff Args is a complete extension that at-
tacks every argument in Ar\Args.

A well-known property of argumentation theory is that for each argumen-
tation framework there exists exactly one grounded extension. It contains all
the arguments which are not attacked, as well as those arguments which are
directly or indirectly defended by non-attacked arguments. Furthermore, for
each argumentation framework there exists at least one complete extension,
at least one preferred extension and zero or more stable extensions.

As an example of how the different semantics operate, consider the argu-
mentation framework of Figure 2 (page 11). Here, ∅, {A}, {B} and {B,D}
are admissible sets. The complete extensions are ∅, {A} and {B,D}. The
grounded extension is ∅. The preferred extensions are {A} and {B,D}. The
only stable extension is {B,D}. Similarly, in the argumentation framework
of Figure 1 (page 10) the admissible sets are ∅, {B} and {B,D}. There
is just one complete extension {B,D} which is also the grounded and the
only preferred extension. The argumentation framework does not have any
stable extensions.

We say that an argument is credulously justified under a particular se-
mantics iff it is in at least one extension under this semantics. We say that
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an argument is sceptically justified under a particular semantics iff it is in
each extension under this semantics.

Grounded, preferred and stable semantics can be stated in various equiva-
lent ways. For grounded semantics, for instance, one does not actually need
to explicitly state the requirement of conflict-freeness.

Proposition 1. Let (Ar , att) be an argumentation framework and let Args ⊆
Ar. The following statements are equivalent:

(1) Args is the minimal complete extension (Definition 9)
(2) Args is the minimal fixpoint of F [27, Definition 20]

Proof.

from 1 to 2:: Let Args be the minimal complete extension. Suppose
that Args is not a minimal fixpoint of F . Then there exists a proper
subset Args ′ $ Args which is a fixpoint of F . As Args is already
the smallest fixpoint of F that is conflict-free, this can only mean
that Args ′ is not conflict-free. But this is impossible as a subset of
a conflict-free set is also conflict-free. Contradiction.

from 2 to 1:: Let Args be the minimal fixpoint of F . As the mono-
tonic increasing function F has a unique minimal fixpoint, the min-
imal fixpoint of F must be unique. From the previous point of this
proof (“from 1 to 2”) it then follows that the minimal complete
extension is equivalent to this fixpoint.

�

As for preferred semantics, our definition is equivalent to that of [27].

Proposition 2. Let (Ar , att) be an argumentation framework and let Args ⊆
Ar. The following statements are equivalent:

(1) Args is a maximal complete extension (Definition 9)
(2) Args is a maximal admissible set [27, Definition 7]

Proof. This follows from Theorem 25 of [27]. �

As for stable semantics, there exist at least four equivalent ways of de-
scribing it.

Proposition 3. Let (Ar , att) be an argumentation framework and let Args ⊆
Ar. The following statements are equivalent:

(1) Args is a complete extension that attacks every argument in Ar\Args
(Definition 9)

(2) Args is a preferred extension that attacks every argument in Ar\Args
(3) Args is an admissible set that attacks every argument in Ar\Args
(4) Args is a conflict-free set that attacks every argument in Ar\Args

[27, Definition 13]
Proof.

from 1 to 2:: Let Args be a stable extension. This means that Args
is a complete extension that attacks every argument in Ar\Args .
Suppose that Args is not a preferred extension. That means that
there is a complete extension Args ′ % Args . But as Args attacks
every argument in Ar\Args , this means that Args ′ would not be
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conflict-free and therefore could not be a complete extension. Con-
tradiction.

from 2 to 1:: Trivial (every preferred extension is also a complete ex-
tension).

from 2 to 3:: From Proposition 2 it follows that a preferred extension
is a (maximal) admissible set.

from 3 to 2:: Let Args be an admissible set that attacks all argu-
ments in Ar\Args . Suppose that Args is not a preferred extension.
This means that there exists an admissible set Args ′ ⊇ Args . But
as Args attacks all arguments in Ar\Args , this would mean that
Args ′ is not conflict-free and therefore could not be an admissible
set. Contradiction.

from 3 to 4:: This follows directly from the fact that an admissible
set is conflict-free.

from 4 to 3:: Let Args be a conflict-free set that attacks all argu-
ments in Ar\Args . Then, every argument that attacks Args is also
attacked by Args . This means that Args is an admissible set.

�

The advantage of Proposition 1, 2 and 3 is that they offer a lot of flexibility
for choosing the definition of a particular semantics that is best suited for
a particular proof. For most purposes, we will apply the descriptions of the
semantics as defined in Definition 9. It will be explicitly mentioned where
we do otherwise.

3.2. Semi-Stable Semantics for Abstract Argumentation. The no-
tion of semi-stable semantics, as put forward in the current paper, is quite
similar to that of preferred semantics. The only difference is that instead of
maximizing Args , one maximizes Args ∪Args+.

Definition 10. Let (Ar , att) be an argumentation framework and Args ⊆
Ar. Args is called a semi-stable extension iff Args is a complete extension
where Args ∪Args+ is maximal.

If Args is a set of arguments, then Args ∪ Args+ is called its range — a
notion first introduced by Bart Verheij [51].

For every (finite) argumentation framework, there exists at least one semi-
stable extension. This is because there exists at least one complete extension
(the grounded) and the fact that the argumentation framework is finite
implies that there exist at most a finite number of complete extensions. The
semi-stable extensions are then simply those complete extensions in which
some property (its range) is maximal.

Just like preferred semantics can be expressed as a maximal complete
extension or as a maximal admissible set, semi-stable semantics can be ex-
pressed as a complete extension with maximal range or as an admissible set
with maximal range.

Proposition 4. Let (Ar , att) be an argumentation framework and Args ⊆
Ar. The following statements are equivalent:

(1) Args is a complete extension such that Args ∪ Args+ is maximal
(Definition 10)
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(2) Args is an admissible set such that Args ∪Args+ is maximal
Proof.

from 2 to 1:: Being a complete extension is a stronger condition than
being an admissible set, so we only need to prove that an admissible
set Args whereArgs∪Args+ is maximal is also a complete extension.
Suppose this is not the case. Then there must be an argument
B 6∈ Args that is defended by Args . This means that every argument
C that attacks B is attacked by an argument inArgs. Therefore, B 6∈
Args+ (otherwise Args would not be conflict-free). This means that
Args∪{B} is conflict-free and self-defending, and thus an admissible
set. But this would mean thatArgs is not an admissible set for which
Args ∪Args+ is maximal. Contradiction.

from 1 to 2:: Being an admissible set is a weaker condition than be-
ing a complete extension. We therefore only need to prove that
maximality still holds under this weaker condition. Suppose that
Args ∪ Args+ would not be maximal. This means there exists an
admissible set Args ′ such that (Args ′ ∪ Args ′+) % (Args ∪ Args+).
Assume without loss of generality that (Args ′ ∪Args ′+) is maximal.
From the previous point (“from 2 to 1”) it then follows that Args ′

would be a complete extension. But then Args would not have been
a complete extension whereArgs∪Args+ is maximal. Contradiction.

�

It is not difficult to see that being a stable extension is a stronger condition
than being a semi-stable extension.

Theorem 2. Let Args be a stable extension of an argumentation framework
(Ar , att). Args is also a semi-stable extension of (Ar , att).

Proof. Let Args be a stable extension of (Ar , att). Then Args is a complete
extension that attacks every argument in Ar\Args . This means that Args ∪
Args+ = Ar . Therefore, Args ∪ Args+ is maximal (it cannot be a proper
superset of Ar). Therefore, Args is a semi-stable extension. �

It is in general not the case that each semi-stable extension is also a stable
extension. This is illustrated by the following example.

Example 1. Let (Ar , att) be the argumentation framework of which a graph-
ical representation is shown in Figure 1. Here, {B,D} is a semi-stable ex-
tension which is not a stable extension.

DC

A

B

Figure 1. {B,D} is a semi-stable but not a stable exten-
sion.
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It can also be observed that being a semi-stable extension is a stronger
condition than being a preferred extension.

Theorem 3. Let Args be a semi-stable extension of argumentation frame-
work (Ar , att). Then Args is also a preferred extension of (Ar , att).

Proof. Let Args be a semi-stable extension of (Ar , att). Suppose Args is not
a preferred extension of (Ar , att). Then there exists a set Args ′ % Args such
that Args ′ is a complete extension. From Args ′ % Args it follows, however,
that Args ′+ ⊇ Args+. Therefore, (Args ′ ∪ Args ′+) % (Args ∪ Args+). This
implies that Args is not a semi-stable extension, since Args ∪ Args+ would
not be maximal. Contradiction. �

It is in general not the case that every preferred extension is also a semi-
stable extension. This is illustrated by the following example.

Example 2. Let (Ar , att) be the argumentation framework of which a graph-
ical representation is shown in Figure 2. Here, {A} is a preferred exten-
sion which is not a semi-stable extension. The only semi-stable extension is
{B,D}.

E

A B
C

D

Figure 2. {A} is a preferred but not a semi-stable exten-
sion.

The overall position of semi-stable semantics is shown in figure 3. Each
stable extension is a semi-stable extension; each semi-stable extension is a
preferred extension; each preferred extension is a complete extension and
the grounded extension is a complete extension.

preferred

stable

grounded

complete

semi−stable

Figure 3. A brief overview of argument based semantics.

Since each semi-stable extension is also a preferred extension, a straight-
forward way of solving decision problems related to semi-stable semantics
(like credulous or sceptical acceptance) would be to compute all preferred
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extensions (using for instance the algorithm specified in [25]) and then to
focus on those that are also semi-stable. This essentially means selecting
the preferred extensions with a maximal range. In many cases, however,
there also exist alternative ways of determining whether an argument is
credulously or sceptically justified under semi-stable semantics.

Theorem 4. Let (Ar , att) be an argumentation framework, and let A ∈ Ar.

(1) If A is in the grounded extension, then A is in every semi-stable
extension.

(2) If A is not in any admissible set, then A is not in any semi-stable
extension.

(3) If A is in an admissible set and is not attacked by any admissible set
then A is in at least one semi-stable extension.

Proof.

(1) This follows from the fact that the grounded extension is a subset
of each complete extension [27], and the fact that each semi-stable
extension is a complete extension.

(2) This follows from the fact that each semi-stable extension is an ad-
missible set.

(3) The fact that A is not attacked by an admissible set also means that
A is not attacked by a complete extension, and therefore that A is
also not attacked by a semi-stable extension. That is, for any semi-
stable extension Args , it holds that A 6∈ Args+. The fact that A is
part of an admissible set means that there is a preferred extension
containing A. Let Args ′ be a preferred extension that contains A
and where (within the constraint that it contains A) Args ′ ∪Args ′+

is maximal. As for any semi-stable extension Args it holds that
A 6∈ Args+, it also holds for any semi-stable extension not containing
A that A 6∈ Args ∪Args+. Thus, Args ′ ∪Args ′+ cannot be enlarged
without losing A. Therefore, Args ′ is a semi-stable extension.

�

An example of Theorem 4(3) can be found in Figure 2. Here, argument
D is in an admissible set but is not attacked by an admissible set. This is
because its only attacker (C) is not part of any admissible set. Hence, D is
part of a semi-stable extension.

In situations where Theorem 4 is not applicable, it is possible to apply
an algorithm for computing all semi-stable extensions. This algorithm, de-
scribed in [12, 13, 39], yields all semi-stable extensions, without necessarily
having to compute all preferred extensions.

It turns out that in argumentation frameworks where there exists at least
one stable extension, the semi-stable extensions coincide with the stable
extensions, as is expressed by the following theorem.

Theorem 5. Let (Ar , att) be an argumentation framework that has at least
one stable extension. Let SE be the set of stable extensions and let SSE be
the set of semi-stable extensions. It holds that SE = SSE.

Proof. We need to prove that: (1) SE ⊆ SSE and (2) SSE ⊆ SE.
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(1) SE ⊆ SSE
This follows directly from Theorem 2.

(2) SSE ⊆ SE
Let SEi ∈ SE (such an SEi exists since it is assumed that (Ar , att)
has at least one stable extension). It holds that SEi ∪ SE

+
i = Ar .

Therefore, every semi-stable extension SSEi will also have to satisfy
that SSEi ∪ SSE

+
i = Ar (otherwise SSEi ∪ SSE

+
i would not be

maximal). This means that every semi-stable extension is also a
stable extension.

�

In order to understand the intuition behind semi-stable semantics, it can
be useful to express it in terms of argument labellings [10, 16]. Given an
argumentation framework (Ar , att), an argument labelling is a total function
Lab → {in, out, undec}. In essence, an argument labelling expresses an
opinion on which arguments are accepted (labelled in), which arguments
are rejected (labelled out) and which arguments one abstains from having
an explicit opinion about (labelled undec). Based on the concept of an
argument labelling, one can subsequently formulate additional conditions
that aim to describe what it means for such an opinion to be reasonable.
One such condition is to require that for each argument A ∈ Ar it holds
that:

(1) if Lab(A) = in then
for each attacker B of A it holds that Lab(B) = out,

(2) if Lab(A) = out then
there exists an attacker B of A such that Lab(B) = in, and

(3) if Lab(A) = undec then
not for each attacker B of A it holds that Lab(B) = out,
and there does not exist an attacker B of A such that Lab(B) = in.

A labelling satisfying this condition is called a complete labelling [16]. The
idea is that (1) for an argument to be accepted, one has to reject all its
attackers, (2) for an argument to be rejected, one has to accept at least
one attacker, and (3) for an argument to be undecided, one has to have
insufficient grounds to accept it (that is, not all its attackers are rejected)
and insufficient grounds to reject it (that is, it does not have an attacker
that is accepted). Complete labellings correspond in a one-to-one relation to
complete extensions [16]. Given a complete labelling, one can construct the
associated complete extension simply by selecting all in-labelled arguments.
Similarly, given a complete extension, one can construct the associated com-
plete labelling by having all arguments in the extension labelled in, having
all arguments attacked by the extension labelled out and having all other
arguments (that are neither in the extension nor attacked by the extension)
labelled undec [10, 16].

Just like one can describe the notion of complete semantics in terms of
argument labellings (as described above), one can also describe the notions
of preferred and grounded semantics in terms of argument labellings. A
preferred labelling is defined as a complete labelling where the set of in-
labelled arguments is maximal (w.r.t. set inclusion) among all complete
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labellings [10, 16]. Similarly, the grounded labelling can be described as the
(unique) complete labelling where the set of undec-labelled arguments is
maximal (w.r.t. set inclusion) among all complete labellings [10, 16]. That
is, if one interprets a complete labelling as a reasonable position one can
take based on the conflicting information in the argumentation framework,
then the idea of preferred semantics is to try to accept as much as possible,
whereas the idea of grounded semantics is to abstain as much as possible. As
an aside, the one-to-one correspondence between labellings and extensions
also holds for preferred semantics and grounded semantics [16].

In a similar way, one can describe the concepts of stable and semi-stable
semantics in terms of argument labellings. A stable labelling is a complete
labelling where the set of undec-labelled arguments is empty (hence, where
each argument is labelled either in or out), whereas a semi-stable labelling
is a complete labelling where the set of undec-labelled arguments is minimal
(w.r.t. set inclusion) among all complete labellings [10, 16]. In essence, the
idea behind stable semantics can be described as a black-and-white view
of the world, in which there is no room for shades of grey, and in which
neutrality does not exist. An argument is either accepted or rejected, and
nothing else. Such a point of view can create difficulties when interpreting
the world, and it should come as no surprise that there exist argumentation
frameworks where no stable labellings (or extensions) exist. The idea of
semi-stable semantics is then to soften up the requirements of stable seman-
tics a bit. Instead of requiring that the set of arguments where one abstains
is empty, one merely requires that this set is minimal. It then follows that
every stable labelling is also a semi-stable labelling, and that if there exists
at least one stable labelling, then every semi-stable labelling is also a stable
labelling (using similar reasoning as in the proof of Theorem 5). It has also
been proven that the usual one-to-one correspondence between labellings
and extensions also holds for stable and semi-stable semantics [16].

In essence, the idea of semi-stable semantics is that one wants to inter-
pret the information in the argumentation framework in a meaningful way
(satisfying the conditions of a complete labelling) whereas at the same time
staying as close as possible to the concept of stable semantics. It is like one
wants to “extend” the notion of stable semantics to make it applicable to
a wider range of problem descriptions, even those that originally could not
be interpreted by stable semantics, while still yielding the same outcome for
those problem descriptions that could be interpreted by stable semantics.

Also from a procedural viewpoint, semi-stable semantics can be seen as an
extended version of stable semantics. Suppose that, given an argumentation
framework, one computes the semi-stable labellings (for instance using the
algorithm described in [13]). Now pick any arbitrary semi-stable labelling
that one has computed, and examine whether it has at least one argument
that is labelled undec. If no such argument exists, then the semi-stable
labelling that one has inspected is in fact stable. It then follows that all
other labellings that have been computed are also stable. Hence, what has
been computed is in fact stable semantics. If, on the other hand, the selected
labelling does have an argument that is labelled undec, then one knows that
this labelling is not stable. It then follows that no stable labelling exists (so
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also all other labellings that were computed are not stable). Hence, when
applying semi-stable semantics, one can determine whether the result is
stable or not just by examining one arbitrarily selected semi-stable labelling
(or extension). If this labelling contains only in-labelled and out-labelled
arguments, then what has been computed is in fact stable semantics. If
this labelling also contains an undec-labelled argument, then it is clear that
no stable labellings existed, but that the results are still as close to stable
semantics as possible. Semi-stable semantics should therefore not be seen
as strictly in contrast with stable semantics. It is more like one concept
naturally flows into the other.

3.3. Satisfying the Postulates. The next thing to show is that semi-
stable semantics satisfies non-interference, crash resistance and backward
compatibility. To do so, we first describe how abstract argumentation con-
stitutes a logical formalism in the sense of Definition 1. We assume a universe
U containing all possible arguments. That is, for each argumentation frame-
work (Ar , att) it holds that Ar ⊆ U . We then define Formulas (Definition
1) as U ∪ {〈A1, A2〉 | A1, A2 ∈ U}. An argumentation framework (Ar , att)
can then be represented as the set of formulas Ar ∪ att . If Φ is the set
of formulas representing argumentation framework AF = (Ar , att) then we
define:

• Cnadmissible(Φ) to be the set of all admissible sets of AF
• Cncomplete(Φ) to be the set of all complete extensions of AF
• Cngrounded(Φ) to be the set containing the grounded extension of
AF as its single element
• Cnpreferred(Φ) to be the set containing all preferred extensions of
AF
• Cnstable(Φ) to be the (possibly empty) set containing all stable ex-
tensions of AF
• Cnsemi−stable(Φ) to be the set containing all semi-stable extensions
of AF

As an example, the argumentation framework of Figure 2 can be repre-
sented as a set of formulas Φ = {A,B,C,D,E, 〈A,B〉, 〈B,A〉, 〈B,C〉, 〈C,D〉,
〈D,E〉, 〈E,C〉} and it holds that Cnadmissible(Φ) = {∅, {A}, {B}, {B,D}},
Cncomplete(Φ) = {∅, {A}, {B,D}}, Cngrounded = {∅}, Cnpreferred = {{A},
{B,D}}, and Cnstable = Cnsemi−stable = {{B,D}}. We sometimes abuse
notation and write things like Cnsemi−stable(AF ) instead of Cnsemi−stable(Φ)
where Φ is the set of formulas associated with AF .

The first property to be proved is that of backward compatibility.

Theorem 6. In abstract argumentation, semi-stable semantics is backward
compatible with stable semantics.

Proof. Let AF = (Ar , att) be an argumentation framework that is not con-
taminating under Cnstable. It then follows that AF has at least one stable
extension. From Theorem 5 it then follows that the set of semi-stable ex-
tensions of AF is equal to the set of stable extensions of AF . That is,
Cnsemi−stable(AF ) = Cnstable(AF ). �
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It should be noticed that semantics like grounded, preferred and com-
plete are not backward compatible with stable semantics. The argumenta-
tion framework of Figure 2, for instance, is not contaminating under stable
semantics, so backward compatibility would require the same outcome as
stable semantics, where precisely one extension is yielded: {B,D}. Yet, the
grounded extension is ∅, the preferred extensions are {A} and {B,D}, and
the complete extensions are ∅, {A} and {B,D}. Hence, grounded, preferred
and complete semantics are not backward compatible with stable semantics.

Apart from backward compatibility with stable semantics, semi-stable
semantics also satisfies non-interference.

Theorem 7. Abstract argumentation under semi-stable semantics satisfies
non-interference.

Proof. Let F1 and F2 be the sets of formulas associated with respectively
argumentation framework AF1 = (Ar1, att1) and AF2 = (Ar2, att2) such
that F1 and F2 are syntactically disjoint. In order to show non-interference,
we have to show that:

• Cnsemi−stable(F1)|atoms(F1) = Cnsemi−stable(F1 ∪ F2)|atoms(F1), and
• Cnsemi−stable(F2)|atoms(F2) = Cnsemi−stable(F1 ∪ F2)|atoms(F2)

It holds that atoms(F1) = Ar1 and atoms(F2) = Ar2. From the fact that
F1 and F2 are syntactically disjoint it then follows that Ar1 ∩ Ar2 = ∅.
Let F3 = F1 ∪ F2. It then holds that F3 is the set of formulas associated
with argumentation framework AF3 = (Ar1 ∪ Ar2, att1 ∪ att2). In essence
AF3 consists of two disjoint graphs (AF1 and AF2) with no connections
between them. That is, an argument originating from AF1 cannot attack
any arguments originating from AF2, and vice versa. In order to prove
non-interference, it then suffices to prove that:

• Cnsemi−stable(AF1)|Ar1 = Cnsemi−stable(AF3)|Ar1 , and
• Cnsemi−stable(AF2)|Ar2 = Cnsemi−stable(AF3)|Ar2

We now prove the first property (the proof of the second property is similar).
“⊆”: Let S1 be a semi-stable extension of AF1. We now have to prove that
there exists a semi-stable extension S3 of AF3 such that S3 ∩ Ar1 = S1.
Let S2 be a semi-stable extension of AF2, and let S3 = S1 ∪ S2. We now
prove that S3 is a semi-stable extension of AF3. First of all, S3 is conflict-
free. This follows from the fact that S1 and S2 are conflict-free and that no
argument in S1 attacks any argument in S2 and vice versa (this is because
AF1 and AF2 are syntactically disjoint). The next thing to prove is that S3
is a fixpoint of F under AF3.

S3 ⊆ F (S3):: Let A ∈ S3. We distinguish two cases.
(1) A ∈ Ar1. Then A ∈ S1. From the fact that S1 is a semi-stable

and therefore also complete extension of AF1, it then follows
that A ∈ F (S1). Since F is a monotonic function and S1 ⊆ S3
it follows that A ∈ F (S3).

(2) A ∈ Ar2. Then A ∈ S2. From the fact that S2 is a semi-stable
and therefore also complete extension of AF2, it then follows
that A ∈ F (S2). Since F is a monotonic function and S2 ⊆ S3
it follows that A ∈ F (S3).

F (S3) ⊆ S3:: Let A ∈ F (S3). We distinguish two cases.
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(1) A ∈ Ar1. Then for every B that attacks A there exists a C ∈ S3
that attacks B. From the fact that AF1 and AF2 are syntacti-
cally disjoint, it follows that B ∈ Ar1 and C ∈ Ar1. The fact
that C ∈ Ar1 and C ∈ S3 imply that C ∈ S1, hence A ∈ F (S1).
From the fact that S1 is a complete extension it then follows
that A ∈ S1, which together with the fact that S1 ⊆ S3 implies
that A ∈ S3.

(2) A ∈ Ar2. Then for every B that attacks A there exists a C ∈ S3
that attacks B. From the fact that AF1 and AF2 are syntacti-
cally disjoint, it follows that B ∈ Ar2 and C ∈ Ar2. The fact
that C ∈ Ar2 and C ∈ S3 imply that C ∈ S2, hence A ∈ F (S2).
From the fact that S2 is a complete extension it then follows
that A ∈ S2, which together with the fact that S2 ⊆ S3 implies
that A ∈ S3.

From the fact that S3 is a conflict-free set with S3 ⊆ F (S3) and F (S3) ⊆ S3
it then follows that S3 is a complete extension of AF3. We now prove that
this complete extension also has a maximal range. Suppose there exists a
complete extension S′

3 with a bigger range than S3. That is, S3 ∪ S
+
3 $

S′
3 ∪ S

′+
3 . Let S′

1 = S′
3 ∩ Ar1 and S′

2 = S′
3 ∩ Ar2. We first prove that S′

1 is
a complete extension of AF1 (the proof that S′

2 is a complete extension of
AF2 is similar and will therefore be omitted). Conflict-freeness of S′

1 follows
from the fact that S′

3 is conflict-free. We now prove that S′
1 is a fixpoint of

F .

S′
1 ⊆ F (S

′
1):: Let A ∈ S′

1. Then from the fact that S′
1 ⊆ S′

3 it follows
that A ∈ S′

3. From the fact that S′
3 is a complete extension it follows

that A ∈ F (S′
3). That is, for each B that attacks A, there exists a

C ∈ S′
3 that attacks B. From the fact that A ∈ S′

1 it also follows
that A ∈ Ar1, and from the fact that AF1 and AF2 are syntactically
disjoint it then follows that B ∈ Ar1 and C ∈ Ar1. From C ∈ Ar1
and C ∈ S′

3 it follows that C ∈ S′
1, so A ∈ F (S

′
1).

F (S′
1) ⊆ S

′
1:: Let A ∈ F (A′

1). Then for each B that attacks A there
exists a C ∈ S′

1 that attacks B. From the fact that S′
1 ⊆ S

′
3 and that

S′
1 ⊆ Ar1 it follows that C ∈ S′

3 and C ∈ Ar1. From the fact that
C ∈ S′

3 it follows that A ∈ F (S′
3). The fact that S′

3 is a complete
extension then implies that A ∈ S′

3. This, together with the fact
that A ∈ Ar1, then implies that A ∈ S′

1.

From the fact that S′
1 is a conflict-free set with S′

1 ⊆ F (S
′
1) and F (S

′
1) ⊆ S

′
1

it follows that S′
1 is a complete extension of AF1. For similar reasons it also

holds that S′
2 is a complete extension of AF2. From the facts that S3 =

S1 ∪ S2 and S′
3 = S′

1 ∪ S
′
2, together with the earlier assumed property that

S3∪S
+
3 $ S′

3∪S
′+
3 it follows that (S1∪S2)∪(S1∪S2)

+ $ (S′
1∪S

′
2)∪(S

′
1∪S2)

+,
which can be rewritten as S1∪S

+
1 ∪S2∪S

+
2 $ S′

1∪S
′+
1 ∪S

′
2∪S

′+
2 . The fact that

AF1 and AF2 are syntactically disjoint implies that S1 ∪ S
+
1 $ S′

1 ∪ S
′+
1 or

S2∪S
+
2 $ S′

2∪S
′+
2 . But then either S1 would not be a semi-stable extension

of AF1 or S2 would not be a semi-stable extension of AF2. Contradiction.
“⊇”: Let S3 be a semi-stable extension of AF3 and let S1 = S3 ∩ Ar1. We
have to prove that S1 is a semi-stable extension of AF1. The fact that S1 is
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conflict-free follows directly from the fact that S3 is conflict-free. We now
prove that S1 is a fixpoint of F .

S1 ⊆ F (S1):: Let A ∈ S1. Then from the fact that S1 ⊆ S3 it follows
that A ∈ S3. From the fact that S3 is a complete extension it follows
that A ∈ F (S3). That is, for each B that attacks A, there exists a
C ∈ S3 that attacks B. From the fact that A ∈ S1 it also follows
that A ∈ Ar1, and from the fact that AF1 and AF2 are syntactically
disjoint it then follows that B ∈ Ar1 and C ∈ Ar1. From C ∈ Ar1
and C ∈ S3 it follows that C ∈ S1, so A ∈ F (S1).

F (S1) ⊆ S1:: Let A ∈ F (A1). Then for each B that attacks A there
exists a C ∈ S1 that attacks B. From the fact that S1 ⊆ S3 and that
S1 ⊆ Ar1 it follows that C ∈ S3 and C ∈ Ar1. From the fact that
C ∈ S3 it follows that A ∈ F (S3). The fact that S3 is a complete
extension then implies that A ∈ S3. This, together with the fact
that A ∈ Ar1, then implies that A ∈ S1.

From the fact that S1 is a conflict-free set with S1 ⊆ F (S1) and F (S1) ⊆ S1
it follows that S1 is a complete extension of AF1. We now prove that S1
also has a maximal range. Suppose this was not the case. Then there would
exist a complete extension S′

1 of AF1 with a range bigger than S1. That is,
S1 ∪ S

+
1 $ S′

1 ∪ S
′+
1 . Let S′

3 = S′
1 ∪ (S3\Ar1). We now prove that S′

3 is a
complete extension with a bigger range than S3. We first prove that S′

3 is
conflict-free. Suppose there exists arguments A,B ∈ S′

3 such that A attacks
B. We distinguish four possibilities.

(1) A ∈ S1 and B ∈ (S3\Ar1). This implies that A ∈ Ar1 and B ∈ Ar2.
But since AF1 and AF2 are syntactically disjoint, it follows that A
cannot attack B under AF3. Contradiction.

(2) B ∈ S1 and A ∈ (S3\Ar1). This implies that B ∈ Ar1 and A ∈ Ar2.
But since AF1 and AF2 are syntactically disjoint, it follows that A
cannot attack B under AF3. Contradiction.

(3) A,B ∈ S1. Then S1 would not be conflict-free. Contradiction.
(4) A,B ∈ (S3\Ar1). Then S3 would not be conflict-free. Contradiction.

Since all possibilities for S′
3 not to be conflict-free result in a contradiction,

it follows that S′
3 is conflict-free. Before continuing to prove that S′

3 is a
complete extension of AF3, we first prove that S′

1 is a complete extension
of AF1 and S3\Ar1 is a complete extension of AF2. The fact that S′

1 is a
complete extension of AF1 follows directly from the fact that it is a semi-
stable extension of AF1. The fact that S3\Ar1 is a complete extension of
AF2 can be seen as follows.

S3\Ar1 ⊆ F (S3\Ar1):: Let A ∈ S3\Ar1. Then A ∈ S3. From the fact
that S3 is a complete extension it follows that A ∈ F (S3). So for
every B that attacks A, there exists a C ∈ S3 such that C attacks
B. From the fact that A ∈ S3\Ar1 it follows that A ∈ Ar2. From
the fact that AF1 and AF2 are syntactically disjoint it then also
follows that B ∈ Ar2 and C ∈ Ar2. Therefore, C ∈ S3\Ar1, so
A ∈ F (S3\Ar1).

F (S3\Ar1) ⊆ S3\Ar1:: Let A ∈ F (S3\Ar1). Then for each B that
attacks A, there exists a C ∈ S3\Ar1 that attacks B. The fact



SEMI-STABLE SEMANTICS 19

that C ∈ S3\Ar1 implies that C ∈ Ar2, and from the fact that
AF1 and AF2 are syntactically disjoint it also follows that B ∈ Ar2
and A ∈ Ar2. From the fact that F is a monotonic function and
that A ∈ F (S3\Ar1) it follows that A ∈ F (S3). From the fact that
S3 is a complete extension (as a consequence of being a semi-stable
extension) it then follows that A ∈ S3. From this, together with the
facts that A ∈ Ar2 and that AF1 and AF2 are syntactically disjoint,
it follows that A ∈ S3\Ar1.

From the facts that S3\Ar1 is conflict-free (as a direct consequence of S3
being conflict-free), S3\Ar1 ⊆ F (S3\Ar1) and F (S3\Ar1) ⊆ S3\Ar1 it fol-
lows that S3\Ar1 is a complete extension of AF2. The next thing to prove
is that S′

3 is a fixpoint of F under AF3.

S′
3 ⊆ F (S

′
3):: Let A ∈ S′

3. We distinguish two cases.
(1) A ∈ S′

1. Then from the fact that S′
1 is a complete extension of

AF1 it follows that S
′
1 = F (S′

1), so A ∈ F (S
′
1). And since F is a

monotonic function and S′
1 ⊆ S

′
3 it then follows that A ∈ F (S′

3).
(2) A ∈ S3\Ar1. Then, from the earlier observed fact that S3\Ar1

is a complete extension of AF2 it follows that S3\Ar1 = F (S3\
Ar1), so A ∈ F (S3\Ar1). From the facts that F is a monotonic
function and that S3\Ar1 ⊆ S

′
3 it then follows that A ∈ F (S′

3).
F (S′

3) ⊆ S
′
3:: Let A ∈ F (S′

3). Then for each B that attacks A there
exists a C ∈ S′

3 that attacks B. We distinguish two possibilities.
(1) C ∈ S3\Ar1. Then C ∈ Ar2, and as a result of AF1 and

AF2 being syntactically disjoint, it follows that B ∈ Ar2 and
A ∈ Ar2. It then follows that A ∈ F (S3\Ar1). From the earlier
observed fact that S3\Ar1 is a complete extension it then follows
that A ∈ S3\Ar1, and from the fact that S3\Ar1 ⊆ S′

3 it then
follows that A ∈ S′

3.
(2) C ∈ S′

1. Then C ∈ Ar1, and as a result of AF1 and AF2 being
syntactically disjoint, it then follows that B ∈ S′

1 and A ∈ S′
1.

It then follows that A ∈ F (S′
1). From the fact that S′

1 is a
complete extension, it then follows that A ∈ S′

1 and from the
fact that S′

1 ⊆ S
′
3 it then follows that A ∈ S′

3.

From the facts that S′
3 is conflict-free, S

′
3 ⊆ F (S

′
3) and F (S

′
3) ⊆ S

′
3 it follows

that S′
3 is a complete extension of AF3. We now prove that S′

3 has a bigger
range than S3. First, it can be observed that S3 = (S3 ∩ Ar1) ∪ (S3\Ar1),
and since S1 = S3 ∩ Ar1 it follows that S3 = S1 ∪ (S3\Ar1). This means
that the range of S3 can be described as S1 ∪ (S3\Ar1)∪ (S1 ∪ (S3\Ar1))

+,
which is equal to

S1 ∪ (S3\Ar1) ∪ S
+
1 ∪ (S3\Ar1)

From the fact that S′
3 = S′

1 ∪ (S3\Ar1) it follows that the range of S′
3 is

S′
1 ∪ (S3\Ar1) ∪ (S′

1 ∪ (S3\Ar1))
+, which is equal to

S′
1 ∪ (S3\Ar1) ∪ S

′+
1 ∪ (S3\Ar1)

Our assumption that S′
1 has a bigger range than S1 means that S1 ∪ S

+
1 $

S′
1∪S

+
1 , from which it directly follows that S1∪(S3\Ar1)∪S

+
1 ∪(S3\Ar1) $

S′
1 ∪ (S3\Ar1) ∪ S

′+
1 ∪ (S3\Ar1). So S′

3 is a complete extension with a
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bigger range than S3. But then S3 would not be a semi-stable extension.
Contradiction. �

From the fact that semi-stable semantics satisfies non-interference, crash
resistance follows directly, since semi-stable semantics for formal argumen-
tation is non-trivial.

Lemma 1. Abstract argumentation under semi-stable semantics is non-
trivial.

Proof. Let Ar ⊆ U with Ar 6= ∅. We now have to prove that there exist two
argumentation frameworks AF1 = (Ar , att1) and AF2 = (Ar , att2) such that
Cnsemi−stable(AF1) 6= Cnsemi−stable(AF2). This is obtained with att1 = ∅
and att2 = {(A,A) | A ∈ Ar}. In that case, Cnsemi−stable(AF1) = {Ar} and
Cnsemi−stable(AF2) = {∅}. �

Theorem 8. Abstract argumentation under semi-stable semantics satisfies
crash resistance.

Proof. Lemma 1 states that abstract argumentation under semi-stable se-
mantics is non-trivial. Theorem 7 states that abstract argumentation under
semi-stable semantics satisfies non-interference. Theorem 1 states that each
non-trivial formalism that satisfies non-interference also satisfies crash resis-
tance. �

4. Applying Semi-Stable Semantics to Logic Programming

In this section, we apply semi-stable semantics to logic programming.
This is done by describing logic programming in terms of formal argumen-
tation, in line with [27]. We then change the semantics from stable to semi-
stable and show that the resulting formalism satisfies the paraconsistent
properties (non-interference, crash resistance and backward compatibility)
which are implemented, as mentioned earlier, in the formal semantics of
several paraconsistent logics.

4.1. Preliminaries. We first describe some basic concepts in the field of
logic programming.

Definition 11. A rule is an expression of the form
c← a1, . . . , an, not b1, . . . , not bm (n ≥ 0, m ≥ 0)
where c as well as each ai (1 ≤ i ≤ n) and each bj (1 ≤ j ≤ m) are atoms.
We assume that for each i, j ∈ {1, . . . , n}, if i 6= j then ai 6= aj, and that
for each k, l ∈ {1, . . . ,m}, if k 6= l then bk 6= bl. c is called the head of the
rule, a1, . . . , an, not b1, . . . , not bm is called the body of the rule. A rule is
called definite iff m = 0.
A logic program is a finite set of rules. A logic program is called definite
iff each of its rules is definite. If P is a strict logic program, then Cl(P )
(the closure of P ) is defined as the smallest set such that for each rule
c← a1, . . . , an in P it holds that if a1, . . . , an ∈ Cl(P ) then c ∈ Cl(P ).
If P is a logic program and S is a set of atoms, then PS (the Gelfond-
Lifschitz reduct) is defined as {c ← a1, . . . , an | c ← a1, . . . , an, not b1, . . . ,
not bm ∈ P and ¬∃bi(1 ≤ i ≤ m) : bi ∈ S}. The stable operator γP (S) is
defined as Cl(PS). S is a stable model of P iff S is a fixpoint of γP .
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We now provide an argumentation interpretation of logic programming.
Our approach differs from that in [27] in that we use tree-based arguments.
The advantage of using tree-based arguments is that every rule in the argu-
ment is relevant for the derivation of the main conclusion, which is neces-
sary if applying semi-stable semantics should satisfy the properties of non-
interference and crash resistance.

Definition 12. Let P be a logic program. An argument A is a tree where
each node is labelled with a rule in P such that if a node is labelled with
c ← a1, . . . , an, not b1, . . . , not bm then its children are labelled with rules
r1, . . . , rn such that head(r1) = a1, . . . , head(rn) = an. Furthermore, every
rule is allowed to occur at most once in each branch of the tree. If A is an
argument then conc(A) is defined as the head of the rule of the root. If Args
is a set of arguments then concs(Args) is defined as {conc(A) | A ∈ Args}.
We say that an argument A attacks argument B iff B contains a node labelled
with rule c ← a1, . . . , an, not b1, . . . , not bm and conc(A) = bj for some
1 ≤ j ≤ m. We write AFP = (ArP , attP ) for the thus defined argumentation
framework associated with P .

We sometimes abuse terminology and talk about a set of atoms “attack-
ing” an argument, a set of arguments, a rule or a set of rules.

As an example of how Definition 12 is applied, consider the following logic
program P1:
a←
c← a, not b
d← a, not c, notd
e← not d
Based on P1, one can construct four arguments, which attack each other
according to the argumentation framework of Figure 4.

d <− a, not c, not e
e <− not d

A A A A1 2 3 4

a <−
c <− a, not b

a <− a <−

Figure 4. The argumentation framework associated with
logic program P1

We are now ready to specify the entailment yielded by our argumentation
interpretation of logic programming under stable semantics.

Definition 13. Let P be a logic program. We define Cnstable(P ) as
{concs(Args) | Args is a stable extension of AFP }.

In the argumentation framework of Figure 4, there exists just one sta-
ble extension {A1, A2, A4} with associated conclusions {a, c, e}. Hence,
Cnstable(P ) = { {a, c, e} }.

Our argumentation interpretation of logic programming under stable se-
mantics is equivalent to the standard Gelfond-Lifschitz stable model seman-
tics.
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Theorem 9. Let P be a logic program. It holds that S ∈ Cnstable(P ) iff S
is a stable model of P .
Proof.
“⇒”: Let S ∈ Cnstable(P ). This means there exists a stable extension Args
of AFP such that concs(Args) = S. We now show that S is also a stable
model of P . For this, we need to show that:

(1) S ⊆ γP (S). Let e ∈ S, so e ∈ concs(Args). Let A ∈ Args be
an argument with conc(A) = e. The fact that A is in the stable
extension Args means that A is not attacked by Args . That is, A
is not “attacked” by S = concs(Args). This means that each rule
of A is not “attacked” by S. So each rule of A is represented in
PS (formally: for each rule c ← a1, . . . , an, not b1, . . . , not bm of A
there exists a rule c← a1, . . . , an in PS). This then implies that the
conclusion of A (e) can still be derived using the rules in PS . That
is, e ∈ Cl(PS), which can be rewritten as e ∈ γP (S).

(2) γP (S) ⊆ S. Let e 6∈ S, so e 6∈ concs(Args). Then there is no
argument A ∈ Args with conc(A) = e. The fact that Args is a stable
extension then implies that each argument A with conc(A) = e
is attacked by Args. So each argument A with conc(A) = e is
“attacked” by S. This implies that there is no derivation for e using
the rules in PS . That is, e 6∈ Cl(PS), so e 6∈ γP (S).

“⇐”: Let S be a stable model of P . That is, S = γP (S). We now need to
show that S ∈ Cnstable(P ). We do this by constructing a stable extension
Args of AFP such that concs(Args) = S. Let Args be the set of arguments
that are not “attacked” by S. We first prove that concs(Args) = S.

• concs(Args) ⊆ S. Let e ∈ concs(Args). Then Args contains an
argument A with conclusion e that is not “attacked” by S. It then
follows that e ∈ Cl(PS), so e ∈ γP (S). From the fact that S is a
fixpoint of γP it then follows that e ∈ S.
• S ⊆ concs(Args). Let e ∈ S. From the fact that S is a fixpoint
of γP it follows that e ∈ γP (S), so e ∈ Cl(P

S), meaning that there
exists a derivation for e using the rules in PS . It then also follows
that there is an argument A with conclusion e that is not “attacked”
by S, so A ∈ Args , so e ∈ concs(Args).

Now that it has been proved that concs(Args) = S, the next thing to be
proved is that Args is a stable extension of AFP :

(1) Args is conflict-free. Suppose this is not the case. Then there exists
A,B ∈ Args such that A attacks B, so conc(A) “attacks” B, so
concs(Args) “attacks” B, so S “attacks” B ∈ Args. But Args is the
set of all arguments not “attacked” by S. Contradiction.

(2) Args attacks each argument in ArP \Args . Let A ∈ ArP\Args .
Then from the fact that A 6∈ Args it follows that A is “attacked” by
S, so A is “attacked” by concs(Args), so A is attacked by Args .

�

4.2. Semi-Stable Semantics for Logic Programming. We now apply
the concept of semi-stable semantics to the argumentation interpretation of
logic programming.
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Definition 14. Let P be a logic program. We define Cnsemi−stable(P ) as
{concs(Args) | Args is a semi-stable extension of AFP }.

As an example of how Definition 14 is applied, consider the following logic
program P2.
a←
b← a
c← b, not d
d← b, not e
e← b, not c
f ← b, not g
g ← a, not f
The associated argumemtation framework AFP2

is shown in Figure 5.

A A A A

a <−

1

2 4 5 7

3 6A A A

a <−

c <− b, not d

a <−

a <− a <−

d <− b, not e e <− b, not c

a <−

f <− b, not g

a <−

g <− a, not f

b <− a
b <− a

b <− ab <− a

b <− a

Figure 5. The argumentation framework associated with
logic program P2

Here, stable semantics yields no extensions at all. That is, Cnstable(P2) =
∅. Semi-stable semantics, on the other hand, yields two extensions: {A1, A2,
A6} and {A1, A2, A7}. Hence, Cnsemi−stable(P2) = {{a, b, f}, {a, b, g}}. One
could argue that the conflict between c, d and e should not influence the
outcome regarding f and g, and this is precisely how things are handled by
semi-stable semantics.

We are now ready to prove that logic programming under semi-stable
semantics satisfies the postulates of backward compatibility, non-interference
and crash resistance.

Theorem 10. For logic programs, Cnsemi−stable is backward compatible with
the Gelfond-Lifschitz stable model semantics.

Proof. Let P be a logic program that is not contaminating under stable
model semantics. This implies that there exists at least one stable model
S of P . From Theorem 9 it follows that S ∈ Cnstable(P ), so there exists a
stable extension Args of AFP such that concs(Args) = S. From Theorem 5
it follows that Cnstable(AFP ) = Cnsemi−stable(AFP ), so also Cnstable(P ) =
Cnsemi−stable(P ). Since Cnstable(P ) is equivalent to the standard Gelfond-
Lifschitz stable model semantics (Theorem 9) it then follows that (still for
logic programs with at least one stable model) Cnsemi−stable is equivalent
with stable model semantics. �
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Lemma 2. Let P1 and P2 be two syntactically disjoint programs, and let
P3 = P1 ∪ P2. It holds that ArP3

= ArP1
∪ ArP2

and attP3
= attP1

∪ attP2
.

Proof. We first observe that ArP1
⊆ ArP3

, because every argument that
can be constructed using P1 can also be constructed using P1 ∪ P2 (= P3).
Similarly, it holds that ArP2

⊆ ArP3
, so it follows that ArP1

∪ArP2
⊆ ArP3

.
We now prove that ArP3

⊆ ArP1
∪ArP2

. Let A ∈ ArP3
. We distinguish two

cases:

(1) The root of A is labelled with a rule from P1. Then from the fact
that P1 and P2 are syntactically disjoint, it follows that all children of
the root are labelled with rules from P1, and no children are labelled
with rules from P2. It then follows by induction that each node in
the tree is labelled with a rule from P1 and no node is labelled with
a rule from P2. Therefore A ∈ ArP1

so also A ∈ ArP1
∪ ArP2

.
(2) The root of A is labelled with a rule from P2. Then from the fact

that P1 and P2 are syntactically disjoint, it follows that all children of
the root are labelled with rules from P2, and no children are labelled
with rules from P1. It then follows by induction that each node in
the tree is labelled with a rule from P2 and no node is labelled with
a rule from P1. Therefore A ∈ ArP2

so also A ∈ ArP1
∪ ArP2

.

From the thus observed fact that ArP3
⊆ ArP1

∪ ArP2
, together with the

earlier observed fact that ArP1
∪ ArP2

⊆ ArP3
, it follows that ArP3

=
ArP1

∪ ArP2
.

We can also observe that attP1
⊆ attP3

, because if A and B are arguments
based on P1 such that A attacks B, then A and B are also arguments based
on P1 ∪P2 (= P3) such that A attacks B. For similar reasons, it holds that
attP2

⊆ attP3
, so that it follows that attP1

∪ attP2
⊆ attP3

. We now prove
that attP3

⊆ attP1
∪ attP2

. Let A and B be two arguments based in P3 such
that A attacks B. We distinguish two cases:

(1) conc(A) ∈ atoms(P1). Then it follows that the root of A is labelled
with a rule from P1, so each node of A is labelled with a rule from
P1, so A ∈ ArP1

. The fact that A attacks B means that B contains
a rule with a weakly negated literal from atoms(P1). The fact that
P1 and P2 are syntactically disjoint then implies that each rule in B
comes from P1, so B ∈ ArP1

. This means that A attacks B under
AFP1

.
(2) conc(A) ∈ atoms(P2). Then it follows that the root of A is labelled

with a rule from P2, so each node of A is labelled with a rule from
P2, so A ∈ ArP2

. The fact that A attacks B means that B contains
a rule with a weakly negated literal from atoms(P2). The fact that
P1 and P2 are syntactically disjoint then implies that each rule in B
comes from P2, so B ∈ ArP2

. This means that A attacks B under
AFP2

.

From the thus observed fact that attP3
⊆ attP1

∪ attP2
, together with the

earlier observed fact that attP1
∪attP2

⊆ attP3
it follows that attP3

= attP1
∪

attP2
. �

Theorem 11. For logic programs, Cnsemi−stable satisfies non-interference.
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Proof. Let P1 and P2 be two logic programs that are syntactically disjoint.
In order to show non-interference, we need to prove that:

• Cnsemi−stable(P1)|atoms(P1) = Cnsemi−stable(P1 ∪ P2)|atoms(P1) and
• Cnsemi−stable(P2)|atoms(P2) = Cnsemi−stable(P1 ∪ P2)|atoms(P2).

We prove only the first property (the proof of the second property is similar).
“⊆”: Let S ∈ Cnsemi−stable(P1)|atoms(P1). Since Cnsemi−stable(P1)|atoms(P1) =
Cnsemi−stable(P1) it immediately follows that S ∈ Cnsemi−stable(P1). This
means there exists a semi-stable extensionArgs ofAFP1

such that concs(Args)
= S. The fact that semi-stable semantics for abstract argumentation sat-
isfies non-interference (Theorem 7) means that (given that AFP1

and AFP2

are syntactically disjoint):

Cnsemi−stable((ArP1
, attP1

))|ArP1
=Cnsemi−stable((ArP1

∪ArP2
, attP1

∪attP2
))|ArP1

From Lemma 2 it follows that AFP1∪P2
= (ArP1

∪ArP2
, attP1

∪ attP2
), so it

holds that

Cnsemi−stable(AFP1
)ArP1

= Cnsemi−stable(AFP1∪P2
)|ArP1

From the fact that Args is a semi-stable extension of AFP1
, it follows that

Args ∈ Cnsemi−stable(AFP1
)|ArP1

, so Args ∈ Cnsemi−stable(AFP1∪P2
)|ArP1

,

which then implies that there exists a semi-stable extension Args ′ of AFP1∪P2

such thatArgs ′∩ArP1
= Args . The fact thatArgs ′ is a semi-stable extension

of (ArP1
∪ArP2

, attP1
∪attP2

) implies that concs(Args ′) ∈ Cnsemi−stable(P1∪
P2), so concs(Args ′)|atoms(P1) ∈ Cnsemi−stable(P1 ∪ P2)|atoms(P1). We now
prove that concs(Args ′)|atoms(P1) = S.

“⊆”:: Let e ∈ concs(Args ′)|atoms(P1). Then e ∈ atoms(P1). Let A
be an argument in Args ′ with conc(A) = e. Then A ∈ ArP1

, so
A ∈ Args , so e ∈ concs(Args), so e ∈ S.

“⊇”:: Let e ∈ S. Then e ∈ concs(Args). So there is an A ∈ Args with
conc(A) = e. From the fact that A ∈ Args it follows that A ∈ Args ′,
so e ∈ concs(Args ′). From the fact that A ∈ Args it also follows that
A ∈ ArP1

, so e ∈ atoms(P1), so from the fact that e ∈ concs(Args ′)
it follows that e ∈ concs(Args ′)|atoms(P1).

From the thus proved fact that concs(Args ′)|atoms(P1) = S, together with
the earlier observed fact that concs(Args ′)|atoms(P1) ∈ Cnsemi−stable(P1 ∪
P2)|atoms(P1) it follows that S ∈ Cnsemi−stable(P1 ∪ P2)|atoms(P1).
“⊇”: Let S ∈ Cnsemi−stable(P1 ∪ P2)|atoms(P1). Then there exists a semi-
stable extension Args ′ of AFP1∪P2

with concs(Args ′)∩atoms(P1) = S. Like
was explained before, it holds that:

Cnsemi−stable(AFP1
)|ArP1

= Cnsemi−stable(AFP1∪P2
)|ArP1

Let Args = Args ′ ∩ ArP1
. From the fact that Args ′ is a semi-stable ex-

tension of AFP1∪P2
it follows that Args ∈ Cnsemi−stable(AFP1∪P2

)|ArP1
,

so Args ∈ Cnsemi−stable(AFP1
)|ArP1

, which together with the fact that

Args ⊆ ArP1
implies that Args ∈ Cnsemi−stable(AFP1

), so concs(Args) ∈
Cnsemi−stable(P1). Since concs(Args) ⊆ atoms(P1) it follows that concs(Args)
∈ Cnsemi−stable(P1)|atoms(P1). We now prove that concs(Args) = S.
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“⊆”:: Let e ∈ concs(Args). Then there is an A ∈ Args with conc(A) =
e. Then e ∈ atoms(P1) and A ∈ ArP1

. From A ∈ Args it follows that
A ∈ Args ′, so e ∈ concs(Args ′). This, together with e ∈ atoms(P1)
implies that e ∈ concs(Args ′) ∩ atoms(P1), so e ∈ S.

“⊇”:: Let e ∈ S. Then e ∈ concs(Args ′) ∩ atoms(P1). So there exists
an argument A ∈ Args ′ with conc(A) = e. Moreover, the fact
that c ∈ atoms(P1) implies that A ∈ ArP1

. It then follows that
A ∈ Args ′ ∩ ArP1

, so A ∈ Args , so e ∈ concs(Args).

From the fact that concs(Args) = S, together with the fact that concs(Args)
∈ Cnsemi−stable(P1)|atoms(P1) it follows that S ∈ Cnsemi−stable(P1)|atoms(P1).

�

Lemma 3. Logic programming under semi-stable semantics is non-trivial.

Proof. Let S be a non-empty set of atoms. We now have to prove that there
exists two logic programs P1 and P2 with atoms(P1) = atoms(P2) = S, such
that Cnsemi−stable(P1) 6= Cnsemi−stable(P2). This is obtained with P1 =
{e ←| e ∈ S} and P2 = {e ← e | e ∈ S}. In that case, Cnsemi−stable(P1) =
{S} and Cnsemi−stable(P2) = {∅}. �

Theorem 12. Logic programming under semi-stable semantics satisfies crash
resistance.

Proof. Lemma 3 states that abstract argumentation under semi-stable se-
mantics is non-trivial. Theorem 11 states that logic programming under
semi-stable semantics satisfies non-interference. Theorem 1 states that each
non-trivial logical formalism that satisfies non-interference also satisfies crash
resistance. �

Nearly twenty different approaches to paraconsistent semantics as related
to logic programming are surveyed in [23]. Most of them are based on
ad hoc multivalued models just to provide meaningful queries even when
classical models of a knowledge-base are unavailable. Others use a mixture
of logical mechanisms and computational devices that allow contradictions
to be detected, but do not offer sufficient control over real reasoning with
contradictions, or fully cope with default negations. An alternative has
been proposed by Sakama and Inoue (cf. [49]) by means of their “semi-
stable models”, defined to handle situations where p-stable models do not
exist. However, this approach works by translating (potentially problematic)
disjunctive logic programs into positive disjunctive logic programs, and then
by treating semantically the resulting restricted type of programs. As a
consequence, the approach by Sakama and Inoue cannot satisfactorily solve
problems such as the question of undefined literals, and their treatment
of this problem is local and program-dependent. Since our proposal does
not use translations, it is conservative in the sense that the semi-stable
extensions coincide with the stable extensions in the cases where there also
exists at least one. To sum up, none of the formalisms which intend to offer
paraconsistent semantics for logic programs in the literature simultaneously
guarantee non-interference, crash resistance and backwards compatibility.

In our current treatment of semi-stable semantics for logic programming,
we have taken the path of applying an argumentation interpretation of logic
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programming. One can ask the question whether it is also possible to apply
semi-stable semantics directly, in native logic programming terms, without
going through the “detour” of formal argumentation theory. Although we
do not yet have a definite answer to this question, our hypothesis is that
the 3-valued stable model semantics [47] could be a good starting point. In
[55] it is proved that the entailment yielded by the 3-valued stable model se-
mantics is equivalent to the entailment yielded under complete semantics of
the associated argumentation framework (using essentially the same way of
constructing the argumentation framework as in Definition 12 of the current
paper). Hence, what is called 3-valued stable semantics in logic program-
ming coincides with what is called complete semantics in formal argumen-
tation [55]. This result is of particular interest, since complete semantics
can be seen as the basis to describe various other well-known argumenta-
tion semantics [10, 16], just like the 3-valued stable model semantics can be
used as a basis to describe various other well-known logic programming se-
mantics. For instance, as was discussed at the end of Section 3.2, preferred
labellings can be described the complete labellings with maximal in, the
grounded labelling as the (unique) complete labelling with maximal undec
and stable labellings as complete labellings without undec. Similarly, regu-
lar models [32] can be described as 3-valued stable models with maximal in2,
the well-founded model can be described as the 3-valued stable model with
maximal undec and traditional (2-valued) stable models can be described as
3-valued stable models without undec. Using the correspondence between 3-
valued stable model semantics (logic programming) and complete semantics
(argumentation) as a basis, one then obtains not only the existing corre-
spondences between the well-founded semantics (logic programming) and
grounded semantics (argumentation) [27], and between the stable model se-
mantics (logic programming) and stable semantics (argumentation) [27], but
we have recently also been able to obtain the correspondence between regular
semantics (logic programming) and preferred semantics (argumentation).

The above described correspondences between logic programming seman-
tics and argumentation semantics lead to the hopeful expectation that semi-
stable semantics for argumentation can be expressed equivalently as selecting
the 3-valued stable models with minimal undec. Providing a formal proof,
however, seems to be significantly more difficult than for any of the other
correspondences, for reasons that are beyond the scope of the current pa-
per. However, even if no formal correspondence can be found, the approach
of selecting the 3-valued stable models with minimal undec seems to yield
properties that are very close to those of semi-stable semantics. We hope to
be able to report more on this in the near future.

5. Applying Semi-Stable Semantics to Default Logic

In this section, we provide an overview of default logic and provide an
alternative that satisfies non-interference and crash resistance, while at the
same time remaining backward compatible with Reiter’s original account of

2We have taken the liberty to refer to the truth values of 3-valued stable models as in,
out and undec, instead of using Przymusinski’s original notation of t, f and u.



28 CAMINADA, CARNIELLI, AND DUNNE

default logic. Our approach will be to apply semi-stable semantics to the
argumentation interpretation of default logic.

5.1. Preliminaries. In order to simplify the discussion we restrict ourselves
to the propositional variant of default logic.

Definition 15. A default d is an expression p : j1, . . . , jn/c (n ≥ 0) where
p (the prerequisite, pre(d)), j1, . . . , jn (the justification, jus(d)) and c (the
consequent, cons(d)) are propositional formulas. A default is called normal
iff n = 1 and j1 = c. A default is called semi-normal iff ji = c for some
1 ≤ i ≤ n. A default theory T is a pair (W,D) where W is a finite set
of propositional formulas and D is a finite set of defaults. A default theory
is called normal iff every default in D is normal. A default theory is called
semi-normal iff every default in D is semi-normal. A default theory is called
consistent iff W is consistent.

In the following definition, Cn(E) stand for the propositional conse-
quences of the set of propositions E. That is: Cn(E) = {p | E � p}.

Definition 16 ([48]). Let T = (W,D) be a default theory and E be a set of
formulas. Let
E0 = W and for i ≥ 0: Ei+1 = Cn(Ei) ∪ {c | (p : j1, . . . , jn/c) ∈ D where
p ∈ Ei and ¬j1, . . . ,¬jn 6∈ E}.
E is a default extension of (W,D) iff E = ∪∞i=0Ei.

We write E for the set of extensions of a given default theory.
There are several possible interpretations of default logic in terms of for-

mal argumentation. In this section, we treat two of such interpretations. In
the first interpretation, an argument is seen as a sequence of defaults. In the
second interpretation, an argument is seen as a set of trees of defaults. Both
interpretations can be used to model the original version of default logic,
which in essence implements stable semantics. However, it is the tree-based
interpretation that is most suited for changing the semantics of default logic
from stable to semi-stable, since it will allow us to apply results of abstract
argumentation (in particular Theorem 7) to prove non-interference and crash
resistance.

In order to obtain a formalism that satisfies non-interference and crash
resistance, and that is backward compatible with standard default logic,
we need to take the tree-based interpretation of default logic, change the
semantics from stable to semi-stable and rule out all inconsistent arguments.
For semi-normal consistent default theories, this approach will then satisfy
all three postulates. For our purposes, the sequence based interpretation of
default logic serves merely as a bridge between Reiter’s original definition
of default logic and our tree-based interpretation.

We first define the sequence-based interpretation of default logic.

Definition 17. A sequence based argument A under default theory (W,D)
is a sequence of defaults [d1, . . . , dn] (n ≥ 0) where di 6= dj whenever i 6= j,
such that for each di (1 ≤ i ≤ n) it holds thatW∪{cons(d1), . . . , cons(di−1)} �
pre(di). The set of conclusions concs(A) of argument A is defined as Cn(W∪
{cons(d) | d is a default in A}). Let A = [d1, . . . , dn] (n ≥ 0) and A′ =
[d′1, . . . , d

′
m] (m ≥ 1) be two arguments under default theory (W,D). We
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say that A attacks A′ iff A′ contains a default d′i (1 ≤ i ≤ m) such that
¬j ∈ concs(A) for some j ∈ jus(d′i).

If Args is a set of sequence based arguments, then we write concs(Args)
for Cn(W ∪ {concs(A) | A ∈ Args}). We write ArseqT for the set of all se-
quence based arguments under T = (W,D) and att seqT for the attack relation
under T .

Definition 18. Let T = (W,D) be a default theory. We define the con-
sequences of T under sequence based interpretation using stable semantics
Cnstdlseq(T ) as {concs(Args) | Args is a stable extension of (ArseqT , att seqT )}.

The following theorem states that the sequence based argumentation in-
terpretation of default logic under stable semantics is equivalent with Re-
iter’s original notion of default logic. The equivalence between argumen-
tation and default logic has also been observed in [27]; however, since our
argument form is slightly different than in [27] (which seems to be more in
line with the assumption-based approach of [7]), we have added a separate
proof in this paper.

Theorem 13. Let T = (W,D) be a default theory and E be its set of default
extensions. It holds that Cnstdlseq (T ) = E.
Proof.
“⊆”: Let E ∈ Cnstdlseq(T ). This means there exists a stable extension Args
of sequence based arguments under T such that concs(Args) = E. We now
show that E is also a default extension in the sense of Definition 16. So we
need to prove that:

(1) ∪∞i=0Ei ⊆ E. Let e 6∈ E. Then Args contains no argument with
conclusion e. The fact that Args is a stable extension then implies
that for each argument A with conclusion e, A is attacked by an
argument in Args . Therefore, the derivation of e will be blocked in
∪∞i=0Ei. So e 6∈ ∪

∞
i=0Ei.

(2) E ⊆ ∪∞i=0Ei. Let e ∈ E. Then there exists an argument (say A) for
e. That is, e ∈ concs(A). The fact that A ∈ Args implies that A is
not attacked by any argument in Args . Therefore, there will be an
i ≥ 0 such that e ∈ Ei, so e ∈ ∪

∞
i=0Ei.

“⊇”: Let E ∈ E . This means that E is a default extension of (W,D). We
now prove that there exists a stable extension Args of the argumentation
framework (ArseqT , att seqT ) such that concs(Args) = E. Let Args be the set
of all arguments that are not “attacked” by E. That is, A ∈ ArseqT is in
Args iff A does not contain a default d with e ∈ jus(d) for some ¬e ∈ E.
It holds that the conclusions of Args correspond with ∪∞i=0Ei, so from the
fact that E = ∪∞i=0Ei it follows that concs(Args) = E. We now show
that Args is a stable extension. First of all, Args is conflict-free. Suppose
∃A,B ∈ Args : A attacks B. Since A and B are not “attacked” by E, it holds
that concs(A) 6⊆ E. But this contradicts with concs(Args) = E. Secondly,
Args attacks each argument C that is not in Args . Let C ∈ ArseqT such
that C 6∈ Args. Then C is “attacked” by E. But since concs(Args) = E, it
means that C is also attacked by Args . �

We now define the tree-based interpretation of default logic.
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Definition 19. A pre-argument A under a default theory (W,D) is a (pos-
sibly empty) tree of defaults such that for each default d it holds that its set of
children {d1, . . . , dn} (n ≥ 0) is a minimal set such that W ∪{cons(d1), . . . ,
cons(dn)} � pre(d). Furthermore, every default is allowed to occur at most
once in each branch of the tree.
Let A be a pre-argument. We define concs(A) as Cn(W ∪ {cons(d) | d is
a default in A}). Let S be a set of pre-arguments. We define concs(S) as
Cn(∪{concs(A) | A ∈ S}).
A tree based argument is either of the form {A} where A is a pre-argument,
or a minimal set of pre-arguments {A1, . . . , An} such that concs({A1, . . . , An})
contains ¬j with j ∈ jus(d) for some d ∈ D.
Let A and B be tree based arguments under (W,D). We say that A attacks
B iff ¬j ∈ concs(A) with j ∈ jus(d) for some d occurring in B.

As an example of how Definition 19 is applied, consider the default the-
ory T1 = (W1,D1) with W1 = ∅ and D1 = {⊤ : ⊤/a; a : ¬b/c; a :
¬c,¬e/d; ⊤ : ¬d/e}. Based on T1 one can construct four tree-based argu-
ments which attack each other according to the argumentation framework
of Figure 6.

A A A A1 2 3 4

T: T / a
a: −b / c

T: T / a

a: −c, −e / d

T: T / a
T: −d / e

Figure 6. The argumentation framework associated with
default theory T1

If Args is a set of tree based arguments, then we write concs(Args) for
Cn(∪{concs(A) | A ∈ Args}). We write Ar treeT for the set of all tree based
arguments under T = (W,D) and att treeT for the attack relation under T .

Definition 20. Let T = (W,D) be a default theory. We define the con-
sequences of T under tree based interpretation using stable semantics as
Cnstdltree(T ) = {concs(Args) | Args is a stable extension of (Ar treeT , att treeT ).

In the argumentation framework of Figure 6, there exists just one stable
extension {A1, A2, A4} with associated conclusions Cn({a, c, e}). Hence,
Cnstable(T1) = {Cn({a, c, e})}.

Under stable semantics, it does not matter for the entailment whether one
applies sequence based or tree based arguments, as is stated by the following
theorem.

Lemma 4. Let T = (W,D) be a default theory. It holds that Cnstdlseq(T ) =
Cnstdltree(T ).
Proof.
“⊆”: Let E ∈ Cnstdlseq (T ). This means that there exists a stable extension

Argsseq of (ArseqT , att seqT ) such that concs(Argsseq) = E. We now prove

that there also exists a stable extension Args tree of (Ar treeT , att treeT ) with
concs(Args tree) = E. Let Args tree be the set of all possible tree based
arguments that can be constructed using the defaults in Argsseq. We now
prove that Args tree is a stable extension.
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conflict freeness:: Let A,B ∈ Argstree such that A attacks B. Then
there also exists two arguments A′, B′ ∈ ArseqT where A′ contains
the same defaults as A and B′ contains the same defaults as B.
These arguments are not attacked by Argsseq (this is because their
defaults occur in Argsseq) so from the fact that Argsseq is a sta-
ble extension, it follows that A′, B′ ∈ Argsseq. However, since
concs(A) = concs(A′) and defaults(B) = defaults(B′) it follows that
A′ attacks B′ under (ArseqT , att seqT ). So Argsseq would not be conflict-
free. Contradiction.

attacking any argument not in it:: Let B ∈ Ar treeT such that B 6∈
Argstree. Let B′ be an argument of ArseqT that contains the same
defaults as B. It holds that B′ 6∈ Argsseq. This can be seen as
follows. Suppose B′ ∈ Argsseq. Then B could be constructed using
the defaults in Argsseq so B ∈ Argstree. Contradiction. So B′ 6∈
Argsseq. From the fact that Argsseq is a stable extension and B′ 6∈
Argsseq it follows that Argsseq contains an argument A′ that attacks
B′. This implies that A′ has a conclusion ¬j whereas B′ contains a
default d with j ∈ jus(d). From the fact that A′ ∈ Argsseq it follows
that one can construct a tree-based argument A, using the defaults
from Argsseq, that has conclusion ¬j and therefore attacks B. So
Argstree contains an argument A that attacks B.

Now that we have proved that Args tree is a stable extension, the next thing
to prove is that concs(Args tree) = concs(Argsseq).

“concs(Args tree) ⊆ concs(Argsseq)”:: Let c ∈ concs(Args tree). Let A
be the argument in Arseq that contains all defaults of Argstree. This
argument is an element of Argsseq because Argsseq does not “attack”
any of its defaults, and hence Argsseq does not attack A. From
the fact that Argsseq is a stable extension it then follows that A ∈
Argsseq. It then follows that c ∈ concs(A) and that therefore c ∈
concs(Argsseq).

“concs(Args tree) ⊇ concs(Argsseq)”:: For each default occurring in
Argsseq there exists an argument in Argstree that contains this de-
fault. This means that defaults(Argsseq) ⊆ defaults(Args tree). From
this it follows that concs(Argsseq) ⊆ concs(Args tree).

“⊇”: Let E ∈ Cnstdltree(T ). This means there exists a stable extension
Args tree under (Ar treeT , att treeT ) such that concs(Args tree) = E. We now
prove that there also exists a stable extension Argsseq of (ArseqT , att seqT ) with
concs(Argsseq) = E. Let Argsseq be the set of all possible sequence based
arguments that can be constructed using the defaults in Argstree. We now
prove that Argsseq is a stable extension.

conflict freeness:: Let A,B ∈ Argsseq such that A attacks B. This
means that A has a conclusion ¬j and B contains a default d with
j ∈ jus(d). Let A′ be an argument under ArtreeT with conclusion
¬j (Definition 19 makes sure such an argument exists). Since all
defaults in A′ are in Args tree and Args tree is a stable extension, it
follows that Args tree contains an argument (say B′) that contains
d. But then A′ attacks B′ and Args tree would not be conflict-free.
Contradiction.
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attacking every argument not in it:: Let B ∈ ArseqT be an argu-
ment that is not in Argsseq. Then B contains at least one default d
which does not occur in Args tree. Let B′ be an argument in Ar treeT

that contains only defaults from B, including d. The fact that such
an argument exists follows from the fact that B exists. From the
fact that d does not occur in Args tree it follows that B′ 6∈ Args tree.
From the fact that Args tree is a stable extension, it follows that
Argstree contains an argument (say A′) that attacks B′. So A′ has
a conclusion ¬j and B′ contains a default d′ (possibly equal to d)
with j ∈ jus(d′). Let A be an argument in ArseqT that contains the
same defaults as A′. It then follows that A also has a conclusion
¬j. And since B′ only contains defaults from B, it follows that
defaults(B′) ⊆ defaults(B) so d′ ∈ defaults(B). This means that A
attacks B.

Now that we have proved that Argsseq is a stable extension, the next thing
to prove is that concs(Argsseq) = concs(Args tree).

“concs(Argsseq) ⊆ concs(Args tree)”:: Let c 6∈ concs(Args tree). Then
c is not a consequence of ∪{concs(A) | A ∈ Args tree}. Therefore
c is not a consequence of W ∪ {cons(d) | d occurs in some A ∈
Argstree}. And since the defaults that occur in Args tree are the
same as that occur in Argsseq it follows that c is not a consequence
of W ∪ {cons(d) | d occurs in some A ∈ Argsseq}, so c is not a
consequence ofW∪{concs(A) | A ∈ Argsseq} so c 6∈ concs(Argsseq).

“concs(Argsseq) ⊇ concs(Args tree)”:: Let A be the argument in ArseqT
containing all defaults from Args tree. This argument is an ele-
ment of Argsseq because it is simply one of the possible arguments
that can be constructed using the defaults from Args tree. It holds
that concs(Argsseq) ⊇ concs(A). From the fact that concs(A) =
concs(Args tree) it then follows that concs(Argsseq) ⊇ concs(Args tree).

�

From the fact that Cnstdlseq is equivalent with Reiter’s original definition
of default logic (Theorem 13) and the fact that the Cnstdltree is equivalent
with Cnstdlseq (Lemma 4) it follows that Cnstdltree is equivalent to Reiter’s
original definition of default logic.

Since Cnstdlseq is equivalent with Cnstdltree , we sometimes simply write
Cnstdl without explicitly mentioning whether we refer to tree based or se-
quence based argumentation.

The following definition aims at filtering out the inconsistent arguments
from the argumentation framework associated with a default theory.

Definition 21. Let (W,D) be a default theory and (Ar treeT , att treeT ) be its
associated argumentation framework. We define Ar ctreeT as {A | A ∈ Ar treeT

and ⊥ 6∈ concs(A)} and attctreeT as att treeT ∩ (Ar ctreeT × Ar ctreeT ).

The first thing to be proved is that for semi-normal default theories under
stable semantics, the entailment does not change when inconsistent argu-
ments are ruled out.
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Definition 22. A tree-based structure is a set of pre-arguments {A1, . . . , An}
(n ≥ 1). If S1 and S2 are tree-based structures, then we say that S1 is a
sub-structure of S2, notated as S1 ⊑ S2 iff for each A ∈ S1 there exists an
A′ ∈ S2 such that A is a sub-tree of A′. S1 is a strict substructure of S2,
notated as S1 ⊏ S2, iff S1 ⊑ S2 and S1 6= S2.

Lemma 5. Let (W,D) be a consistent semi-normal default theory. It holds
that Args is a stable extension of (Ar treeT , att treeT ) iff Args is a stable exten-
sion of (Ar ctreeT , att ctreeT ).
Proof.
“=⇒”: Let Args be a stable extension of (Ar treeT , att treeT ). Then Args ⊆
Ar treeT , Args is conflict-free and Args attacks each argument in Ar treeT \Args .
We observe that any inconsistent argument A ∈ Ar treeT has to contain at
least one default (it cannot be empty) because W is consistent. Therefore
any inconsistent argument is also self-attacking. From the fact that Args is
conflict-free, it then follows that Args does not contain any inconsistent ar-
guments (which would be self-attacking). Therefore, Args ⊆ ArctreeT . From
the fact that Args attacks each argument in Ar treeT \Args and that ArctreeT ⊆
Ar treeT it follows that Args attacks each argument in ArctreeT \Args . Fur-
thermore, the facts that Args is conflict-free under (Ar treeT , att treeT ) and that
attctreeT ⊆ att treeT imply that Args is also conflict-free under (ArctreeT , att ctreeT ).
Therefore, Args is a stable extension of (Ar ctreeT , att ctreeT ).
“⇐=”: Let Args be a stable extension of (ArctreeT , att ctreeT ). Then Args ⊆
ArctreeT , Args is conflict-free andArgs attacks each argument in Ar ctreeT \Args .
From the fact that Args ⊆ Ar ctreeT and that ArctreeT ⊆ Ar treeT it follows that
Args ⊆ Ar treeT . From the fact thatArgs is conflict-free under (Ar ctreeT , att ctreeT )
it follows that Args is still conflict-free under (Ar treeT , att treeT ). We now prove
that Args attacks each argument in Ar treeT \Args . Let A ∈ Ar treeT \Args . We
distinguish two cases:

(1) A is a consistent argument (⊥ 6∈ concs(A)). Then A ∈ ArctreeT . Since
Args attacks each argument in ArctreeT \Args it follows that S attacks
A.

(2) A is an inconsistent argument (⊥ ∈ Concs(A)). This implies that
W ∪ {cons(d) | d is in A} � ⊥. From the fact that W is consistent,
it follows that A contains at least one default. Let A′ be a maximal
substructure of A that is still consistent. That is: A′ ⊑ A and
∀A′′ : (A′ ⊏ A′′ ⊑ A → ⊥ ∈ concs(A′′)). Let A′′ be such that
A′ ⊏ A′′ ⊑ A where A′′ contains exactly one additional default not
contained in A′ It then holds that A′′ is inconsistent. Let d1, . . . , dn
be the defaults of A′. Let dn+1 be the additional default in A′′.
It then holds that W ∪ {cons(d1), . . . , cons(dn)} is consistent, but
W ∪ {cons(d1), . . . , cons(dn), cons(dn+1)} is inconsistent. It then
follows that W ∪ {cons(d1), . . . , cons(dn)} � ¬cons(dn+1). Since T
is a semi-normal default theory, it holds that the consequent of dn+1

is also contained in the justification of dn+1. That is, there exists a
j ∈ jus(dn+1) such that W ∪ {cons(d1), . . . , cons(dn)} � ¬j. From
the fact that A′′ is a substructure of A it follows that A also contains
default dn+1. Therefore, A′ attacks A. Since A′ is consistent (and
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that it attacks A), it holds that A′ ∈ Ar ctreeT . From the fact that
Args is a stable extension of (Ar ctreeT , att ctreeT ) it then follows that
either A′ ∈ Args or Args attacks A′. In the first case (A′ ∈ Args)
it holds that Args attacks A (since A′ attacks A). In the second
case (Args attacks A′) it holds that Args attacks A (since A′ is a
subargument of A). In both cases, Args attacks A.

�

5.2. Semi-Stable Semantics for Default Logic. We are now ready to
apply semi-stable semantics to default logic, for which we use the tree-based
argument form in which inconsistent arguments have been removed.

Definition 23. Let T = (W,D) be a default theory. We define Cnssdl(W,D)
as {concs(Args) | Args is a semi-stable extension of (Ar ctreeT , att ctreeT )}.

We now prove that for consistent semi-normal default theories, Cnssdl
satisfies the postulate of backward compatibility with standard default logic
which (by Theorem 13 and Lemma 4) is equivalent with Cnstdl.

Theorem 14. For consistent semi-normal default theories, Cnssdl is back-
ward compatible with Cnstdl.

Proof. Let T = (W,D) be a consistent semi-normal default theory that is
not contaminating. The fact that it is not contaminating implies that it
has at least one default extension. Theorem 13 and Lemma 4 then imply
that its associated argumentation framework (Ar treeT , att treeT ) has at least one
stable extension. Since, by Lemma 5, the stable extensions are unchanged
when inconsistent arguments are removed, it holds that (Ar ctreeT , att ctreeT )
also has at least one stable extension. From Theorem 5 it then follows
that the stable extensions of (Ar ctreeT , att ctreeT ) are the same as its semi-
stable extensions. This, together with the fact that the conclusions of the
stable extensions of (Ar ctreeT , att ctreeT ) are the same as the conclusions of the
stable extensions of (Ar treeT , att treeT ) (Lemma 5) implies that the conclusions
of the stable extensions of (Ar treeT , att treeT ) are the same as the conclusions
of the semi-stable extensions of (Ar ctreeT , attctreeT ), so we have that Cnstdl =
Cnssdl. �

For consistent semi-normal default theories, not only is Cnssdl backward
compatible with Cnstdl; it also satisfies crash resistance and non-interference.
For this, we first need a lemma (Lemma 6) that allows us to apply to default
logic the results for non-interference for abstract argumentation. It should
be mentioned that Lemma 6 only holds for the tree-based interpretation of
default logic, in which inconsistent arguments have been ruled out.

Lemma 6. Let T1 = (W1,D1) and T2 = (W2,D2) be syntactically disjoint
consistent semi-normal default theories and let T3 = (W1 ∪W2,D1 ∪D2). It
holds that ArctreeT3

= Ar ctreeT1
∪ ArctreeT2

and attctreeT3
= att ctreeT1

∪ att ctreeT2
.

Proof. Naturally, each argument that can be constructed under T1 can also
be constructed under T3, and every argument that can be constructed under
T2 can also be constructed under T3. Therefore, it holds that ArctreeT1

⊆

ArctreeT3
and ArctreeT2

⊆ Ar ctreeT3
, so Ar ctreeT1

∪ ArctreeT2
⊆ Ar ctreeT3

. We now prove
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that Ar ctreeT3
⊆ ArctreeT1

∪ Ar ctreeT2
. Let A ∈ Ar ctreeT3

. We distinguish three
cases.

(1) defaults(A) ⊆ D1. In that case, A ∈ ArctreeT1
, so A ∈ ArctreeT1

∪ArctreeT2
.

(2) defaults(A) ⊆ D2. In that case, A ∈ ArctreeT2
, so A ∈ ArctreeT1

∪ArctreeT2
.

(3) defaults(A) 6⊆ D1 and defaults(A) 6⊆ D2. In that case, A contains
at least one default from D1 and at least one default from D2. We
will now show that this cannot be the case. First of all, we observe
that A cannot have any pre-argument that contains a default from
D1 and a default from D2. Suppose A contains a pre-argument A′

with d1 ∈ D1 as one of the children of d2 ∈ D2 (or vice versa). Then,
the fact that T1 and T2 are syntactically disjoint and the fact that
A′ is consistent (since A is consistent) imply that the consequent
of d1 does not play any role in the derivation of the prerequisite
of d2. Therefore, d1 is an unneccesary child of d2, so the set of
children of d2 is not minimal, which conflicts with the definition of
tree-based arguments (Definition 19). So each pre-argument of A
consists either entirely of defaults from D1 or entirely of defaults
from D2. The next thing to prove is that either all pre-arguments of
A contain only defaults from D1 or all pre-arguments of A contain
only defaults from D2. Suppose this is not the case. Then A contains
a pre-argument A1 consisting of only defaults from D1 and a pre-
argument A2 consisting of only defaults from D2. The fact that
A consists of more than one pre-argument means that there must
exist a default d in D1 ∪ D2 whose justification is attached by A;
that is ¬j ∈ concs(A) for some j ∈ jus(d). Assume without loss
of generality that d ∈ D1 (the case of d ∈ D2 goes similar). Since
T1 and T2 are syntactically disjoint and A is consistent, then then
implies that A2 does not play any role in attacking default d (in
deriving ¬j). But then A would have a redundant pre-argument
which conflicts with the minimality requirement in Definition 19.

From the earlier observed fact that ArctreeT1
∪Ar ctreeT2

⊆ Ar ctreeT3
and from the

newly observed fact that ArctreeT3
⊆ ArctreeT1

∪ArctreeT2
it follows that ArctreeT3

=

ArctreeT1
∪ ArctreeT2

.

The next thing to prove is that att ctreeT3
= att ctreeT1

∪ att ctreeT2
. First of all, we

observe that if A attacks B under (Ar ctreeT1
, att ctreeT1

) then A also attacks B

under (Ar ctreeT3
, att ctreeT3

). Similarly, if A attacks B under (Ar ctreeT2
, att ctreeT2

)

then A also attacks B under (Ar ctreeT3
, att ctreeT3

). So it holds that att ctreeT1
∪

attctreeT2
⊆ attctreeT3

. We now prove that it also holds that attctreeT3
⊆ attctreeT1

∪

attctreeT2
. Suppose A attacks B under (Ar ctreeT3

, att ctreeT3
). We distinguish two

possibilities.

(1) A ∈ ArctreeT1
. Since A is consistent and T1 and T2 are syntactically

disjoint, A can only attack B on a default d ∈ D1. Therefore, B ∈
ArctreeT1

, so A attacks B under (Ar ctreeT1
, att ctreeT1

).

(2) A ∈ ArctreeT2
. Since A is consistent and T1 and T2 are syntactically

disjoint, A can only attack B on a default d ∈ D2. Therefore, B ∈
ArctreeT2

, so A attacks B under (Ar ctreeT2
, att ctreeT2

).
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From the thus observed property that att ctreeT3
⊆ attctreeT1

∪ attctreeT2
, together

with the earlier observed fact that att ctreeT1
∪attctreeT2

⊆ attctreeT3
, it follows that

attctreeT3
= att ctreeT1

∪ att ctreeT2
. �

Theorem 15. For consistent semi-normal default theories, Cnssdl satisfies
non-interference.
Proof.
Let T1 = (W1,D1) and T2 = (W2,D2) be two syntactically disjoint default
theories and let T3 = (W1∪W2,D1∪D2). In order to prove non-interference,
we need to prove that:

• Cnssdl(T1)|atoms(T1) = Cnssdl(T3)|atoms(T1) and
• Cnssdl(T2)|atoms(T2) = Cnssdl(T3)|atoms(T2)

We only prove the first property (the proof of the second property is similar).
“⊆”: Let S ∈ Cnssdl(T1)|atoms(T1). This means there exists a semi-stable

extensionArgs of AF ctreeT1
such that concs(Args)|atoms(T1) = S. The fact that

semi-stable semantics for abstract argumentation satisfies non-interference
(Theorem 7) means that (given that AF ctreeT1

and AF ctreeT2
are syntactically

disjoint):

Cnsemi−stable(Ar
ctree
T1

, att ctreeT1
)|ArctreeT1

=

Cnsemi−stable(Ar
ctree
T1
∪ Ar ctreeT2

, att ctreeT1
∪ attctreeT2

)|ArctreeT1

From Lemma 6 it then follows AFT3 = (ArT1∪ArT2 , attT1∪attT2) so it holds
that:

Cnsemi−stable(AF
ctree
T1

)|ArctreeT1

= Cnsemi−stable(AF
ctree
T3

)|ArctreeT1

From the fact that Args is a semi-stable extension of AF ctreeT1
it follows that

Args ∈ Cnsemi−stable(AF
ctree
T1

)|ArctreeT1

so Args ∈ Cnsemi−stable(AF
ctree
T3

)|ArT1
,

which then implies that there exists a semi-stable extension Args ′ of AF ctreeT3

such that Args ′∩ArctreeT1
= Args . The fact that Args ′ is a semi-stable exten-

sion of AF ctreeT3
implies that concs(Args ′) = Cnssdl(T3), so concs(Args

′)|atoms(T1)

∈ Cnssdl(T3)|atoms(T1). We now prove that concs(Args ′)|atoms(T1) = S.

“⊆”:: Let e ∈ concs(Args ′)|atoms(T1). Then e ∈ atoms(T1). Let A be

an argument in Args ′ with e ∈ concs(A). Then A ∈ ArctreeT1
, so A

inArgs, so e ∈ concs(Args), so e ∈ S.
“⊇”:: Let e ∈ S. Then e ∈ concs(Args). So there exists an A ∈ Args

with e ∈ concs(A). From the fact that A ∈ Args it follows that
A ∈ Args ′, so e ∈ concs(Args ′). From the fact that e ∈ S it also
follows that e ∈ atoms(T1), so from the fact that e ∈ concs(Args ′)
it follows that e ∈ concs(Args ′)|atoms(T1).

From the thus proved fact that concs(Args ′)|atoms(T1) = S, together with
the earlier observed fact that concs(Args ′)|atoms(T1) ∈ Cnssdl(T3)|atoms(T1) it
follows that S ∈ Cnssdl(T3)|atoms(T1).
“⊇”: Let S ∈ Cnssdl(T3)|atoms(T1). Then there exists a semi-stable extension

Args ′ of AF ctreeT3
with concs(Args ′)|atoms(T1) = S. Like was explained before,

it holds that:

Cnsemi−stable(AF
ctree
T1

)|ArctreeT1

= Cnsemi−stable(AF
ctree
T3

)|ArctreeT1
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Let Args = Args ′ ∩ Ar ctreeT1
. From the fact that Args ′ is a semi-stable

extension of AF ctreeT3
it follows that Args ∈ Cnsemi−stable(AF

ctree
T3

)|atoms(T1),

so Args ∈ Cnsemi−stable(AF
ctree
T1

)|atoms(T1), which together with the fact that

Args ⊆ ArctreeT1
implies thatArgs ∈ Cnsemi−stable(AF

ctree
T1

), so concs(Args) ∈
Cnssdl(T1), so concs(Args)|atoms(T1) ∈ Cnssdl(T1)|atoms(T1). We now prove
that concs(Args)|atoms(T1) = S.

“⊆”:: Let e ∈ concs(Args)|atoms(T1). Then there is an A ∈ Args with

e ∈ concs(A), so A ∈ ArctreeT1
. From A ∈ Args it follows that

A ∈ Args ′, so e ∈ concs(Args ′). This, together with the fact that all
atoms of e are from atoms(T1), implies that e ∈ concs(Args ′)|atoms(T1),
so e ∈ S.

“⊇”:: Let e ∈ S. Then e ∈ concs(Args ′)|atoms(T1), so there exists
an argument A ∈ Args ′ with e ∈ concs(A). Moreover, the fact
that e is composed of atoms only from atoms(T1) implies that A ∈
ArctreeT1

. It then follows that A ∈ Args ′ ∩ Ar ctreeT1
, so A ∈ Args , so

e ∈ concs(Args). From the fact that e is composed of atoms only
from atoms(T1) it then follows that e ∈ concs(Args)|atoms(T1).

From the fact that concs(Args) = S, together with the fact that concs(Args)
∈ Cnssdl(T1)|atoms(T1) it follows that S ∈ Cnssdl(T1)|atoms(T1). �

Lemma 7.
Default logic under semi-stable semantics is non-trivial.

Proof. Let S be a non-empty set of atoms. We now have to prove that
there exists two default theories T1 = (W1,D1) and T2 = (W2,D2) with
atoms(T1) = atoms(T2) = S, such that Cnssdl(T1) 6= Cnssdl(T2). This is
obtained with W1 = S, W2 = {¬e | e ∈ S} and D1 = D2 = ∅. In that case
it holds that Cnssdl(T1) = {Cn(W1)} and Cnssdl(T2) = {Cn(W2)}. Since S
is not empty, there exists an e ∈ S. It then follows that e ∈ Cnssdl(T1) but
e 6∈ Cnssdl(T2). So Cnssdl(T1)|S 6= Cnssdl(T2)|S . �

Theorem 16.
Default logic under semi-stable semantics satisfies crash resistance.

Proof. Lemma 7 states that default logic under semi-stable semantics is non-
trivial. Theorem 15 states that default logic under semi-stable semantics
satisfies non-interference. Theorem 1 states that each non-trivial logical
formalism that satisfies non-interference also satisfies crash resistance. �

5.3. Default Logic versus Logic Programming. As has been observed
in [34, 38], there exists a clear connection between logic programming and de-
fault logic. In particular, when each rule c← a1, . . . , an, not b1, . . . , not bm
of a logic program is translated into a default of the form a1 ∧ . . . ∧ an :
¬b1, . . . ,¬bm/c then the default extensions of the corresponding default the-
ory (assuming that W = ∅) will consist of the logical closure of the stable
models of the original logic program.

Proposition 5 ([34]). Let P be a logic program and TP = (WP ,DP ) be
its associated default theory such that WP = ∅ and DP = {a1 ∧ . . . ∧ an :
¬b1, . . . ,¬bm/c | c← a1, . . . , an, not b1, . . . , not bm ∈ P}.
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LetM1, . . . ,Mk be the stable models of P . It holds that Cn(M1), . . . , Cn(Mk)
are the default extensions of TP .

One can ask whether the above described correspondence between logic
programming and default logic continues to hold when changing the seman-
tics from stable to semi-stable. The answer to this question is positive, as
is stated by the following proposition.

Proposition 6. Let P be a logic program and TP = (WP ,DP ) be its as-
sociated default theory such that WP = ∅ and DP = {a1 ∧ . . . ∧ an :
¬b1, . . . ,¬bm/c | c← a1, . . . , an, not b1, . . . , not bm ∈ P}.
Let Cnsemi−stable(P ) = {M1, . . . ,Mk} (that is, M1, . . . ,Mk are the semi-
stable models of P ). It holds that Cnssdl(TP ) = {Cn(M1), . . . , Cn(Mk)}.

The validity of Proposition 6 can be verified as follows. First, consider
the argumentation framework that is generated by logic program P follow-
ing the procedure that is described in Definition 12. Now construct a copy of
this argumentation framework, and replace in the arguments each rule by its
coresponding default. This yields a graph in which each node contains a tree
of defaults (which is essentially a pre-argument in the sense of Definition 19).
Definition 19 requires each argument to be a set of pre-arguments, and this
can be satisfied by for every node of the graph, replacing its pre-argument
PA by {PA}. The resulting graph (call it AF treeTP

= (Ar treeTP
, att treeTP

)) is in-
deed an argumentation framework in the sense of Definition 19. This is
because: (1) every node in the graph consists of a well-formed argument,
(2) every well-formed argument is included in the graph, (3) every arrow in
the graph stands for an attack, (4) every possible attack is represented by
an arrow in the graph.
Since our starting point was a (normal) logic program (Definition 11) in
which strong negation does not play a role, none of the resulting defaults
will have negation in their consequents. This, together with the fact that
we assumeWP to be the empty set, implies that every argument in AFTP is
consistent. That is, for every A ∈ Ar treeTP

it holds that ⊥ 6∈ concs(A). There-

fore, it holds that (Ar treeTP
, att treeTP

) = (Ar ctreeTP
, att ctreeTP

) (where the latter is

defined by Definition 21).
Now, it should be noted that (ArP , attP ) (= AFP ) is isomorphic to (Ar ctreeTP

,

attctreeTP
) (= AF ctreeTP

). After all, the only thing the above described trans-
lation process does is to change the contents of the arguments. Nothing is
changed with respect to the actual structure of the graph (its nodes and
arrows). Since semi-stable semantics, just like any mainstream argumenta-
tion semantics, satisfies language independence [5], the fact that AFP and
AF ctreeTP

are isomorphic means their extensions of arguments will correspond
to each other.
Although the semi-stable extensions of AFP are essentially the same as the
semi-stable extensions of AF ctreeTP

on the abstract level, it does not necessar-
ily follow that the conclusions yielded by these extensions of arguments are
also the same. For instance, whereas an argument A ∈ ArP only yields the
head of its top-rule as a conclusion (Definition 12), an argument A ∈ ArctreeTP
yields a set not only containing the consequent of its top-default, but also
the consequents of all other defaults in the argument, together with their
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logical consequences (Definition 19).
The first thing to notice is that although AFP and AF ctreeTP

differ when it
comes to the conclusions of the individual arguments, this difference becomes
less if one looks at the conclusions yielded by the extensions of arguments.
One particular feature that holds for both AFP and AF ctreeTP

is that if a set
of arguments Args defends an argument A, then it also defends all subargu-
ments (subtrees) of A. It then follows that if a complete extension contains
an argument A (meaning that it defends A) then it also contains all subar-
guments of A (as these are also defended). Since every semi-stable extension
is also a complete extension, this property also holds for semi-stable exten-
sions.
Let ArgsP be a semi-stable extension of AFP and ArgsctreeTP

be the associated

semi-stable extensions of AF ctreeTP
(that is, ArgsctreeTP

consists of those argu-
ments from ArgsP where the logic programming rules have been replaced
by the corresponding defaults, using the procedure described earlier). It
holds that every conclusion of ArgsP (c ∈ concs(ArgsP )) is also a conclu-
sion of ArgsctreeTP

(c ∈ concs(ArgsctreeTP
)). This is because c ∈ concs(ArgsP )

means that there exists an AP ∈ ArgsP with c as the head of its top-rule.
Therefore, the associated ActreeTP

∈ ArgsctreeTP
will have c as the consequent of

its top-default. Therefore, c ∈ concs(ArgsctreeTP
). Furthermore, it also holds

that each atomic conclusion of ArgsctreeTP
is also a conclusion of ArgsP . This

can be seen as follows. Let c be an atomic formula of concs(ArgsctreeTP
). Then

there exists an argument ActreeTP
that has c as the consequent of one of its

defaults. Let AP be the associated argument from ArgsP . Then AP has c
as the head of one of its rules. Since, as we have observed earlier, ArgsP is
closed under subarguments, there will be an A′

P ∈ ArgsP that has c as the
head of its top-rule. Therefore, c = Conc(A′

P ) and hence, c ∈ concs(ArgsP ).
From the fact that each element of concs(ArgsP ) is also an element of
concs(ArgsctreeTP

) (and that these elements are atomic, because every logic
program in the sense of Definition 11 has an atom as the consequent of each
rule) and from the fact that each atomic element of concs(ArgsctreeTP

) is also

an element of concs(ArgsP ), it follows that ArgsP and ArgsctreeTP
agree on

the atomic conclusions. Since each default in TP has an atomic conlusion as
its consequent, it holds that every element of ArgsctreeTP

that is not an atomic
conclusion has to be a logical consequence of the atomic conclusions. Hence,
ArgsctreeTP

= Cn(ArgsP ).

6. Computational Complexity

We assume the reader is familiar with the standard complexity classes p,
np, conp together with classes in the so-called Polynomial Hierarchy (ph), in
particular Σp2 and Πp2. We further assume some familiarity with the concept
of polynomial-time many-one reducibility between decision problems. An
accessible introduction to these may be found in Papadimitriou’s text [41].

The class dp is formed by decision problems L, whose positive instances
are characterised as those belonging to L1 ∩ L2 where L1 ∈ np and L2 ∈
conp. The problem sat-unsat whose instances are pairs of 3-cnf formulae
〈ϕ1, ϕ2〉 accepted if ϕ1 is satisfiable and ϕ2 is unsatisfiable has been shown
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to be complete for this class [41, p. 413]. We may interpret dp as those
decision problems solvable by a (deterministic) polynomial time algorithm
allowed to make at most two calls upon an np oracle. More generally,
the complexity class pnp consists of decision problems that can be solved
by a (deterministic) polynomial time algorithm provided with access to an
np oracle (calls upon which take a single step so that only polynomially
many invocations are allowed). An important (presumed) subset of pnp

is defined by distinguishing whether oracle calls are adaptive – i.e. the
exact formulation of the next oracle query may be dependent on the answers
received to previous questions – or whether such queries are non-adaptive,
i.e. the form of the questions to be put to the oracle is predetermined
allowing all of these to be performed in parallel. The latter class has been
denoted pnp|| and considered in Wagner [53, 54], Jenner and Toran [36].

Under the standard complexity-theoretic assumptions, it is conjectured
that,

p ⊂

{

np

conp

}

⊂ dp ⊂ pnp|| ⊂ pnp ⊂

{

Σp2
Πp2

}

Given an argumentation frameworkH = (Ar , att), and a particular exten-
sion based semantics E , e.g. E could be any of se (stable), pe (preferred), or
sse (semi-stable), Table 1 describes a number of general decision problems
relative to E . A number of natural problems concern the behaviour of frame-
works regarding distinct extension semantics. In particular given extension
semantics E and F , the decision problem Coincident (coinE,F ) accepts an
argumentation framework H = (Ar , att) if and only if E(H) = F(H).

Table 1. Decision Problems in afs

Problem Name Instance Question
Verification H = (Ar , att); Is S ∈ E(H)?
(verE) S ⊆ Ar

Non-emptiness H = (Ar , att) Is there any S ∈ E(H)

(exists¬∅E ) for which S 6= ∅?
Coincident H = (Ar , att) Is E(H) = F(H)?
(coinE,F)

Credulous Acceptance H = (Ar , att); Is there any S ∈ E(H)
(caE) x ∈ Ar for which x ∈ S?

Sceptical Acceptance H = (Ar , att); Is x a member of
(saE) x ∈ Ar every T ∈ E(H)?

The results proved in this section are summarised in Table 2.
The results described in the first three lines of Table 2 are straightforward

developments of constructions originally presented in [24] and [29]. The
hardness results regarding credulous and sceptical acceptance under semi-
stable semantics exploit a technical characterisation of complete problems
within pnp|| due to Chang and Kadin [19]. This introduces the concepts of a

language having the properties op2 and opω where op is one of the Boolean
operators {and, or}.



SEMI-STABLE SEMANTICS 41

Table 2. Computational Complexity w.r.t. Semi-stable extensions

Problem Lower Bound Upper Bound
versse conp-hard conp Theorem 17

exists¬∅sse np-hard np Corollary 1
coinpe,sse Πp2-hard Πp2 Theorem 18

casse pnp|| -hard Σp2 Theorem 19

sasse pnp|| -hard Πp2 Theorem 20

Definition 24. ([19, pp. 175–76]) Let L be a language, i.e. a set of finite
words over an alphabet. The languages, andk(L) and ork(L) (k ≥ 1) are

andk(L) =def {〈w1, w2, . . . , wk〉 : ∀ 1 ≤ i ≤ k wi ∈ L}
ork(L) =def {〈w1, w2, . . . , wk〉 : ∃ 1 ≤ i ≤ k wi ∈ L}

The languages andω(L) and orω(L) are,

andω(L) =def

⋃

k≥1

andk(L) ; orω(L) =def

⋃

k≥1

ork(L)

A language, L, is said to have property opk (resp. opω) if opk(L) ≤
p
m L

(resp. opω(L) ≤
p
m L).

The reason why these language operations are of interest is the following
result.

Fact 1. ([19, Thm. 9, p. 182])
A language L is pnp|| –complete (via ≤pm reducibility) if and only if all of the

following hold.

F1. L ∈ pnp|| .

F2. L is np–hard and L is conp–hard.
F3. L has property and2.
F4. L has property orω.

Theorem 17. versse is conp–complete.

Proof. Given H = (Ar , att) and S ⊆ Ar , S defines a semi-stable extension
of H if and only if, S is admissible and

∀ T ⊆ Ar T ∈ adm(H) ⇒ ¬ (S ∪ S+ ⊂ T ∪ T+)

a test which is easily accomplished by a conp algorithm.
For conp-hardness it suffices to consider the special case S = ∅, i.e. the

problem versse(H, ∅), which is the complement of exists¬∅sse. Given an
instance of unsatisfiability – without loss of generality a 3-cnf formula
ϕ(Zn) = ∧mj=1 Cj – with each Cj a disjoint of literals from {z1, . . . , zn,
¬z1, . . . ,¬zn}, the argumentation framework, Hϕ = (Ar , att) has

Ar = {ϕ,C1, . . . , Cm} ∪ {zi, ¬zi : 1 ≤ i ≤ n}
att = {〈Cj , ϕ〉 : 1 ≤ j ≤ m} ∪ {〈zi,¬zi〉, 〈¬zi, zi〉 : 1 ≤ i ≤ n} ∪

{〈zi, Cj〉 : zi occurs in Cj} ∪ {〈¬zi, Cj〉 : ¬zi occurs in Cj}

As shown by [24], there is an admissible set containing the argument ϕ
if and and only if ϕ(Zn) is satisfiable, i.e. ¬caadm(Hϕ, ϕ) if and only
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if ϕ(Zn) is unsatisfiable. Modify Hϕ to the argumentation framework Kϕ
as follows: add a single new argument ψ to Ar together with 2n + 1 new
attacks {〈ψ, zi〉 : 1 ≤ i ≤ n}, {〈ψ,¬zi〉 : 1 ≤ i ≤ n}, and 〈ϕ,ψ〉. The
argumentation framework Kϕ has a non-empty preferred extension if and
only if the cnf, ϕ is satisfiable. Hence, versse(Kϕ, ∅) holds if and only if
ϕ(Zn) is unsatisfiable. �

Corollary 1. exists¬∅sse is np-complete.

Proof. For membership in np it suffices to test if exists¬∅adm(H). The np-
hardness lower bound is immediate from the the proof of Thm. 17. �

Theorem 18. coinpe,sse is Πp2–complete.

Proof. Given H = (Ar , att) every preferred extension of H is also a semi-
stable extension if and only if,

∀ S ⊆ Ar S 6∈ pe(H) ∨ S ∈ sse(H)

This may be re-written as, ∀ S, T ∃ U f(S, T, U) where f(S, T, U) is the
(polynomial time decidable) predicate

(S 6∈ adm(H))
∨

(U ∈ adm(H)) ∧ (S ⊂ U))
∨

( (S ∪ S+ ⊂ T ∪ T+)⇒ (T 6∈ adm(H)) )

That is, “for every subset (S), either S does not define a preferred extension
of H (by reason of inadmissibility or containment in a larger admissible set,
U) or (should S be a preferred extension), there is no (admissible) set (T )
for which S ∪ S+ is strictly contained in T ∪ T+”.

The test described can be accomplished in Πp2.
To establish Πp2–hardness we reduce to the complementary problem – i.e.

that of deciding if a given H has a preferred extension which fails to be semi-
stable, using the Σp2–complete problem, qsatΣ

2 instances of which comprise a
cnf formula, ϕ(Yn, Zn) over disjoint sets of propositional variables, that are
accepted if there is some instantiation (αY ) of Yn for which every instantia-
tion, (βZ) of Zn fails to satisfy ϕ(Yn, Zn), i.e. ∃ αY ∀ βZ ¬ϕ(αY , βZ). Given
an instance, ϕ(Yn, Zn), consider the argumentation framework Gϕ(Ar

′, att ′)
formed from the argumentation framework Hϕ = (Ar , att) of Thm. 17, i.e.
Ar ⊂ Ar ′ and att ⊂ att ′, so that

Ar ′ = {ϕ,C1, . . . , Cm} ∪ {yi,¬yi, zi,¬zi : 1 ≤ i ≤ n} ∪ {b1, b2, b3}
att ′ = {〈Cj , ϕ〉 : 1 ≤ j ≤ m} ∪

{〈yi,¬yi〉, 〈¬yi, yi〉, 〈zi,¬zi〉, 〈¬zi, zi〉 : 1 ≤ i ≤ n} ∪
{〈yi, Cj〉 : yi occurs in Cj} ∪ {〈¬yi, Cj〉 : ¬yi occurs in Cj} ∪
{〈zi, Cj〉 : zi occurs in Cj} ∪ {〈¬zi, Cj〉 : ¬zi occurs in Cj} ∪
{〈ϕ, b1〉, 〈ϕ, b2〉, 〈ϕ, b3〉, 〈b1, b2〉, 〈b2, b3〉, 〈b3, b1〉} ∪
{〈b1, zi〉, 〈b1,¬zi〉 : 1 ≤ i ≤ n}

From [29] this framework has a non-stable preferred extension if and only if
ϕ(Yn, Zn) is accepted as an instance of qsatΣ

2 .
3 In particular, every satis-

fying instantiation of ϕ(Yn, Zn) induces a corresponding stable extension of

3Each witnessing non-stable but preferred extension is formed by a subset of
{yi,¬yi 1 ≤ i ≤ n} for which the instantiation, αY of the corresponding literals in Yn to
⊤ results in ϕ(αY , Zn) being unsatisfiable.
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Gϕ. Now, noting that ϕ(Yn, Zn) is accepted as instance of qsatΣ
2 if and only

if the cnf, ψ(Yn ∪ {u}, Zn) in which each clause of ϕ has a new variable u
added to it, is also so accepted we claim that the argumentation framework
Gψ has a preferred (but not semi-stable) extension if and only if there is
an instantiation, α of Yn ∪ {u} under which ψ(α,Zn) is unsatisfiable. First
suppose sse(Gψ) ⊂ pe(Gψ). Since, u = ⊤ satisfies ψ, from the properties of
Gψ it follows that this has at least one stable extension, hence

se(Gψ) = sse(Gψ) ⊂ pe(Gψ)

and so Gψ must contain a preferred extension which is not stable. From the
analysis given in [29] we can construct an instantiation αY of Yn which has
ψ(αY , u = ⊥, Zn) unsatisfiable.

A similar analysis to that of [29] identifies a (non-stable) preferred exten-
sion for any instantation of α of Yn ∪ {u} under which ψ(α,Zn) is unsatisfi-
able, i.e. if ψ is accepted as an instance of qsatΣ2 then the set of preferred
extensions of Gψ does not coincide with its set of semi-stable extensions. �

As a consequence of Fact 1, the lower bounds on casse and sasse are
derived using the following four part constructions.

S1. Prove that casse (resp. sasse) is np–hard.
S2. Prove that casse (resp. sasse) is conp–hard.
S3. Prove that casse (resp. sasse) has property and2 (in fact we will

show both to have property andω).
S4. Prove that casse (resp. sasse) has property orω.

Theorem 19.

a. casse is in Σp2.

b. casse is pnp|| –hard.

Proof. For the upper bound in (a), x is a member of some semi-stable ex-
tension if and only if

∃ S ∀ T (x ∈ S) and (S ∈ adm(H)) and

(T ∈ adm(H))⇒ ¬( (S ∪ S+ ⊂ T ∪ T+) )

Using the characterisation of pnp|| –complete languages described in Fact 1

the theorem follows given arguments that (S1)–(S4) all hold.

S1 casse is np–hard.
Given an instance, ϕ(Zn) of sat form an instance 〈Hϕ, ϕ〉 of casse
in which Hϕ is the af described in the proof of Thm. 17. The
argument ϕ is in a stable (hence semi-stable) extension of Hϕ if and
only if ϕ(Zn) is satisfiable. We deduce that casse is np–hard as a
result.

S2 casse is conp–hard.
Given an instance ϕ(Zn) of unsat, first form the af,Hϕ as described
in S1. Modify Hϕ to a system Kψ which has a new argument ψ
added together with attacks 〈ϕ, zi〉 and 〈ϕ,¬zi〉 for each 1 ≤ i ≤ n
and {〈ϕ,ψ〉 〈ψ,ϕ〉}. The instance is completed by choosing ψ as the
argument of interest. The instance 〈Kψ, ψ〉 is accepted if there is a
semi-stable extension containing ψ. If, however, there is a preferred
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extension containing ϕ, then this extension is also a stable extension
which would preclude membership of ψ in a semi-stable set. Such a
preferred extension exists if and only if ϕ(Zn) is satisfiable, so that
〈Kψ, ψ〉 is accepted as an instance of casse if and only if ϕ(Zn) is
unsatisfiable.

S3. casse has property andω.
Let 〈〈H1, x1〉, 〈H2, x2〉, . . . , 〈Hk, xk〉〉 define an instance of andk(casse).
Form an instance 〈H, z〉 of casse in which the k frameworks, Hi
are extended by adding a set of k arguments {y1, . . . , yk}, an argu-
ment z, and attacks {〈yi, z〉, 〈xi, yi〉} for each 1 ≤ i ≤ k. We claim
that 〈H, z〉 is accepted as an instance of casse if and only if each
〈Hi, xi〉 is accepted as such an instance. Suppose the latter is true
and that Si is a semi-stable extension in Hi that contains xi. Then
S = ∪ki=1 Si ∪ {z} is certainly admissible since each attack 〈yi, z〉
is countered by the attack 〈xi, z〉. Furthermore S is a semi-stable
extension as

S ∪ S+ =

k
⋃

i=1

Si ∪ S+
i ∪ {y1, y2, . . . , yk, z}

so that all of the new arguments {y1, . . . , yk, z} occur within S∪S
+.

In total from semi-stable extensions Si containing xi we construct a
semi-stable extension S containing z.

Conversely suppose S is a semi-stable extension of H and that
z ∈ S. It is certainly the case that {x1, . . . , xk} ⊂ S since this is
required in order to defend the attacks 〈yi, z〉. Consider the set Si =
S∩Ar i where Ar i is the set of arguments in Hi. Noting that xi ∈ Si
we claim that Si is a semi-stable extension in Hi. Suppose this
were not the case so that some admissible subset, T of Ar i satisfies
Si∪S

+
i ⊂ Ti∪T

+
i . Without loss of generality we may assume xi 6∈ T

so that xi ∈ T
+. Now consider the set R = S \ (Si ∪{z})∪Ti ∪{yi}.

Observe that R is admissible: yi being defended by the argument
attacking xi in Ti. In addition, however,

S ∪ S+ = ∪kj=1 Sj ∪ S+
j ∪ {y1, . . . , yk, z}

⊂ ∪kj 6=i Sj ∪ S
+
j Ti ∪ T

+
i ∪ {y1, . . . , yk, z}

= R ∪R+

with R admissible and z 6∈ R: this contradicts the premise that S is
semi-stable.

S4. casse has property orω.
Let 〈〈H1, x1〉, 〈H2, x2〉, . . . , 〈Hk, xk〉〉 define an instance of ork(casse).
Form an instance 〈H, z〉 of casse in which the k frameworks, Hi are
extended by adding arguments {y, z} and attacks {〈xi, y〉 : 1 ≤ i ≤
k} and 〈y, z〉. First suppose, without loss of generality the x1 ∈ S1 a
semi-stable extension of H1. Let 〈S2, . . . , Sk〉 be semi-stable exten-
sions ofHi for 2 ≤ i ≤ k. Then it easily follows that S = {z}∪∪ki=1 Si
is not only admissible but a semi-stable of H containing z. On the
other hand suppose S with x ∈ S is a semi-stable extension of H.
There must be at least oneHi for which xi ∈ S in order to defend the
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attack by y on z. Now considering the set S ∩Si gives a semi-stable
extension in Hi containing xi by a similar argument to that used in
S3.

�

Theorem 20.

a. sasse is in Πp2.

b. sasse is pnp|| –hard.

Proof. We omit the easy upper bound proof, concentrating on (b). As before
we obtain the result in 4 stages.

T1 sasse is np–hard.
Given an instance ϕ(Zn) of satisfiability, form the framework Kϕ
described in Thm 17. The instance of sasse is given by 〈Kϕ, ϕ〉. If
ϕ(Zn) is satisfiable then the subset 〈a1, a2, . . . , an〉 of {zi, ¬zi : 1 ≤
i ≤ n} indicated by any satisfying assignment together with ϕ is a
stable extension and hence also semi-stable. Hence ϕ(Zn) satisfiable
implies sasse(Kϕ, ϕ) holds. On the other hand if ϕ(Zn) is unsatisfi-
able then (as argued in the proof of Thm. 17) Kϕ has only the empty
set as a semi-stable extension. We deduce that sasse is np–hard.

T2 sasse is conp–hard.
Given an instance, ϕ(Zn) of unsatisfiability, construct the framework
Kϕ described above but without the attacks 〈ψ, zi〉 and 〈ψ,¬zi〉.
The instance of sasse is 〈Kϕ, ψ〉. If ϕ(Zn) is satisfiable then ψ
cannot belong to the semi-stable extension induced by a satisfying
instantiation (since this contains the argument ϕ). On the other
hand, if ϕ(Zn) is unsatisfiable then every stable extension of Kϕ has
the form: exactly one of each of the pairs {zi,¬zi}, the subset of
clause arguments which are unattacked; and the argument ψ. Hence
ψ is a member of every semi-stable extension if and only if ϕ(Zn) is
unsatisfiable.

T3. sasse has property andω. Similar to (S3).
T4. sasse has property orω. Similar to (S4).

�

We observe that the lower bound on casse shows that this decision problem
is at least as hard as the analogous problem in the ideal semantics of [26]
as shown in [28], while the upper bound for sasse matches that of sceptical
reasoning w.r.t. to preferred semantics [29]. Finally our exact bounds for
the verification problem, showing this to be conp–complete, are identical to
those already demonstrated for preferred semantics [24] and recognition of
ideal sets [28].4

In Coste-Marquis et al. [21] it was shown that upper bounds on decision
problems involving single arguments continue to apply when when analogous
formulations for sets of arguments are used. It is, of course, trivially the

4Recently optimal bounds on the complexity of sceptical and credulous acceptance
have been obtained by Dvorak and Woltran [31]: these show credulous acceptance to be
Σp

2–hard, and sceptical acceptance Πp
2–hard, matching the upper bounds given in this

article.
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case that lower bounds hold by the simple expedient of treating a single
argument, x say, as a single element set, {x}. It is not hard to see that the
upper bounds on casse and sasse also have this property. Formally, let

ca
{}
sse and sa

{}
sse denote the credulous (resp. sceptical) acceptance problems

when instances are an af (Ar , att) and S ⊆ Ar accepted if S is a subset of
at least one (resp. every) semi-stable extension. Then,

Theorem 21.

a. ca
{}
sse ∈ Σp2.

b. sa
{}
sse ∈ Πp2.

Proof. For (a), S is a subset of some semi-stable extension if and only if

∃ T ∀ U (S ⊆ T ) and (T ∈ adm(H)) and

(U ∈ adm(H))⇒ ¬( (T ∪ T+ ⊂ U ∪ U+) )

For (b), S is a subset of every semi-stable extension if and only if

∀ T (T 6∈ sse(H) or S ⊆ T

which is a Πp2 computation: the result of Theorem 17 showing that T 6∈
sse(H) can be decided in np. �

7. Related Work: Semi-Stable Semantics versus Stage

Semantics

In this section, we treat an alternative approach that can be shown to
satisfy the postulates of crash resistance, non-interference and backward
compatibility, which was originally proposed by Verheij under the name
of stage extensions [51]. Before treating Verheij’s work, however, it can
be worthwhile to sketch some context. Like was discussed before, every
semi-stable extension is a preferred extension, every preferred extension is a
complete extension, every complete extension is an admissible set, and every
admissible set is a conflict-free set. This yields the picture at the left hand
side of Figure 7.

semi−stable extension

preferred extension

complete extension

admissible set

conflict−free set

that defeats everything not in it

that defeats everything not in it

that defeats everything not in it

that defeats everything not in it

that defeats everything not in it
conflict−free set

admissible set

complete extension

preferred extension

semi−stable extension
is a

is a

is a

is a

(5)

(4)

(2)

(1)

(3)

Figure 7. Hierarchy of argumentation related sets (left) and
hierarchy of definitions of stable semantics (right)
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Similarly, there also exist various equivalent ways of defining stable seman-
tics. These are shown at the right hand side of figure 7. Their equivalence
has for most part already been stated and proved at Proposition 3. The
only thing that is still to be done is a proof that level (5) is equivalent to
level (4), which is expressed in Proposition 7 below.

Proposition 7. Let (Ar , att) be an argumentation framework and let Args ⊆
Ar. The following statements are equivalent.

(5): Args is a semi-stable extension
that attacks every argument in Ar\Args.

(4): Args is a preferred extension
that attacks every argument in Ar\Args.

Proof.

from 5 to 4:: Trivial, since each semi-stable extension is also a pre-
ferred extension (Theorem 3).

from 4 to 5:: Let Args be a preferred extension that attacks every
argument in Ar\Args . From Proposition 3 it follows that Args is a
stable extension. The fact that there exists a stable extension means,
by Theorem 5, that the set of stable extensions is equal to the set of
semi-stable extensions. This means that Args is also a semi-stable
extension.

�

To some scholars stable extensions appear as a sometimes unreachable
ideal. If a condition is too strong to be fulfilled, then perhaps it makes
sense to weaken it. In the case of stable semantics, the most obvious way of
weakening would be to drop the condition that a stable extension attacks
every argument not in it. The result, however, depends on the particular
definition of stable semantics one starts with. For instance, if one weakens
the level 4 definition (Figure 7) like this, then one ends up with the notion
of preferred semantics. Likewise, if one applies this to the level 3 definition,
then one ends up with the notion of complete semantics. The higher one
goes, the stronger the resulting semantics becomes. With semi-stable se-
mantics, one tries to obtain an alternative for stable semantics that is still
as strong as possible. A different approach would be not to go up, but to
go down as much as possible. This would result in a definition that merely
requires conflict-freeness, which forms the basis of the work of Verheij [51].

Although in [51] the concept of a stage extension was expressed in terms
of pairs of sets of justified and defeated arguments, in this paper we will
examine Verheij’s basic idea in terms of the more established extensions
approach (as has also been done in [14, 17]).

Definition 25. Let (Ar , att) be an argumentation framework and Args ⊆
Ar. Args is a stage extension iff Args is a conflict-free set where Args ∪
Args+ is maximal.

It is interesting to compare stage extensions with semi-stable extensions.
Both semi-stable extensions and stage extensions have a maximal range. The
difference is that a semi-stable extension has to be a complete extension,
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while a stage extension only has to satisfy the much weaker condition of
being conflict-free.5

As an example of how stage extensions work, consider the argumentation
framework consisting of an odd loop of three arguments A, B and C where A
attacks B, B attacks C, and C attacks A. Here, there exist four conflict-free
sets: ∅, {A}, {B} and {C}, of which {A}, {B} and {C} are stage extensions.

In essence, what stage semantics does is to take the stable extensions of
the maximal subframeworks that have at least one stable extension. That is,
stage semantics tries to ignore minimal parts of the original argumentation
framework that need to be ignored in order to obtain stable extensions.
This is made formal in the following theorem from [14] where, given an
argumentation framework AF = (Ar , att) and a set Args ⊆ Ar , AF|Args

stands for (Args , att ∩ (Args ×Args)).

Theorem 22 ([14]). Let AF = (Ar , att) be an argumentation framework
and Args ⊆ Ar. The following statements are equivalent:

(1) Args is a stage extension of AF .
(2) Args∪Args+ is a maximal subset of Ar such that AF|Args∪Args+ has

a stable extension, and Args is a stable extension of AFArgs∪Args+ .

Using Theorem 22, it is not too difficult to see that stage semantics,
just like semi-stable semantics, satisfies the postulates of crash resistance,
non-interference and backward compatibility. It satisfies non-interference
(and therefore also crash resistance) because unconnected components of
the argumentation framework do not influence each other when selecting the
maximal subframeworks that have stable extensions. It satisfies backward
compatibility with stable semantics because if the argumentation framework
has a stable extension, then the maximal subframework that has a stable
extension will be the entire argumentation framework itself.

In order to understand the difference between stage semantics and semi-
stable semantics, it is useful to make an analogy with classical logic. In
the presence of a potentially inconsistent knowledge base one could do two
things:

(1) Take the maximal consistent subsets of the knowledge base, and
examine what is entailed by all of these. That is, take the (classi-
cal) models of the maximal subsets of the knowledge base that have
classical models.

(2) Define a new (paraconsistent) semantics such that the entire knowl-
edge base will have models, without the need to ignore any of its
contents.

5Verheij also studies what he calls admissible stage extensions, which can to some
extent be described as admissible sets Args with maximal range (Args ∪ Args+). As
was stated by Proposition 4, these correspond to semi-stable extensions. The similarity
between admissible stage extensions and semi-stable extensions might not be immediately
obvious, since Verheij chooses to express his ideas not in the standard way of argument
extensions, but in the form of what he calls stages, which are pairs (J,D) where J is a set
of justified arguments and D a set of defeated arguments [51].
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Solution 1 (applying the original semantics to maximal subsets of the
original problem description) is comparable to stage semantics, whereas so-
lution 2 (redefining the semantics so that it can meaningfully be applied to
a bigger class of knowledge bases) is comparable with semi-stable semantics.

With semi-stable and stage semantics, we have two approaches that both
satisfy the postulates described in Section 2, and we cannot rule out that
there exist more approaches that satisfy them. However, the postulates
of crash resistance, non-interference and backward compatibility should be
seen as minimal properties that one would like to obtain, and one can have
good reasons for preferring some approaches that satisfy them above other
approaches that also satisfy them. We now look at two such reasons, which
are related to the status of attacked arguments, and the consistency of the
argument-based conclusions.

7.1. On the Status of Unattacked Arguments. To examine one of the
fundamental differences between stage semantics and semi-stable semantics
it is illustrative to look at the argumentation framework of Figure 8

BA C

Figure 8. Stage extensions do not always contain non-
attacked arguments.

Here, there exist two stage extensions: {A} and {B}. The first one is a
stable extension of the subframework consisting of only A and B, the second
one is a stable extension of the subframework consisting of only B and C.
So although A is an argument without any attackers, it is not a member of
every stage extension.6 This can be seen as unusual, or even as undesirable,
because in the argumentation framework of Figure 8 there seems to be no
good reason for excluding A from any extension.

With semi-stable semantics, on the other hand, the argumentation frame-
work of Figure 8 yields just a single extension: {A}. Furthermore, since each
semi-stable extension is by definition also a complete extension, it follows
that for any argumentation framework, each argument without any attackers
is a member of each semi-stable extension. This puts semi-stable semantics
in line with other mainstream semantics, like grounded, preferred, stable,
complete, ideal and CF2, all of which satisfy the property that unattacked
arguments are in every extension. The only mainstream semantics that
violates this property is stage semantics.

7.2. On the Consistency of Argument-Based Conclusions. Apart
from the issue of how to treat unattacked arguments, there is also a second
important difference between stage semantics and semi-stable semantics,
which has to do with how one applies argumentation for inferring defeasi-
ble conclusions. Argumentation formalisms like [42, 46, 35, 4] assume the
presence of a set of strict and defeasible rules (or reasons) which are used to

6We would like to thank Pietro Baroni and Massimiliano Giacomin for this observation.
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construct arguments. As each argument has one (in some formalisms possi-
bly more than one) conclusion, one can determine the conclusions associated
to an extension, as well as the overall justified conclusions — usually based
on the sceptical approach: an conclusion is overall justified iff it is entailed
by every extension. Let us consider an argumentation formalism like AS-
PIC [4, 15, 45] or the argument-theoretic interpretation of oscar [43, 44].
Suppose the following nondefeasible information is present: {a, b,¬(c ∧ d)}.
Also suppose there are two defeasible rules: a⇒ c and b⇒ d. One can now
construct at least the following five arguments.
A: (a)⇒ c
B: (b)⇒ d
C: ((a)⇒ c),¬(c ∧ d)→ ¬d
D: ((b)⇒ d),¬(c ∧ d)→ ¬c
E: ¬(c ∧ d)
In the argument-theoretic version of oscar, as well as in [4], an argument
can attack another argument by having a conclusion that is the opposite
of the consequent of a defeasible rule in the other argument. Thus, in our
example D attacks A and C, and C attacks B and D. The argument E
does not have any attackers. The set {A,B,E} is conflict-free but is not
admissible, since it does not defend itself against C and D. Worse yet, the
set {A,B,E}, even though it is conflict-free, has inconsistent conclusions
(c, d and ¬(c ∧ d)). This illustrates that conflict-freeness does not imply
consistency.

It is interesting to see what happens if one replaces the requirement of
conflict-freeness by the requirement of admissibility. Is there still a prob-
lem with consistency for admissible sets of arguments? It turns out the
answer is no. This can be seen as follows. Suppose an admissible set
Args yields inconsistent conclusions. Then Args contains some minimal
subset {A1, . . . , An} such that {Conc(A1), . . . , Conc(An)} is inconsistent.7

Under the assumption that the nondefeasible information is consistent, this
means that at least one of these arguments (say: Ai) contains at least
one defeasible rule. As {A1, . . . , An} is a minimal set of arguments yield-
ing inconsistent conclusions, this means that {A1, . . . , Ai−1, Ai+1, . . . , An}
yields conclusions that are not only consistent, but from which also the
negation of the conclusion of Ai follows under classical logic. That is:
{Conc(A1), . . . , Conc(Ai−1), Conc(Ai+1), . . . , Conc(An)} � ¬Conc(Ai). As in
oscar, as well as in other approaches, strict rules coincide with classical
entailment, there exists a strict rule of the form Conc(A1), . . . , Conc(Ai−1),
Conc(Ai+1), . . . , Conc(An)} → ¬Conc(Ai). This rule can then be used in
an argument (say A′) of the form A1, . . . , Ai−1, Ai+1, . . . , An → ¬Conc(Ai).
This argument can then serve as a basis for constructing an argument (say
A′′) that attacks Ai, possibly by using parts of Ai itself. As Args is ad-
missible, it should defend itself against A′′. Therefore, it should contain
an argument (say B) against the consequent of some defeasible rule in A′′.
But as every defeasible rule in A′′ also occurs in some argument in Args,
this means that B attacks some argument in Args . Therefore, Args is not
conflict-free, which means it also cannot be an admissible set. Contradiction.

7We write Conc(Ai) for the conclusion of argument Ai.
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The key point here is that although weakening the requirement of admis-
sibility to the requirement of merely conflict-freeness might seem reasonable
when one takes into account a purely abstract view of argumentation in
which arguments do not have an internal structure or even conclusions (like
is done in [51]), it can lead to serious problems when one actually tries
to apply this principle in a full blown argumentation formalism in which
the emphasis is on defeasible entailment. For this, conflict-freeness is not
enough; admissibility is really needed.

As an aside, one may argue that Verheij’s approach of stage extensions is
based not so much on conflict-free sets as such, but on conflict-free sets with
a maximal range. Recall that a stage extension is a conflict-free set Args of
which Args ∪ Args+ is maximal. In the above example, the set {A,B,E}
is not a stage extension since its range is {A,B,E} and there exists a stage
(for instance {A,C,E}) with a bigger range (in this case {A,B,C,D,E}).
Although the approach of stage extensions thus properly deals with the
above example, there exist other examples where this approach fails. Con-
sider adding two new arguments F and G, where F is self-attacking and is
attacked by A, and G is self-attacking and is attacked by B. Such argu-
ments could for instance be created by the approach of using undercutters,
as is done in [9]. In that case, the set {A,B,E} is a stage extension. This
is because its range ({A,B,E, F,G}) cannot be made larger. Thus, stage
extensions do not necessarily produce consistent conclusions either. For
Verheij’s dialectical negation approach, where the concept of classical con-
sistency does not exist in the first place, stage extensions work fine. For
other approaches, it can cause some real problems.8

8. Discussion

In this paper we have stated three postulates (non-interference, crash
resistance and backward compatibility) that aim to capture necessary prop-
erties for the notion of paraconsistency. That is, our aim is to describe
what it means for a formalism to be a paraconsistent version of another for-
malism.9 This makes it possible to meaningfully apply paraconsistency to a
whole range of formalisms that are fundamentally different to classical logic,
which has traditionally been the main focus of paraconsistency. To illustrate
the applicability of these postulates outside of the domain of classical logic,
we show how they can be satisfied with respect to three non-classical for-
malisms: abstract argumentation, logic programming and default logic.

It should be mentioned that obtaining the properties of non-interference
and crash resistance is not just a matter of applying a particular semantics
(such as semi-stable). Equally important is the issue of how arguments are

8This also raises some tricky questions for other semantics that are not admissibility
based, such as CF2 [6].

9When restricted to logics endowed with formal (model-theoretical) semantics, this
idea has already been defended since 2005 by Alexandre Costa-Leite under the label
“paraconsistentization” [20]. More recently, Arieli et al. specified a systematic way of
constructing what they call ideal paraconsistent logics [3, 2]. Their approach, however, is
based on the notion of Tarskian consequence and assumes particular elements of classical
logic, whereas our approach takes nonmonotonic formalisms (like abstract argumentation,
logic programming and default logic) as its starting point.



52 CAMINADA, CARNIELLI, AND DUNNE

constructed. This is in line with [15] in which a number of postulates is pro-
vided whose satisfaction depends on the argumentation semantics as well as
on how the arguments are constructed. As an example, when applying semi-
stable semantics to default logic (Section 5) one explicitly needs to rule out
inconsistent arguments in order for non-interference to hold. This phenom-
enon is not necessarily related to semi-stable semantics. Pollock’s oscar

[43], for instance, implements preferred semantics [44] but, as is explained
in [9], violates non-interference because it does not block the construction of
inconsistent arguments. Our current work thus confirms the findings of [15]
that argumentation semantics and argument construction cannot be studied
purely in isolation. One needs to have a suitable combination of semantics
and argument construction in order to obtain the kind of results that can
be regarded as desirable.

Thanks

We would like to thank Bart Verheij, Philippe Besnard and Ofer Arieli
for their useful comments and corrections.
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